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A note by the editors

A group of AI experts congregated to write this book about assurance. Au-
thors present assurance foundations (in Part 1), introduce new assurance
formal methods (in Part 2), and provide examples of assurance applications
in multiple domains (Part 3). Besides highlighting the importance and se-
rious need for extensive evaluation of AI systems, AI Assurance provides a
process towards ethical, explainable, fair, safe, secure, and trustworthy AI.

How to read this book?

If you are an AI researcher...

The goal of this book is to provide you with a foundation to understand-
ing the conceptual, statistical, and theoretical challenges of AI assurance.
We provide three literature review studies for bias and fairness, explainable
AI, and outlier detection in Chapters 3, 4, and 7 to establish the state-of-
the-science in AI assurance-related dimensions. Part 2 (methods) provides
novel approaches to the assurance of AI systems of all kinds, including us-
ing causation, coordination, inference, and data management methods.

If you are an AI practitioner...

By reading this book, you will explore empirical studies on assumptions
that influence algorithmic accountability and how they play out in prac-
tice (Part 3). Throughout the book, authors highlight the various factors
that AI engineers negotiate when implementing AI; mostly in the follow-
ing domains: economics (Chapter 11), healthcare (Chapter 12), engineer-
ing (Chapter 13), agriculture (Chapters 14 and 15), and technology policy
(Chapter 16). AI assurance best practices are presented in Parts 1 (theoreti-
cal) and 2 (statistical).

If you are a policy maker...

This book helps you identify potential methods for evaluating the use of
AI algorithms at government in a liable manner. Methods related to AI for

xxi



xxii A note by the editors

public policy provide measures that can increase trust in AI systems and
mitigate potential algorithmic harms through assurance. Begin with Part 3,
and observe examples of evidence-based policy making. Additionally, take
a look at the forewords by each section; they provide testimonies by execu-
tives trying to deploy AI in the public sector.

Lastly, if you are a non-technical AI enthusiast, we recommend that you
begin by reading chapters: 1, 2, 5, and 6 before digging deeper into the inner
workings of AI methods presented in other chapters.

Feras A. Batarseh
Associate Professor, Department of Biological Systems Engineering (BSE)

& Commonwealth Cyber Initiative (CCI)
Affiliate faculty, Center for Advanced Innovation in Agriculture (CAIA)

& National Security Institute (NSI)
Virginia Tech, Arlington, VA, United States

Laura J. Freeman
Research Associate Professor, Department of Statistics & National Security

Institute (NSI), Virginia Tech, Arlington, VA, United States



A note on the book cover

AI assurance is an octopus in a sea of data; it is required to be intelligent,
adaptive, and accessible to all parts of its ecosystem. Octopuses are highly
agile and intelligent carnivores; they can store long- and short-term mem-
ory information, can quickly learn from shapes and patterns of sea objects,
have been reported to practice observational learning, and are known for
building shelters for protective measures against adversaries.

Reference: Nuwer, R., “An Octopus Could Be the Next Model Organism,”
Scientific American, March 2021.
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Foreword 1

I currently have the pleasure of leading the Commonwealth Cyber Initiative
(CCI), a major investment by the Commonwealth of Virginia in research,
workforce development, and innovation. We are more than 300 researchers
from across Virginia with a focus on the intersection between cybersecurity,
autonomy, and intelligence. The evolving field of Artificial Intelligence (AI)
Assurance is at the very center of this intersection.

AI is in many of the products and services that we use on a daily basis,
often without our being completely aware of it. There is AI in our smart-
phones, making decisions about how we connect to various networks and
technologies, and in our social media, deciding what ads and posts we are
exposed to. As cyber-physical systems, such as drones or robots, become
more prevalent, they will be largely driven by AI.

Some of these uses of AI affect critical services provided by a company,
or involve health and safety issues (for example, in the use of AI in au-
tonomous or assisted driving vehicles, another active area of CCI research
and innovation). For these applications, treating AI as a black box—even
one that produces great results in the vast majority of cases—is not enough.
There must be assurances that the system is trustworthy, unbiased, explain-
able, ethical, and fair.

Other systems, such as next-generation communication networks, have
traditionally relied on heuristics and experienced engineers, but are be-
coming too complex to be managed by humans. The need for AI is clear,
but explainability and/or interpretability are key for widespread adoption.

This book gathers an impressive multi-disciplinary group of authors who
introduce the fundamental goals and principles of AI Assurance and re-
view the state-of-the art in the area, describe some of the main techniques
adopted for assurance, and outline an array of applications in diverse areas,
from healthcare to precision agriculture.

xxv



xxvi Foreword 1

Ours is fast becoming a world of AI embedded into virtually everything.
The potential for an increase in productivity and quality of life is great, as
long as it is done responsibly. AI assurance will be even more critical in this
new world.

Luiz DaSilva
Bradley Professor of Cybersecurity, Virginia Tech

Executive Director, Commonwealth Cyber Initiative



Foreword 2

Artificial Intelligence (AI) is here to stay and will continue to affect virtually
every industry and every human being in the developed world. The health-
care sector, with its abundance of data, will be particularly affected by the
advancement of AI and the big data paradigm shift. Together, they will drive
innovation in healthcare, to include advancement in biomedical research,
prevention of diseases, testing of life-saving drugs and vaccines, as well as
spearheading the development of innovative medical devices. AI will also
increase productivity exponentially, empowering healthcare providers to
increase the volume, efficiency, and quality of delivery.

There are numerous use cases for AI to have a major impact on health-
care. For instance, it can augment human tasks and abilities by aiding
in clinical decisions, supporting judgment and increasing treatment effi-
ciency. Health professionals can access an abundance of data around di-
agnostic resources and research with new velocity. In the field of clinical
research, AI can aid researchers and scientists by providing them with the
ability to solve complex, global health challenges with the right data that
is difficult to uncover with human analysis alone. AI algorithms can sort
through large number of datasets unimaginable to human’s ability with a
high degree of accuracy and, in some cases, without bias. Health organiza-
tions are already exploring AI-based projects to discover health solutions
across research and medical settings. The second area is in targeted diag-
nostics. Diagnosis and treatment of disease has been a core function of AI in
healthcare. A patient can present symptoms that may require precise detec-
tion, diagnosis, treatment plan and an outcome prediction. The ability for
AI to learn from the data provides the opportunity for improved accuracy
based on feedback and enforcement responses. There are many research
studies that have shown that AI can perform as well as or better than hu-
mans at healthcare tasks. The implementation of AI can also provide early
detection by pinpointing risk alerts. This extends to telehealth tools that

xxvii
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can diagnose patients at the edge and into homes to help treat and prevent
medical situations, while reducing hospital visits and readmissions. The
third area is drug testing and drug discovery. Drug testing can be a lengthy
process to make sure the proposed drugs will not pose harm to the con-
sumers. AI can predict the attributes of toxicity of new compounds using
data from past tests and experiments. These processes are extremely costly
and time consuming; leveraging AI can help expedite the process with bet-
ter precision.

AI gives us a tremendous amount of power to shape our healthcare of the
future but it comes with a tremendous amount of responsibility, challenges,
and concerns. There are also varieties of ethical implications around the
use of AI in healthcare. If we allow AI to make or assist with health decisions,
it raises issues of transparency, accountability, and privacy. Mistakes are to
be expected by AI systems in patient diagnosis and treatment, and it may
be difficult to establish accountability for them. AI in healthcare may also
be subject to algorithmic bias, if the datasets are not inclusive of all races,
genders, backgrounds, ages, and ethnicities.

It is imperative that healthcare institutions, government, and regulatory
entities establish structures to continuously create and enforce rules to
limit negative implications. Additionally, we must ensure that we are doing
our best to bridge the digital divide and not leave people behind. Datasets
are mostly being captured by people in developed countries that have ac-
cess to technology. Coincidentally, characteristics and norms of people in
countries with lack of access to the internet will not have footprint online,
and thus not represented in the analysis. The result is that AI-generated in-
formation will have unintentional bias.

For health organizations to embark on the AI journey, they must apply
some guardrails. By designing AI solutions with these principles in mind,
they can protect against unintended consequences and promote ethical AI
decision-making. They must consider privacy, legal, ethics, security, trust-
worthiness, and free from bias.

The deployment of AI in the health sector holds the promise to improve
efficiency, effectiveness, safety, fairness, welfare, transparency, and other
economic and social goals. Health organizations have shown efforts to date
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to demonstrate its desire and commitment to fully realize the benefits of
AI. AI provides capabilities that solve complex mission challenges and gen-
erate AI-enabled insights to inform efficient programmatic and business
decisions, while removing barriers to innovation. We have an opportunity
to shape our next generation story. We can create a new story on how we
want to live, socialize, work, and play. We need to take responsibility at ev-
ery level of society to adapt to these technological challenges and changes,
with the intent of redefining what is like to be a human. Let us look at AI as
a force for good if implemented correctly. We have the opportunity to write
our own autobiography. Let us help meet the basic needs of all humans and
write our future.

Oki Mek
Chief Artificial Intelligence Officer (CAIO)

U.S. Department of Health and Human Services (HHS)
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Foreword 3

Artificial Intelligence (AI) is recognized as one of the most powerful tech-
nologies in generations with the potential for transformation impacts to
America’s prosperity, welfare, and national security. In its final report pub-
lished in March 2021, the National Security Commission on Artificial Intel-
ligence (NSCAI) calls on the U.S. government to “expand our conception of
national security and find innovative AI-enabled solutions” to harness its
power for our nation’s defense. In fact, this is already happening. AI has be-
come ubiquitous: machine and deep learning are now standard techniques
in data analysis. Organizations in industry and government alike have
launched enterprise data management and software development strate-
gies to accelerate AI innovation and adoption. Within the United States’
nuclear security enterprise, advances in computing, intelligent methods,
and new data sources present new opportunity to enhance capability to de-
tect, monitor, and verify global activities to develop and proliferate nuclear
weapons.

Working with allies and partners around the globe, the United States
employs nuclear nonproliferation and arms control to reduce the dangers
posed by nuclear weapons. The White House’s Interim National Security
Strategic Guidance published in March 2021 recognizes the urgency and
key role of nuclear nonproliferation and arms control in the United States’
strategic stability. Central to nuclear nonproliferation and arms control are
technologies and science-based methods to detect activities by state and
non-state actors to develop or acquire nuclear weapons-usable capabilities
and assess nascent or extant nuclear weapons programs. The United States
seeks to leverage AI to expand nuclear proliferation detection and enable
the detection of nuclear threats earlier than ever before, which affords more
options for intervention.

The missions and decisions enabled and informed by nuclear prolifer-
ation detection technologies are high-consequence, highly technical, and

xxxi
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executed under challenging operational conditions. Designing intelligent
systems that are useful for nuclear proliferation detection requires the use
of clever assurance and validation techniques beyond the standard meth-
ods typically used in AI and machine learning. Nuclear nonproliferation
decision-makers, operators, and national security analysts require trans-
parency in the processes and workflows used to manipulate and analyze
data to ensure they can trust and act on the results. The pressing nature
of these missions demands that decisions be made even under uncertain
conditions: intelligent systems must perform predictably when exposed to
out-of-distribution data or when the availability of a data source changes.
In addition to conventional definitions of trustworthy and ethical AI, intel-
ligent systems used in nuclear proliferation detection are accountable to
laws of science and engineering-defined constraints, such as physical and
chemical properties. This presents both a requirement for validation and
an opportunity to constrain and inform learning.

Thus, this text presents a myriad of techniques aimed at evaluating the
assurance of AI systems. The material of this book is essential in realizing
the charge of the NSCAI Final Report: to realize an “AI-ready national secu-
rity enterprise by 2025”. AI assurance is only achievable using techniques
with strong scientific and rigorous mathematical underpinnings that are
selected based on the challenges of the mission for which the intelligent
system will be used.

Leveraging the clever techniques presented in this text, it is possible to
build AI-enabled technologies that outperform many existing capabilities
and that can be adopted and integrated into operational national security
mission to make the world safer.

Angela M. Sheffield
U.S. Air Force Academy and Kansas State University
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An introduction to AI assurance

Feras A. Batarseha, Jaganmohan Chandrasekaranb, and
Laura J. Freemanc

aDepartment of Biological Systems Engineering (BSE), College of Engineering (COE) &
College of Agriculture and Life Sciences (CALS), Virginia Tech, Arlington, VA, United
States bCommonwealth Cyber Initiative, Virginia Tech, Arlington, VA, United States

cDepartment of Statistics, National Security Institute, Virginia Tech, Arlington, VA,
United States

Graphical abstract

Abstract

In this chapter, we present a brief introduction about the concept, dimensions,
and challenges of AI assurance. The goal is to lay the path for the concepts pre-
sented in this book. AI is often assessed by its ability to consistently deliver ac-
curate predictions of behavior in a system. A critical, often overlooked, aspect of
developing AI algorithms is that performance is a function of the task the algo-
rithm is assigned, the domain over which the algorithm is intended to operate,
and changes to these elements in time. These parameters and their constituent
parts form the basis which makes assuring AI a challenge. Algorithms need to
be characterized by understanding the factors that contribute to stable perfor-
mance across an operational environment (e.g., no dramatic perturbation by

AI Assurance. https://doi.org/10.1016/B978-0-32-391919-7.00013-5
Copyright © 2023 Elsevier Inc. All rights reserved.
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4 AI Assurance

small changes and/or no effects measurable over time). This chapter presents a
high-level introduction to AI Assurance and points readers to related areas of
interest in the book.

Keywords

AI assurance, testing & evaluation, responsible AI

Highlights

• An introduction to AI assurance

• Topics covered and questions answered in this book

• Book’s main thrusts and high-level summaries

• The need for AI assurance

1.1 Motivation and overview
To accurately and consistently predict behaviors in systems, AI systems re-
quire data for training and testing the outcomes. The iterative process of
improving accuracy and precision in developed models involves trade-offs
in performance, data quality, and other environmental factors. AI’s predic-
tive power can be impacted through changes in the training/testing data,
the model, and its context. In this chapter, we discuss sources of change
captured within the operational context (Brézillon and Gonzalez, 2014) of
an AI’s execution and that is often attributed to inconsistencies in AI sys-
tems. Model and data changes are discussed in this book, especially those
related to concept drift in applications with examples of how these incon-
sistencies emerge (Žliobaitė et al., 2016; McPherson, 2021; Tucker, 2021).

The need for assurance was reinforced in a recent report by the US Na-
tional Security Commission on Artificial Intelligence (NSCAI), which pro-
posed that government agencies, such as the National Institute of Stan-
dards and Technology (NIST) and the National Institute of Food and Agri-
culture (NIFA) “should provide and regularly refresh a set of standards, per-
formance metrics, and tools for qualified confidence in AI models, data,
training environments, and predicted outcomes” (NSCAI, 2021). The gov-
ernment, industry, and academia are required to collectively advance the
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AI community in establishing these resources and standards. Accordingly,
this book’s motivation is to provide a vision for the path forward and serve
as a foundational and theoretical manifesto to the assurance of AI sys-
tems.

1.1.1 Book content

The incremental testing movement was an afterthought in the software en-
gineering world. If we aim to learn from that experience, however, we ought
to develop assurance incrementally and as part of the AI lifecycle. Therefore
assurance should not be treated as a separate component while developing
AI systems; instead, it should be a part of the incremental learning process
of any agent, environment, or algorithm. Chapter 2 of this book discusses
the notion that “the process of ensuring fair, unbiased, and ethical AI needs
to be a continuous endeavor, making of AI assurance a process and not a
goal;” it also includes a valuable exploration of the areas of generalization
and other major assurance challenges, such as the control problem, value
loading, and human-AI alignment.

A well articulated process and a clearly defined set of metrics to catego-
rize and measure the maturity of assurance could go a long way in estab-
lishing a common understanding of these systems’ dependability. Similar
process structures, e.g., the capability maturity model integrated (CMMI),
have been employed to measure an organization’s ability to produce high
quality software systems. The advantage of such a model is that it encour-
ages all stakeholders to agree on a set of metrics and processes to measure
the quality of the AI systems being produced and deployed. It also shows
the path to achieve a gradually higher level of assurance following a con-
sensus set of criteria. We believe that a similar set of metrics and process
under a maturity model framework will not only streamline AI systems’ de-
velopment efforts, it will also foster sharing of implementation experiences
and best practices. However, such standards should be defined based on
AI-related metrics, for instance, Chapter 3 presents a rich overview of sta-
tistical methods and foundational metrics to measuring assurance of AI
systems, with focus on explainability and interpretability. However, if we
consider assurance goals, such as explainability, fairness, and trustworthi-
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ness, trade-off decisions have to be made. Algorithms that are more com-
plex (such as neural networks) tend to be less interpretable and prone to
different kinds of bias for instance. As reported by Gunning and Aha (2019),
the performance of AI algorithms is inversely proportional to the explain-
ability of the model’s decision. Accordingly, Chapter 4 presents bias reduc-
tion methods and compares them in terms of the overall validation of AI
systems.

As AI is getting adopted across all domains, assuring AI systems is be-
coming a matter of national security; it has effects on manufacturing,
cyber-physical systems, the economy, healthcare, government, and many
other sectors; Chapter 5 introduces potential short- and long-term global
impacts of AI assurance. Accomplishing assurance is a complicated en-
deavor nonetheless; Chapters 6, 8, and 10 present detailed frameworks
and lifecycles that can be used to establish a process for assurance within
any domain, by applying algorithm assurance concepts, such as infer-
ence, causality, resilience, and elasticity. Data assurance, however, is an-
other critical dimension in AI assurance (Kulkarni et al., 2020); Chapters 7
and 9 provide answers and recommendations on data wrangling meth-
ods for improved model outcomes, as well as addressing outlier detec-
tion issues in training data and their effects on the outcomes of learning
algorithms. The last part of the book presents a variety of applications
and illustrates the need for assurance in many sectors such as Economics
(Chapter 11), Healthcare (Chapter 12), Engineering (Chapter 13), Agricul-
ture (Chapters 14 and 15), and Public Policy (Chapter 16).

1.2 The need for new assurance methods
Recent advancements in AI have demonstrated the potential of AI-based
software systems in successfully performing tasks that generally require
human-level intelligence. A survey by Batarseh et al. (2021) recommends
a set of assurance goals, provides a new comprehensive definition for AI as-
surance, and suggests that AI-based software systems are rapidly adopted
across various domains. An AI-based software system consists of one or
more machine learning models that are used to perform intelligent tasks,
such as object identification, pedestrian detection, speech translation, and
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decision support. In the AI engineering lifecycle, developing a model is a
multi-step process. One of the critical initial steps is algorithm selection. An
AI framework, such as sci-kit learn, Tensorflow, or Pytorch, consists of a col-
lection of off-the-shelf AI algorithms. The AI algorithm analyzes the dataset,
infers, and learns the hidden patterns, and derives a decision logic on re-
ceiving the input. This activity is referred to as the training phase, and the
derived decision logic is referred to as a trained AI model (Chandrasekaran,
2021; Felderer and Ramler, 2021). In the training phase, multiple assur-
ance challenges could be faced, such as data bias, data incompleteness,
dark data, or data collection inconsistencies. Despite the promising poten-
tial demonstrated by AI-based software systems, they are error-prone and
tend to fail once deployed in real-world environments (Lee, 2016; Dastin,
2018; Vincent, 2020; Mitchell, 2021; E.Boudetter, 2021). Such failures can
have serious consequences, including fatal consequences in safety-critical
domains (Cellan-Jones, 2020; Newman, 2021). However, assurance, testing,
validation, and verification of systems is not a new problem, the software
engineering community has made major progress and multiple conclu-
sions on these fronts, some of which could be very useful for AI, whilst oth-
ers are not related at all. In the remaining of this section, we argue against
recycling existing assurance methods, and present the case for a new set
of AI assurance methods. In the software development lifecycle, testing is
performed before the software system is released. The objective of the test-
ing activity is to ensure that the software system will behave as intended.
According to ISO/IEC/IEEE 29119-1:2013 (IEEE_Software_Testing, 2013),
the primary goals of software testing are to provide information about the
quality of the test item and any residual risk in relation to how much the
test item has been tested, to find defects in the test item prior to its re-
lease for use, and to mitigate the risks to the stakeholders of poor product
quality. Poor software quality can have an adverse effect and cause severe
damages to its stakeholders. A report in synopsis states that, in 2021, the
software glitches in the US cost around an estimated $2 trillion (Armerd-
ing, 2021). Testing is a complex yet essential activity in the software de-
velopment lifecycle. Over the years, several approaches and methodologies
have been developed to effectively test and release software systems. How-
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ever, they are tailored towards testing and evaluation of traditional software
systems, and not AI. In traditional software systems, the decision logic is
written by humans based on the requirements provided by stakeholders.
More importantly, decision logic is deterministic, that is, for a given input,
the system is guaranteed to produce the exact output at each execution. In
contrast, AI systems derive their logic from a training dataset, and in most
cases, the algorithms in an AI-based software system behaves in a stochas-
tic manner. Furthermore, an AI software system shall exhibit a change in
its behavior with different data, different contexts, and different users; all
of which obviously exacerbate the assurance challenge (Freeman, 2020).
Therefore the behavior of an AI-based software system is influenced by a
combination of factors, all requiring assurance. Additionally, in the case
of traditional software systems, the decision logic is derived based on the
requirements. Hence, the test cases are generated based on the business re-
quirements, and each test case shall have a predetermined/predefined set
of outputs. On the contrary, in AI-based software systems, there are no writ-
ten requirements in the traditional sense. Instead, the AI model derives the
logic from the training dataset (through supervised or unsupervised train-
ing processes). Therefore AI-based software systems suffer from the test
oracle problem (Weyuker, 1982; Murphy et al., 2007). That is, in most cases,
the intended system behavior for a test case can hardly be predefined. In
other words, the exact intended behavior of an AI software system is not
fully known until the scenario occurs in real-time (such as in reinforcement
learning scenarios).

An AI-based software system with a higher prediction accuracy (closer
to a 100% accuracy) is expected to guarantee an error-free behavior, also,
they are expected to make objective, impartial decisions. On the contrary, in
most cases, when deployed in real-world conditions, AI-enabled software
systems can inadvertently result in discriminatory behavior. For example,
an AI algorithm used by a major US-based healthcare institution to identify
patients for extra care through an intensive care management program ap-
peared to be discriminatory against patients of African-American ancestry
(Strickland, 2019). The root cause for such unintentional yet discriminatory
behavior could be attributed to the inherent bias in the dataset used to train
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the AI model used in the AI-based software system. Issues reported in Buo-
lamwini and Gebru (2018); Strickland (2019); Caliskan (2021); Zang (2021)
indicate that evaluating the quality of AI-based systems requires determin-
ing beyond the correctness of the AI systems. As AI-based software systems
are data-intensive, in addition to the correctness, it is essential to test for
bias and variance in the system (to identify over or under-fitting issues).
From an assurance standpoint, it is imperative to develop standardized as-
surance methods that are capable of detecting and mitigating any biased
behavior before AI-based software systems are deployed.

Furthermore, in the case of a traditional software system, on executing
a test case, a deviation of the observed behavior from the expected behav-
ior is considered as failure. However, in the case of an AI-based software
system, the correctness of system behavior is evaluated based on the pre-
diction accuracy (a statistical score) of the AI system (Zhang et al., 2020;
Riccio et al., 2020). A statistical score (for example, correct predictions/to-
tal predictions) is calculated over a test dataset. A model achieving a higher
accuracy is considered one of higher quality. Also, the acceptable threshold
of the prediction accuracy score varies across domains, users, and mod-
els. It follows that, as this book presents, assurance of AI systems could be
domain-specific or domain-dependent, model-specific or model-agnostic,
but is certainly needed in all cases, scenarios, and deployments. For tradi-
tional software systems, in most cases, the root cause for an unexpected
behavior (failure) can be localized to a segment in the source code. How-
ever, when an AI system exhibits a failure, it can be caused by either by the
training dataset, missing data, outliers, choice of hyper-parameters, or by
the trained model and its architecture (Batarseh and Gonzalez, 2018). For
example, as reported in Wiggers (2021), the inherent bias in the training
dataset results in a discriminatory AI software system. In other cases, even
the choice of an AI algorithm can be attributed to unexpected behavior (Yee
et al., 2021). Given the fundamental differences between a traditional soft-
ware system and an AI-based software system, and the quality assurance
challenges that arise from these differences, it is vital to develop assurance
methods that are especially tailored and best suited to assess and evaluate
AI-based systems, a notion that is covered in this book.
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1.3 Conclusion
As reflected by this book, AI assurance is based on a set of trade-offs. An AI
model that exhibits better performance is generally a black-box, and their
reasoning (or) decision-making process is not easily understandable to the
users. From an assurance standpoint, in addition to evaluating a model’s
correctness (accuracy), it is essential to understand why a model makes
a specific decision. Despite the prediction capabilities, as the reasoning
behind a model’s decision is largely opaque, it leads to a lack of trustworthi-
ness among the users. From a quality assurance perspective, it is essential
to develop approaches and tools that will generate fair outcomes that are
secure, safe, and easily understandable to all stakeholders (AI engineers,
end-users, business owners, data scientists) involved in the process. Ac-
cordingly, we provide an updated definition of AI assurance, which is an
extension to the one presented in Batarseh et al. (2021); this definition is
adopted across this book: AI assurance is a process that is applied at all
stages of the AI engineering lifecycle, ensuring that any intelligent system is
producing outcomes that are valid, verified, data-driven, trustworthy, and
explainable to a layman, resilient against adversaries, robust within its do-
main, ethical in the context of its deployment, unbiased in its learning, and
fair to its users.
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Abstract

The main goal of AI assurance is to ensure that AI systems are, among other
things, ethical, unbiased, and fair. In this chapter, three different approaches
to the value alignment problem, i.e., how to ensure that an AI’s decisions and
behaviors are aligned with our values, are introduced. The chapter claims that
AI assurance provides a shared vernacular and a formal framework to mean-
ingfully apply the strategies to deal with the value alignment problem above,
motivating several questions that are fundamental to such alignment. A brief
overview of three different normative theories pinpoints the dilemmatic nature
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of defining “the good,” justifying in turn the need to tackle the problem of imple-
mentation, specification, and moral uncertainty. It is argued that even though
behavior-based learning allows deferring some of these questions, for AI assur-
ance to attain its goals—both now and in the future—the process of ensuring
fair, unbiased, and ethical AI needs to be a continuous endeavor, making AI as-
surance a process and not a goal.

Keywords

Value alignment problem, AI ethics, specification, implementation, uncertainty,
CIRL, Artificial Intelligence

Highlights

• This chapter introduces AI assurance as a process that enables fair, unbiased, and

ethical AI

• Ethical interpretations are explained via the problem of aligning AI systems with our

values and interests

• The embrace of behavior-based value learning methods motivates the necessity to

further explore AI assurance as a crucial actor within AI systems development

2.1 Introduction and background
AI assurance is a field of research entrusted with a crucial task: ensuring that
the development and adoption of advanced AI systems does not jeopardize
the fundamental pillars on which our society stands. Such assurance in-
volves, consequently, discussions about development, transparency, com-
mercialization, regulation, control, or use, which need to be addressed at
multiple levels of abstraction: from the most fundamental mathematical
formalisms to the complexity of everyday language. The aim of AI assur-
ance is thus to make sure that any AI system being developed and deployed
produces outcomes that are “valid, verified, data-driven, trustworthy and
explainable to a layman, ethical in the context of its deployment, unbiased
in its learning, and fair to its users” (Batarseh et al., 2021).

The strength of the process suggested here is that it applies throughout
the whole range of technologies that fall beneath the umbrella term “ar-
tificial intelligence”. It is a claim that compels any and all AI systems to
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satisfy a bare minimum of requirements for them to be acceptable not only
in technical or commercial terms, but also social, ethical, and legal. AI as-
surance thus provides, on the one hand, the framework, while on the other,
the vernacular to meaningfully assess each step of both the development
and adoption process of AI systems for them to be fair, safe, unbiased, and
ethical.

AI systems are increasingly embedded in our social context, and regard-
less of the technical brilliance that underpin them, the possible futures that
AI opens up to us are both staggering and uncanny. Original and com-
plex AI systems, capable of undertaking tasks that would otherwise be un-
fathomable, are many times obscure to the general public, justifying the
grounds for anxiety. But once the emotion wears off, the difficult and often
times profound philosophical questions remain. How should we align AI
systems with our values? How similar to natural intelligence is artificial in-
telligence? While some of the questions are deeply metaphysical, especially
those about conscience, free will, agency, and autonomy, many others pick
on ethical dilemmas that have governed the progress of philosophy for the
last millennia.

AI has evolved via different approaches to learning. However, one of the
main problems when training a machine learning algorithm is generaliza-
tion, or the capacity of a given model to adapt to new datasets. Intuitively,
machine learning is the field of study that gives computers the ability to
learn without being explicitly programmed to Samuel (1959). Such learning
is materialized via a model about a given portion of the world, which is ar-
ticulated by a hypothesis that is inferred from a dataset. If such dataset is
previously partitioned into labeled categories, we call it supervised learn-
ing. Otherwise, the so-called learning is unsupervised learning. Last, if the
agent conditions its action to the reward it receives, this is called reinforce-
ment learning (RL).

The problem of generalization is troublesome for several reasons. First,
it limits the capacity of an AI system to be used beyond the training dataset.
But second and more importantly, it increases the chances of misinter-
preting, or misclassifying elements from the real world. Given the growing
impact of AI algorithms on our everyday lives, trying to align AI systems
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with our values is a crucial task for researchers. It is in this sense that philo-
sophical approaches to AI provide a meaningful background to reformulate
technical problems as ethical and concrete philosophical problems.

This chapter begins with an overview of three main formulations of the
value alignment problem in AI. Section 2.1.1 introduces Nick Bostrom’s
concerns regarding the control problem and the value-loading problem
in the context of the existential risks that AI entails. Section 2.1.2 briefly
discusses Stuart Russell’s defense of human-compatible AI, paying special
attention to his proposal of abandoning the standard model of AI, as well
as to the possibilities that assistance games, such as cooperative inverse re-
inforcement learning bring. Section 2.1.3, discusses Brian Christian’s value
alignment problem, which provides meaningful insights regarding the role
of training data and objective functions in developing aligned AI systems. In
Section 2.1.4, AI assurance is interpreted as a process that provides a shared
vernacular and a formal framework to implement the discussions above.

The second part of this chapter is rooted in some fundamental aspects
regarding the development of safe and ethical AI. Section 2.2.1 introduces
three of the most important normative theories in ethics: duty-based de-
ontology, utilitarianism, and virtue ethics. After this, the implementation
problem is discussed in Section 2.2.2, considering two possible strategies
to develop a moral sense in a machine: a top-down and a bottom-up ap-
proach. Then, in Section 2.2.3, some problems related to the nature of in-
tentional statements are introduced, focusing in particular on the problem
of specification and the role of moral uncertainty.

The chapter concludes insisting on the idea that for AI assurance to suc-
ceed in its goals, the process of ensuring that AI systems are ethical, un-
biased, fair, and safe needs to be an iterative, interactive, and deliberative
process. Thus AI assurance reformulates AI ethics not as a goal, but as a new
relationship with technology.

2.1.1 Value-loading

In the book “Superintelligence: Paths, Dangers, Strategies”, Nick Bostrom
(2014) presents two problems that are crucial for AI assurance. On the one
hand, what Bostrom calls “the control problem” raises the question bear-
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ing on which principles should buttress a framework to harness an artificial
general intelligence that could overtake us. On the other hand, and before
the provisional nature of control mechanisms, “the value-loading prob-
lem” allows us to formalize the puzzle of having intelligent systems whose
values are aligned with ours. The two sections that follow provide a brief
outline.

2.1.1.1 The control problem
Both the control and the value-loading problem are raised from the per-
spective of the existential risk that an AI—a general, superintelligent one—
could entail in the longer run for humanity. And even though AI assurance
and machine ethics are primarily concerned with current developments
(i.e., those related to machines that are still far inferior to humans in terms
of general intelligence), it is both intrinsically and instrumentally enriching
to engage in the exercises that Bostrom proposes. The idea of an artificial
general intelligence (or AGI) has motivated relevant interdisciplinary re-
search agendas that have contributed both to prevent such outcome and
to ensure better systems. Moreover, thinking about this existential risk not
only allows us to consider the long-term consequences of our current deci-
sions, it also puts into perspective our ultimate goals. It is, perhaps, because
of this that Bostrom’s work has been so influential.

But how could we control an AGI? To answer this question, Bostrom
introduces the possibility of an artificial intelligence explosion (or a pu-
tative process in which a moderately intelligent agent improves radi-
cally until reaching a superhuman level of intelligence via recursive self-
improvement) (Bostrom, 2014: 408). The main goal of the control problem
is to achieve a “controlled detonation” of such intelligence (Bostrom, 2014,
p. 155). To do so, the discussion targets which methods could be used to
ensure that such agent realizes the sponsor’s goals.

Bostrom proposes several methods to ensure a controlled detonation,
which can be grouped into two categories: capability control and motiva-
tion selection. Capability control methods include the following:

• Boxing: This process consists of containing (either physically or informa-
tionally) the artificial intelligence.
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• Incentive methods: These are methods that place the agent in an envi-
ronment where it finds instrumental reasons to behave consistently with
the designer and developer’s interests.

• Stunting: Stunting consists of limiting the system’s capabilities or access
to information.

• Tripwires: These are occult diagnostic tests that shut down the AI if it
identifies possible dangerous behaviors.

On the other hand, motivation selection methods include

• Direct specification: Direct specification is an attempt to explicitly define
—either via rule-based or consequentialist principles—a set of rules or
values to align the agent’s behavior with our interests, domesticity, or
placing the agent in a particular situation where specifying its behavior
may be tractable.

• Indirect normativity: On the contrary, indirect normativity consists of
specifying a process to derive norms.

• Augmentation: Augmentation consists of enhancing the capabilities of a
system that already has an acceptable motivation system.

2.1.1.2 The value-loading problem
The measures proposed to control an AI explosion above, however, are only
temporary. If we intend to have intelligent agents that are reliable and safe
beyond highly limited settings, we must face what Bostrom calls the “value-
loading problem”. The difficulty of this problem lies in the impossibility to
specify any and every possible situation the AI might encounter, and the
type of behavior we would expect from it. Given this impossibility, moti-
vation systems need to be specified more abstractly—in the form of a rule
or a formula—that allows the agent to make a decision in new situations
(Bostrom, 2014, p. 226). One possible way to do so could be via a utility
function, which assigns a different value to each possible outcome accord-
ing to a set of criteria, and then evaluates the best one. This function, and
the behavior it would promote, should be aligned with our own goals. But
this raises a grave problem: it is possible that such a utility function could
only deal and achieve simple goals, or to select motivations in highly do-
mesticated environments. It is in part because of this that explicit utility
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functions seem to provide little help beyond highly simplified scenarios. In
response to this, and to circumvent the hopeless endeavor of exhaustively
specifying our values, Bostrom presents seven different value-loading tech-
niques open for exploration.

• Evolutionary selection: Evolutionary selection captures the idea behind
biological evolution. Simply put, evolution is a type of two-step search
strategy that stochastically expands a given population with new can-
didates, which are then tested against an evaluation function and, ul-
timately, pruned. However the problem is that a search strategy could
satisfy both conditions of evolutionary selection without satisfying our
expectations in terms of value (Bostrom, 2014, p. 229).

• Reinforcement learning: A second option is to consider agents trained on
reinforcement learning, where agents learn to maximize cumulative re-
ward. In such cases, as the agent experiences, the evaluation function, or
a function that tells the agent the value of its current state, is updated.
This could be misunderstood as such function bears on a capacity to
learn about values, but that is not the case: the agent is merely getting
better at estimating instrumental values of reaching a particular state.
Since the goal of the system is to maximize future reward, it seems un-
likely that RL by itself can provide a solution to the problem at hand
(Bostrom, 2014, pp. 230–1).

• Associative value accretion: This technique is grounded on the idea that
humans are born with simple starting preferences and a set of disposi-
tions to acquire new ones in response to experience. The presence of
both is innate, but the development of the latter depends on one’s life.
The problem with this approach is that the mechanisms behind what
representations are value-sensitive (e.g., someone’s well-being) is not
well understood. Therefore trying to mimic the human value-accretion
process seems too difficult (Bostrom, 2014, pp. 231–3).

• Motivational scaffolding: Another possible approach is to build a primi-
tive goal system into the seed AI with simple final goals explicitly coded.
Once the AI develops more sophisticated representational capabilities,
this initial scaffold is replaced by more complex goals that enable the sys-
tem to bloom into a full superintelligence with a complex set of values.
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However, since scaffold goals are not merely instrumental but final goals
for it, the AI could oppose resistance to have them substituted. To deal
with this danger, both control and motivation selection methods could
be implemented (Bostrom, 2014, pp. 233–4).

• Value learning: Value learning rests on the idea that the system can use
its intelligence to learn the values we want it to have. The AI would esti-
mate an implicitly defined set of values based on an internal criterion—
a scaffold, similarly to the motivational scaffolding technique—but its
final goal would remain unchanged: what changes throughout the pro-
cess is the system’s belief about the goal. The key about this approach
is that the system generates hypothesis about what values are worth
pursuing, and changes the ponderation of each hypothesis according to
evidence (Bostrom, 2014, pp. 235–7). Bostrom provides a possible for-
mal approach to value learning. However, due to technical limitations
and the need to implement a correct motivation before the superintelli-
gence’s explosion, this approach is described more as a research program
than an available technique. However, cooperative inverse reinforce-
ment learning, presented in the section below, will undoubtedly resonate
with this proposal. (See Section 2.1.2.)

• Emulation modulation: Taking a different path towards developing in-
telligent agents, i.e., by means of brain emulation, opens up a differ-
ent technique to tackle the value-loading problem. With emulations,
the augmentation motivation selection method could be applicable. The
idea rests on combining inherited goals, which are part of the emu-
lation, with the equivalent for the system of psychoactive substances.
However, and even though emulations seem easier to catalogue as moral
agents than synthetic artificial intelligences, research on emulations can
raise severe ethical concerns, such as the peril of augmenting an intel-
ligence before testing and adjusting its final goals, or having it done by
unscrupulous research groups (Bostrom, 2014, pp. 246–7).

• Institution design: The last technique that Bostrom considers is institu-
tion design. The core idea here is that whole brain emulations present
the features necessary to be taken as a part of a composite system, which
would in turn be subject to being constrained by institutions. Similar to
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what happens to companies, which are constituted by workers with their
own agency, are many times considered to have their own autonomous
agency. Similarly, by means of designing the appropriate institutions, AI
systems embedded in this conglomerate would align their behavior con-
sistently with the goals set by the governing institutions via whatever
constraints they enacted (Bostrom, 2014, pp. 247–253).

All these techniques, including control and motivation selection meth-
ods, are the testimony of an attempt to answer but, more importantly, to
raise a profound question: how to groom intelligent technology for it to
be safe and compatible with us. On the one hand, the control problem al-
lows us to consider different strategies to contain a putative intelligence
explosion that would undoubtedly signify an existential risk for humanity.
The value-loading problem, on the other hand, appeals to a rather cen-
tral goal of AI assurance: how to develop intelligent systems that are fair,
safe, and unbiased. And although the terms of Bostrom’s discussion may
seem at times futuristic, AI assurance is both a short and a long-term en-
terprise. Having protocols and methodologies to tackle the risks that these
technologies present to us now means advancing one step further towards
developing—if it comes to it—safe superintelligent systems that will not
posit an unbearable risk.

2.1.2 Human-compatible AI

In the 2019 book “Human Compatible, AI and the Problem of Control,” Stu-
art Russell guides us into an insightful discussion about the origins and
possible future of AI. Here, Russell verbalizes the main concern for ethical,
fair, and unbiased systems via what he calls human compatible AI.

Starting with a definition of unqualified intelligence, which states that
“[h]umans are intelligent to the extent that our actions can be expected to
achieve our objectives” (Russell, 2019, p. 9), the author discusses the prob-
lems that a definition of “intelligent” machines in a similar sense entail.
As he notes, machines optimize the objectives we put into them—they do
not have objectives of their own—by means of cost functions and calcula-
tions of utility: this is what is commonly known as the “standard model”.
But even though this approach works for multiple domains (control theory,
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statistics, economics, etc), it should not aim for intelligent machines in this
sense, for failing to specify the AI’s goals would be overtly problematic.

To prevent this, Russell suggests dealing with AI in a different way: in-
stead of working towards the development of artificially intelligent systems
based on this standard model, which would encourage the AI to act towards
accomplishing its objectives, we should aim for machines that are not only
intelligent, but also beneficial to humans. This shift demands that we look
for beneficial AI, which is so “. . . to the extent that their actions can be ex-
pected to achieve our objectives” (Russell, 2019, p. 11).

AI, therefore, should be tasked with building machines that are highly
intelligent, while preventing behaviors that would make us miserable. But
here Russell disagrees with Bostrom: the objective should not be to control
the intelligence, but to adhere to the definition of beneficial AI, according
to which intelligent behavior is already aligned with our interests (Russell,
2019, 171–2). To do so, he proposes three principles:

1) The machine’s only objective is to maximize the realization of human
preferences.

2) The machine is initially uncertain about what those preferences are.
3) The ultimate source of information about human preferences is human

behavior (Russell, 2019, p. 173).

Each one of these principles evokes a more deeply philosophical posi-
tion, i.e., altruism, humility, and observation, respectively.

• Altruism: Machines should only care about human interests and not
about their wellbeing, for any hint of a self-preserving instinct would
necessarily misalign the behavior of the machine from its intendedly
beneficial status for us. Now Russell accepts that there is at least two
problems regarding the notion of preferences: first, it is not clear whether
we have preferences in any meaningful and stable sense, and second,
aggregating different preferences for multiple humans is an acknowl-
edged problem. To make it tractable, Russell recognizes that the notion
of “preference” is indeed an idealization, but it is an instrumental one,
for it allows framing the discussion at hand. Moreover, and to allow the
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aggregation of such preferences for different humans, he proposes an
egalitarian and utilitarian view.

• Humility: Letting uncertainty into the AI ensures that machines do not
pursue their objectives single-mindedly. Moreover, if the machine does
not assume it is always right, it can reason that humans shall unplug it if
it is not working, implicitly motivating it to act appropriately.

• Observation: Finally, Russell suggests that machines should learn to pre-
dict human preferences by means of observing human choices. Relying
on observation ensures that the machine—albeit lacking explicitly hu-
man preferences—can introduce them in its behavior via observation,
but it also opens a door for the machine to become more useful to us as
it observes and learns our preferences (Russell, 2019, pp. 174–7). This ap-
proach reflects the underlying philosophical idea in cooperative inverse
reinforcement learning (Hadfield-Menell et al., 2016), which shall be in-
troduced shortly.

These principles foster a radical shift in the way we develop intelligent
systems to retain control over them. By giving up the standard model of ma-
chines optimizing their own objective, we open up a new approach based
on human-compatible systems that put their intelligence to the benefit of
humans. There are both economic incentives and the means, in terms of
data, to do so. However, as we have already seen in the section above, there
are also reasons for caution (Russell, 2019, pp. 179–183).

But how could this philosophical shift (from the standard view to ben-
eficial AI) be implemented? The most promising strategy is relying on
“provably beneficial AI,” which captures the epistemological limitations
we face when developing AI systems. If we want to develop beneficial AI
systems, we need a theorem to prove they are, in fact, beneficial. In this
sense, Russell makes four basic remarks. First, such theorem should hold
regardless of how smart the components become. Second, the aim is “best
possible behavior” and not optimal, to avoid computational stagnation; op-
timality in the real world could take longer than the age of the universe.
Third, any conclusion (e.g., the best possible behavior) is so with very high
probability, but not undoubtedly, for we are in no position to prove any such
theorem in the real world. And fourth, even if the agent is unable to rewrite
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its code, we must assume it may learn to violate the agent/environment
distinction and modify its code (Russell, 2019, pp. 187–8).

2.1.2.1 Cooperative inverse reinforcement learning
The main breakthrough, possibly, in terms of making AI compatible with
humans was introduced by the development of inverse reinforcement
learning (or IRL). Whereas in reinforcement learning agents modify their
behaviors according to the rewards they obtain, IRL works on the oppo-
site premise: it infers the reward function by observing the behavior of an
agent. This allows both explaining and predicting behavior, for the initial
assumption is an estimation of the actual reward function that is fine-tuned
throughout the process of learning.

Inverse reinforcement learning is already being used to develop func-
tional AI systems, even though it relies upon some simplifying assumptions.
First, it assumes that the robot adopts the reward function after observing
the human to perform accordingly. However, the robot needs to identify the
preferences that stem from the observed behavior with the human, and not
with itself. Second, it presumes that the human is solving a single-agent de-
cision problem. Hence, IRL needs to be generalized from the single-agent
setting to the multi-agent setting. To deal with this, “assistance games” al-
low the training of a robot that not only learns, but is also helpful to the
human (Russell, 2019, pp. 191–3).

In this regard, a formal definition of the value alignment problem—
which is what human-compatible AI is ultimately aiming for—could be
solved via cooperative inverse reinforcement learning (CIRL). (Hadfield-
Menell et al., 2016) In a homonymous article, Dylan Hadfield-Mennell and
his colleagues pursue a new formal understanding of the value alignment
problem as an assistance game, with two players with partial information,
in which the human knows the reward function and the robot does not. Ul-
timately, the robot’s payoff is the human’s actual reward. This framework
shares features with many other existing models. IRL, for example, is based
on a core assumption that the behavior that the system observes is opti-
mal. However, CIRL proves that what the agent observes in IRL may be
a suboptimal behavior, as the human is modifying his actions in order to
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convey more information to the agent. On a different note, the goal of op-
timal teaching, i.e., efficient learning, is a feature in CIRL. But besides IRL,
CIRL also draws from the principal-agent problem in economics—or the
idea that a principal devises a set of incentives for an agent to maximize the
principal’s objectives—and optimal teaching (Hadfield-Menell et al., 2016,
pp. 2–4).

The key to CIRL is to have both a human and an agent play a game, in
which the human undertakes a task; the most common example is prepar-
ing a cup of coffee. Afterwards, the robot tries to emulate the human. This
process is iterated, and after each iteration, the human modifies or intro-
duces corrections to guide the robot towards the desired outcome, until the
robot is capable of repeating the task successfully; that is, according to the
human’s preferences. This process defers the need to stipulate not only the
discrete steps towards achieving the goal—a hearty cup of coffee—but also
the “value” of what a good cup of coffee means to me. Thus the game works
as a proxy for value-alignment: it shows not only what the human wants,
but also how one wants it, without the need to translate the fuzziness of
one’s abstract preferences into explicit lines of code.

CIRL resembles, to some extent, the value learning technique that
Bostrom suggests in the section above. Yet, there is a crucial difference
between these two approaches: whereas the foundational idea in value
learning is that the system tests different hypothesis, with the evidence
available, to learn which values are better aligned with our preferences,
relying on cognitive features to formalize this, CIRL is purely behavioral.
It rests on the assumption that a game that enables the robot to access a
human’s behavior can learn about its preferences (in terms of value) and
act accordingly. In this regard, CIRL deems irrelevant some of the problems
that Bostrom thought of as fatal by changing the approach: from a cognitive
one to a behavioral one.

In the process of learning human preferences, robots become less uncer-
tain about such preferences; this seems to be a rather natural and inevitable
thing. However, Russell holds that a key requirement for intelligent systems
to remain safe and compatible is for them to remain uncertain, to some
degree, of the preferences of humans. Otherwise, systems becoming more
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and more certain about false beliefs could have dire consequences (Russell,
2019, p. 201). One possible way to ensure this is by means of prohibitions,
i.e., instead of asking for a cup of coffee, to ask for a cup of coffee and to
not disable the off-switch button, but these usually yield to loopholes, in
which the request is satisfied literally. The example that Russell gives is that
of an off-switch surrounded by a piranha-infested moat or the robot zap-
ping anyone trying to push the off button. Another menace is wireheading,
but this can be bypassed by ensuring that a learning agent is capable of dis-
tinguishing between reward signals and actual rewards. If so, the system will
be discouraged to cheat, and will aim for the actual reward. Finally, and go-
ing back to Bostrom’s depiction of an AI explosion, the danger of a machine
that builds a better version, which is out of our control, remains. However,
if machines remain uncertain about human preferences, there seems to be
no reason to believe a “better machine” would not retain such uncertainty
(Russell, 2019, pp. 208–9).

To sum up, Russell portrays some philosophical and technical points that
are central to the field of AI assurance, raising the fundamental question of
how to develop machines that are compatible with us. The key is to endorse
the shift from the standard model of AI, in which the system has a goal of its
own that needs to be optimized to the provably beneficial account. In this
regard, AI research should aim for intelligent machines that are altruistic,
humble, and that observe human behavior to foster, by means of their ac-
tions, the objectives that humans have. Russell holds that assistance games,
such as CIRL, allow us to embed our values within the systems without hav-
ing to stipulate a goal of their own, while retaining a bit of uncertainty from
the robot’s part to ensure the development of safe and compatible intelli-
gent systems.

2.1.3 The alignment problem

“The alignment problem,” as Brian Christian calls it, is intended to address
some of the growing concerns regarding the intersection of machine learn-
ing and human values. In particular, and before the rapid development of
supervised, unsupervised, and reinforcement learning, he grounds the ne-
cessity to address it on the vast amount of decisions and tasks that are being
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turned over to such “intelligent” systems, and the ethical risks such delega-
tion entails. To better address this, Christian identifies two separate sets of
risks: first, those derived from present-day and short-term applications.1

Second, and highly resonant with Bostrom’s approach, those concerning
future dangers that systems capable of real-time, flexible decision-making
might entail (Christian, 2020).

Put concisely, the alignment problem consists of assuring that the mod-
els used in intelligent systems “capture our norms and values, understand
what we mean or intend, and above all, do what we want” (Christian, 2020,
p. 13). Historically, the ulterior harm of a given machine failing to complete
the objectives we devised for it was low: technology comprised a set of pas-
sive tools with a narrow scope, rendering in turn a putative failure a rather
harmless incident, even if undesirable. But in the process of developing sys-
tems capable of active behavior and interaction poses a different type of
risk. In this regard, a large portion of current research on AI is focused on
bias, fairness, transparency, and other forms of safety. What Christian does
throughout “The Alignment Problem,” is exploring both the content and
the narrative of this safety research agenda (Christian, 2020, pp. 313–4).

The need to align AI systems becomes an actual problem on account of
two key aspects: on the one hand, artificial intelligence is becoming bet-
ter at performing the tasks it is supposed to undertake, while on the other
hand, such systems are being increasingly adopted and embedded into the
decision infrastructures of our societies. Consequently, the need to thor-
oughly explore whether such systems are doing what we designed them for
but, more importantly, in the ways we want them to, cannot be deferred.
Given the rapid advancement of artificial agents, we need to ensure that
whatever purpose is supplied to the system is the one we really intend and
not a mere imitation, for if we fail to do so, even if the AI tries to imitates us,
the consequences of a highly capable agent with the wrong purpose can be
dire (Christian, 2020, p. 312).

1
Christian raises multiple concerns related to tools such as COMPAS, which has been

used to make decisions about parole and bail, racial bias stemming from facial recogni-
tion systems, or gender bias derived from the application of word2vec translation services
(Christian, 2020).
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2.1.3.1 The role of training data
To ensure that a system does what we want it to do, and how we want it
to do it, Christian first explores the role of training data. AI development
has suffered multiple stagnation points throughout history, the first one be-
ing what is commonly known as the “first AI winter.” The initial steps in
AI were directed towards symbolic systems, which were purported to ap-
ply a set of rules to manipulate high-level representations (Cardon et al.,
2018). Alas, researchers soon realized the downsides of such approach, and
new lines of research emerged. Sub-symbolic or connectionist AI was de-
veloped, and the seed for machine learning and other forms of statistical
learning was planted. At first, sub-symbolic AI struggled with small exist-
ing datasets, since for machine learning algorithms to work and be fully
functional, vast amounts of data are required (Christian, 2020, p. 22). The
advent of the internet facilitated the confection of larger datasets, but most
of them, which are currently being used to train AI, were built and labeled
by hand. ImageNet, for example, used to train computer vision systems,
was built by thousands of humans that classified more than three million
images into more than five thousand categories. Whereas this allowed bet-
ter algorithms, a model trained on hand-labeled data is subject to inherit
dangerous flaws, fostering in turn gendered and racially biased systems.2

One possible strategy to prevent biased systems is to increase the diver-
sity of the groups represented in the database. A study on Labeled Faces
in the Wild (LFW), a public-domain database of pictures of faces, showed
that most of them were of white male, a fact that undoubtedly hinders the
accuracy of whatever model is trained on such database. But the problem
with LFW was that it was not only sociologically inaccurate: from a tech-
nical point of view, most of the pictures were frontal with good lighting.
Thus increasing the diversity of the groups being represented only deals
with one side of the problem: to reduce the risks of mislabeling an indi-

2
Christian highlights the importance of the training dataset referring to an incident with

Google’s image recognition software, which labeled a picture of a black person “gorilla.”
The obvious damage this “flaw” entails needs to be adequately addressed to ensure AI sys-
tems are safe.
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vidual, pictures with different lighting conditions or perspectives are also
required (Christian, 2020, pp. 31–2).

An alternative strategy is to use transparency metrics. These are particu-
larly helpful with deep learning, where the inner learning processes are not
obvious. Saliency methods, for example, allow tracking where the model is
looking, but do not allow grasping what the model is actually seeing (Chris-
tian, 2020, p. 109). To resolve this, some visualization techniques are a good
proxy to assess how the model will generalize: “deconvolution”3 and other
methods of visualization4 have been used both to understand the intrica-
cies of neural networks and their limitations. But research has not stopped
at visualization techniques. Based on the idea that humans think using
concepts and not numbers, “testing with activation vectors” (or TCAV) al-
lows mapping our concepts with the inner proceedings of AI systems. The
canonical example to understand TCAV is that of identifying a zebra: the
concepts activated by “zebra” are “stripes,” “horse,” and “savanna.” These
concepts will not bear an equal weight; stripes seems more important than
savanna, but they allow us to appreciate the associations that drive the be-
havior of the system, and what features are critical for the system to identify
one thing as such thing (Christian, 2020, pp. 114–16).

The main problem with systems that learn is that they do so within a
limited environment, and are later deployed in the real world. This renders
crucial to ask to what extent models trained on a dataset can really general-
ize beyond it. To answer this question, Dario Amodei and his colleagues—
in their seminal paper “Concrete problems on AI Safety” Amodei et al.
(2016)—introduce a problem in machine learning called “distributional
shift.” In short, this problem tackles the [unduly] confidence of a system
when operating in an environment that is substantially different to that of
its training. To illustrate this, one should imagine a speech system (that has
been trained in a clean environment) trying to identify words in a noisy
room. The problem of the distributional shift is that even though the system
will perform poorly, it will often be confident about its mistaken classifi-
cations (Amodei et al., 2016, p. 16). This distributional shift points at the

3
See Christian, 2020, p. 109.

4
See Christian, 2020, p. 110.
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necessity to identify and incorporate all relevant data and conditions dur-
ing the training stage. Otherwise, and if white noise is canceled for the sake
of a better speech system, its capacity to correctly identify its targets in the
real world will be worse off, increasing the misalignment of the system.

2.1.3.2 The objective function
Another fulcrum for AI alignment is the objective function, which cap-
tures the goal of the system. In the United States, some states use an as-
sistance tool called correctional offender management profiling for alter-
native sanctions or COMPAS (Christian, 2020, p. 7). This prediction system
was first devised to speed up and facilitate some decisions in the judicial
system: parole, bail, or decisions about the detention of a suspect before
a trial (based on whether he or she would show up the day of the trial, and
commit or not further crimes) were within the scope of COMPAS (Christian,
2020, p. 58). Nonetheless, Julia Angwin, who worked at a non-profit called
ProPublica, found out that such tool showed systemic bias towards black
people.

The issue with COMPAS was not that it was accurate and calibrated dif-
ferently for different groups: both white and black defendants were subject
to the same risk scores and predictions. The issue was that around 39% of
the time it was wrong, was so in radically different ways. Black defendants
were twice as likely to be classified as high-risk but not re-offend, whereas
white defendants were twice as likely to be classified as low-risk and re-
offend. But fairness is not only about correct predictions with the same
precision across groups. It also consists of avoiding systemic mistakes that
target a group in particular. Thus in articulating this notion of fairness, the
accuracy of an objective function cannot solely stem from an equal iden-
tification of high-risk profiles across protective classes, but also an equal
risk of being misclassified. The solution to this cannot be eliminating the
protective attribute, given that many other categories are correlated with it.
Doing so would only make it harder to measure and mitigate bias (Chris-
tian, 2020, p. 61–5). On the contrary, protective classes must be identified
and treated accordingly, to increase the chance for a better and fairer treat-
ment. The need to preserve protective classes is crucial, a point that shall
be stressed in Section 2.2.3.2.
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Image recognition systems, for example, are usually trained with an ob-
jective function called “cross-entropy loss” (Christian, 2020, pp. 315–16).
The underlying idea is that if the system categorizes an x as any not x, it
incurs some constant penalty, although such penalty is not sensitive to the
difference between categories: characterizing an oak as a pine is as bad as
characterizing a human as a gorilla. But this raises obvious concerns. We
know that the loss matrix in our heads is not uniform. We also make mis-
takes, but we are aware that misidentifying a pine is not equally wrong as
misidentifying a human. Thus research is trying to capture these analo-
gies (via vector-based word representations, for example), to include not
only the need to classify adequately, but to understand the different conse-
quences of missing different types of items.

When it comes to reinforcement learning, systems operate on what
is commonly known as the reward function. Contrary to other machine
learning techniques, such as classifiers or gradient descent, the agent
makes its decision based on the reward function, setting in turn the context
in which the next decision will be made, regardless of whether it is playing
chess or interacting with the real world (Christian, 2020, p. 130). Accord-
ing to Richard Sutton, who is one of the fathers of reinforcement learning,
intelligent behavior is the consequence of an agent taking actions, whose
reward signals tries to maximize in a complex and changing world (Chris-
tian, 2020, p. 360). Thus the alignment problem in terms of RL is captured
by the question “does the reward function supplied to the system incen-
tivize the behavior you want to see?”

Alignment in reinforcement learning, therefore, is achieved if the behav-
ior of the system maps perfectly onto the desired outcome the designer pre-
viously envisioned. An aligned system is one that manifests the will and in-
tent of the designer, and its success boils down to the reward function. This
reward function is the mathematical formulation of the so-called reward
hypothesis, first formulated by Sutton. Simply put, it is a formalization of
the idea that every action possible has its corresponding scalar “value” (it
is commensurate, fungible, and of a common currency) (Christian, 2020,
p. 130). The goal, in turn, is to maximize the overall reward. This approach
is so general and powerful that it is delivering better results day after day.
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However, and besides some deep philosophical questions entangled with
this formulation that will be further explored in Sections 2.2.2 and 2.2.3,
such as the problem of defining and attributing value to different actions,
there are some formal issues that are crucial for RL.

One example is having an agent win a boat race. If you reward an agent
for learning how to win a race—and only that—it will likely take billions of
iterations to succeed in completing the task. Thus, and for it to learn, you
need to incentivize a system, and the most common approach is to give it
shaping rewards (or pseudorewards) (Christian, 2020, p. 163). The idea is
that you not only reward achieving the ultimate goal, but also every step
towards achieving such goal: in the case of the boat race, you can give it
credit if the agent manages to collect points tied to power-ups, which are
distributed along the way. This, however, opens up two further concerns.
On the one hand, you are no longer rewarding “learning to win a race,”
but a proxy of the form “getting more points,” which, if achieved, will ulti-
mately mean the agent has learnt. This is important, because the proxies we
use to give partial credit can meaningfully affect the behavior of the agent.
On the other hand, if the reward system is not duly specified, you can en-
counter the agent finding weird solutions to the problem. This example will
be further elaborated in Section 2.2.3.1 to discuss the main problems with
specification.

One way to avoid the specification problem is to shift towards imitation
learning, also known as behavior cloning. The idea behind this mode of
learning is that systems observe real humans undertake a task (Tesla, for
example, has a shadow mode that is actively perceiving even when the au-
topilot is off). Thus the agent is running and observing the environment
to calculate what it would do if it was actually driving the car. Afterwards,
it compares it with the real action that the human driver has undertaken,
and uses it as an error measure. With this, the problem of specifying which
actions are to be rewarder or penalized is reduced—the agent evaluates its
own predictions against a real human benchmark—but the main problem
is that it either takes humans to be “perfect actors,” or it reproduces the
same mistakes that humans make (Hadfield-Menell et al., 2016, pp. 1–4).
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A different approach to avoid the same problem is to build the model
based on inverse reinforcement learning (IRL). In this case, instead of hav-
ing a human specify the reward function, the system infers and learns the
reward function from humans themselves. This strategy captures the un-
derlying complexity of objectives, and observes it by deferring the need to
explicitly specify them. Thus inverse reinforcement learning tries to answer
by means of the observed behavior the following question: “what reward
function, if any, is being optimized?” By doing so, systems manage to under-
stand objectives that are not formalized or operationalized, with nuances
that would escape any form of specification (Christian, 2020, pp. 253–68).
However, this approach turns the reward function of AI systems into a black
box, making it harder to thoroughly understand the underlying processes,
and does not guarantee that the system infers the appropriate reward func-
tion.

Despite all of this, Christian concludes his work in a very positive line.
For even though the danger of misaligned AI system remains, a growing
concern about the alignment problem has fostered an academic movement
towards an interdisciplinary effort that is giving rise to real progress.

2.1.4 AI assurance: a formal framework

Bostrom’s value-loading problem, Russell’s provably beneficial and human-
compatible AI, and Christian’s alignment problem are three different philo-
sophical projects with their own particular objectives. However, they all
stem from the same source: a shared concern regarding the need to ensure
that AI systems are good for humans, both in the short and in the longer
term. It is rather common in philosophy to find instances of identical words
being used in radically different ways throughout different theories. Here,
however, we find three different formulations that are in fact trying to draw
the attention onto the same subject. In this regard, and taking into account
that one of the main objectives of AI assurance is to ensure that AI systems
are trustworthy, unbiased, fair to their users, and ethical in the context of
their deployment, the snapshots gathered in Sections 2.1.1 through 2.1.3
can be understood as three different toolboxes to achieve the same.
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Such formulations provide rich technical frameworks with meaningful
insights about the dangers and the possible solutions to existing and pu-
tative problems related to the development of AI systems. In them, AI as-
surance finds an invaluable source—both philosophical and technical—of
instances of actual problems that have been identified and are being tack-
led now. However, AI assurance provides us with the tools to face two dif-
ferent issues. On the one hand, the attempts to resolve unethical behaviors
in existing systems, but also to prevent larger dangers in the future by indi-
cating the existence of a terminological maze that hinders our capacity to
navigate them as researchers. On the other hand, most of the philosophical
and technical work regarding AI safety and machine ethics and their will to
prevent or revert AI’s unwanted consequences is hardly ever contextualized
in relation to other fields.

AI assurance not only goes beyond validation or verification, which are
incomplete formulations to deal with unfairness and bias in AI due to the
fact that such systems show some form of intelligence and adaptability
(Batarseh et al., 2021, pp. 5–6), but also provides a formal approach to as-
sessing whether an AI system is desirable and is aligned with the definition
of AI assurance introduced in Section 2.1. With this, AI assurance gives a
chance to unify all contributions regarding the adequacy of any AI system,
while considering not only the technical side of the problem, but also the
philosophical, legal, or social one.

Lanus et al. developed a test and evaluation framework to ensure that
systems perform as intended in different contexts (Lanus et al., 2021). This
framework uses the VTP model, which is an extension of a the “Vee” model
in systems engineering that pairs each system-level with a corresponding
level of verification and validation. The authors, however, extend it with two
further phases: the T phase is devised to ensure testing throughout opera-
tion to enable a prompt reaction, whereas the P phase is intended to allow
feedback from already deployed systems to influence either its own deploy-
ment phase or later phases of the system development (Lanus et al., 2021).

This test and evaluation framework could be the starting point of the dis-
cussion regarding how to materialize AI assurance in terms of ethical, fair,
and unbiased AI. In this regard, verification and testing beyond the design
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phase of AI systems would allow fine-tuning the specifications that define
such systems, evoking the notion of AI assurance as a process via the pos-
sibility of neutralizing potential sources of undesired behavior, as well as to
develop new specifications to re-state and address undetected problems.

2.2 Ethical AI but. . . how?
Some of the strategies proposed in Sections 2.1.1 through 2.1.3 address the
problem of avoiding bias and preserving fairness in AI systems. In fact, we
have seen multiple proposals to mitigate both bias and unfairness from a
technical perspective; these are the aspects that are prima facie more eas-
ily tractable.5 However, when it comes to making sure that any AI system is
ethical in the context of its development and deployment, profound philo-
sophical questions arise.

One of the main strengths of AI assurance is that it does not only empha-
size legal compliance or technical transparency as requirements for good
AI; it also highlights the need to engage in a deep philosophical exercise to
decide what features should the systems present and through which pro-
cesses should they be developed, for them to be ethical. In this regard, a
rapid overview of three of the most salient theories in normative ethics
will be highly illustrative for two main reasons. On the one hand, revisiting
different normative frameworks allows reflecting on the philosophical as-
sumptions rooted deep down in AI research, challenging in turn what we
mean by “ethical AI,” while on the other, it offers a chance to anticipate
some of the problems that necessarily come with certain assumptions, or
when defending a given normative theory.

Nonetheless, it seems necessary to insist that the goal here is not to attain
a final definition of what good AI means, but on the contrary, to stress the
need to challenge and reflect on our inheritance as researchers, putting into
question in turn the legacy assumptions coming from statistics, cybernet-

5
TCAV, visualization techniques for deep learning, a concern for diverse and representa-

tive sample in training databases, salience methods and transparency metrics, capability
control and motivation selection methods. All of the above contribute towards ensuring
that AI systems are developed and deployed without incurring in blatant violations of fair
treatment to all after being trained in sociologically-sensitive models of the world.
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ics, or even early philosophical accounts of AI. Doing so opens up a space
for deliberation about what is it we are seeking by demanding ethical AI.
This overview is therefore intended to provide a philosophical starter kit
to think of what good AI could mean beyond mere fairness and unbiased
datasets.

Insofar as normative frameworks fail to provide an actionable response
to the problem at hand, Sections 2.2.2 and 2.2.3 address several lines of
work that could contribute to making the problem of aligning AI systems
more tractable. Considering the nature of intentional statements, moral
uncertainty, the problem of implementation, and the problem of specifica-
tion, contributes towards elucidating the path towards AI assurance’s main
goal.

2.2.1 Three normative theories: a brief outline

How are we to act? Normative ethics is a branch in philosophy concerned
with answering such a simple question. In the western tradition, norma-
tive theories are usually divided into two main categories: on the one hand,
we find deontological ethics. The root of this term is found in the Greek
word “deon,” which can be translated as “duty.” Consistently, deontological
theories are those that defend that actions are good or bad in themselves:
we ought to act one way or another, because doing so is the right thing
to do. On the other hand, we there is teleological ethics. In this case, the
root of the term also derives form a Greek word, “telos”, which means “pur-
pose” or “goal.” Contrary to deontological ethics, teleological ethics derives
the moral character of our actions from our purpose, not the actions them-
selves.

2.2.1.1 Deontological ethics: duties
Deontological ethics can be formulated in two different ways: the ethics of
rights, and the ethics of duties. These interpretations are based on the idea
that there are universal rights and responsibilities, and that such rights and
duties compel us to act in certain ways.

Whereas rights-based theories can be understood as a particular form
of duty-based ethics—in which a right is a justified claim over someone
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else’s behavior—both rights and duties can be either positive or negative.
Positive duties are those that prompt taking certain actions, e.g., to assist
the victim of an accident, whereas negative ones are those that force us to
avoid certain actions, e.g., not to kill someone. In this regard, one of the
most iconic examples of a normative theory based on the ethics of rights
is the one advanced by Kant, which gravitates around the categorical im-
perative (Kant, 2008). Even though Kant presented multiple formulations
of the categorical imperative in his book “Groundwork for the Metaphysics
of Morals,” the fundamental idea is to find maxims and rules we can abide
by universally. Thus in claiming that we must always treat humanity (ei-
ther us or someone else) not as a means to an end, but always as an end
in themselves, Kant is in fact arguing that all of humanity beholds a cer-
tain universal moral status. Accordingly, we can ensure the rightness of our
actions by observing this universal obligation. The crucial point in deonto-
logical ethics is that the consequences of an action do not determine the
moral status of such action: if killing someone is morally reprovable, it is so
regardless of the context.

The most famous deontological proposal regarding technology is Asi-
mov’s three laws of robotics (Asimov, 2004). These laws conform an “ethics
of duties” that all machines must observe and abide by. But stipulating
boundaries to preserve human lives, obey what humans order, and pro-
tect their own existence—with their respective provisos—only does a part
of the job. Even though it is true that these laws prevent certain behaviors
that would be unethical and dangerous, they fall short of being exhaustive
enough to ensure the ethical behavior of machines. Ultimately, deontolog-
ical approaches to moral machines are vulnerable, because of our limited
capacity to articulate exhaustive sets of moral rules.

2.2.1.2 Utilitarianism
Consequentialist theories are a set of teleological normative theories that
hold that the morality of an action is defined by the outcome it produces.
In this regard utilitarianism is, perhaps, the most salient version of conse-
quentialism.

First outlined by Jeremy Bentham in his book “An Introduction to the
Principles of Morals and Legislation,” and later amended and popularized
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in “Utilitarianism” by John Stuart Mill, utilitarianism holds that the appro-
priateness of an action is given by the tendency to augment or diminish the
happiness of those affected by it (Bentham, 1996). The Good can be under-
stood in multiple forms—as happiness, lack of suffering, or another form
of welfare—but, regardless of the proxy used to measure utility, there are
three main principles that constitute any utilitarian theory: first, the conse-
quences of an action define its moral value. Second, such value is assessed
in terms of the welfare caused by such action. Finally, the ultimate goal
is to maximize welfare throughout all people, giving equal value to equal
amounts of welfare without taking into account who experiences it.

One of the main reasons why consequentialist theories are successful
is that they allow reinterpreting certain deontological theories as an alter-
native formulation of consequentialism. Robert Nozick, for example, pro-
poses a view in his book “Anarchy, State, and Utopia” called “utilitarianism
of rights.” According to this theory, preventing certain rights from being vio-
lated or upholding certain duties constitutes a form of utility maximization,
allowing in turn to transcend the rigidity entailed by most forms of utilitari-
anism (Nozick, 1974, p. 28). On a similar note, Stuart Russell pushes Nozick’s
strategy one step further, claiming that a machine following certain moral
rules or following a virtuous attitude may yield better consequences than
trying to calculate the utility of a given action, given the complexity of the
world (Russell, 2019, p. 218). By phrasing other ethical views in terms of
the consequences entailed by being virtuous or following certain rules, the
consequentialist view seems to be the ultimate ethical theory.

Yet both measuring and comparing utility—in any form one happens
to define it—is extremely difficult (Wolff, 2006, pp. 49–50). In this regard,
the history of utilitarianism is also built on strong criticisms: philosophi-
cal ones, such as G.E. Moore’s attack on the simplicity of a world in which
we solely care about happiness and the need to pursue other things such
as beauty (Moore, 1912), or Robert Nozick’s depiction of a “utility mon-
ster” who experiences happiness more intensely than anyone else (Nozick,
1974, p. 41), and rather technical ones, such as Kenneth Arrow’s concern
regarding the impossibility to aggregate the preferences of multiple indi-
viduals (Arrow, 1950, pp. 328–31). Nonetheless, current attempts to develop
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artificial intelligence via reward functions are indicative of an underlying
philosophical commitment to utilitarianism. In fact, modifying the agent’s
actions with the ultimate goal of maximizing the expected reward in re-
inforcement learning is a form of practically implementing the utilitarian
proposal. And even if it is true that maximizing the reward works as a good
proxy to obtain better performance in many systems, the kind of success at-
tained in the laboratory—in games or toy worlds—should not be too rapidly
generalized. Instances of great performance are usually found in rather
closed environments, simple enough for designers to build an exhaustive
reward function that allows the implementation of successful agents. But
whereas this may work as a proof of concept, our reality is a lot more uncer-
tain and complex.

2.2.1.3 Virtue ethics
Last, virtue ethics is not primarily concerned with consequences nor rules,
but with the moral character of the acting agent. Instead of judging the
rightness of an action by means of its consequences or it being consistent
with a set of norms, virtue ethics gravitates around the moral character of
individuals. It is therefore an approach that overcomes the difficulty of stip-
ulating an exhaustive set of rules, or the hardship of making calculations
about the utility of our actions. The emphasis is placed on the individual
moral character.

Aristotle is, perhaps, one of the most well-known advocates of virtue
ethics. In his book “Nicomachean Ethics,” the author advances his theory
of the Good, defending that humans are prepared for phronesis or practical
wisdom. This mode of reasoning allows us to act morally if trained properly,
in accordance with a set of virtues he identifies. But as he also highlights,
virtues are neither affections nor capacities: they are states (Aristotle et al.,
2009: Book III, 1–2). Moreover, he defends tackling uncertainty via deliber-
ation, and doing so not about the ends, but about what lets us go towards
such ends.

It is important to remark that virtue ethics is not solely concerned with
virtues. In fact, all normative theories take into account norms, conse-
quences, and virtues, to portray an accurate depiction of the Good. How-
ever, in virtue ethics such Good is defined in terms of virtues, and not any
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other fundamental feature; and so do utilitarians with the consequences or
deontologists with norms (Kawall, 2008, p. 1). This, in fact, puts into per-
spective both Nozick’s and Russell’s attempts in Section 2.2.1.2 above to
gather different normative theories under the umbrella of consequential-
ism. While it is true that consequentialism is a difficult principle to argue
against, because one cannot do so appealing to the “bad consequences”
it would have (Russell, 2019, p. 218), it is important to understand that this
does not entail that all normative theories can be understood as one and the
same: virtue ethics places virtues at the center of what constitutes what’s
right.

2.2.2 The implementation problem

Asking which normative theory should be used as a benchmark for ethical
AI is undoubtedly a hard question. But assuming one could give a satisfac-
tory answer, the next challenge would be to actually implement it. This is,
to some extent, the task that Wendell Wallach and Colin Allen set for them-
selves: finding out what it takes to teach robots right from wrong. In their
book “Moral Machines” (Wallach and Allen, 2009), and based on the identi-
fication of a growing concern for safety in AI, the authors propose different
strategies to build what they call artificial moral agents or AMAs (Wallach
and Allen, 2009, p. 4).

The book covers a wide range of relevant questions, such as whether we
need AMAs, whether we humans should want them and, if so, how should
engineers design them. Regarding this last point, Wallach and Allen (2009)
identify two central questions: on the one hand, what role should ethical
theories play as a constituent of the architecture of the system, while on
the other, what input and via which channels should the machine access
“the world” to make informed decisions (Wallach and Allen, 2009, pp. 74–5).
Based on a distinction made by Stuart Hampshire, the authors argue that
ethical dilemmas can be tackled via two different paths. One is via a “judge
perspective,” which primarily consists in applying abstract principles to
particular instances. The other is an “agent perspective,” that is from the
perspective of someone who happens to be in the situation that needs to
be solved. But this last approach, the authors hold, is useful on two levels:
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first, it is the role that actual engineers play in solving their problems. Sec-
ond, and most significantly, AI systems can be thought of as simple-minded
agents trying to navigate a context; in this case, with ethical boundaries
(Wallach and Allen, 2009, pp. 75–6).

From these observations, and trying to foresee how to implement AMAs,
Wallach and Allen propose two different frameworks to plan and “teach”
ethical frameworks to machines: a top-down approach, and a bottom-up
approach.

2.2.2.1 Top-down approach
Top-down approaches to designing AMAs are those that analyze the com-
putational requirements of an ethical theory and use them to design sys-
tems and sub-systems capable of implementing such theory (Wallach and
Allen, 2009, pp. 79–80). One possibility would be to take utilitarianism, for
example, and evaluate what features and sources of input should a machine
have to be able to adopt it.

The main problem with top-down approaches is that it seems highly
unlikely that any system could actually acquire and compare all the data
required to implement in full a given normative theory in real time. Wallach
and Allen note how for consequentialism the problem is even harder, for the
consequences of any given action are essentially unbounded in space and
time. One could argue that a powerful superintelligence could solve this
moral conundrum, one that has accompanied all philosophers concerned
with normative ethics throughout time. But this argument falls short before
the growing menace of current AI systems which, albeit less powerful, still
pose grave dangers for society.

One could maybe think that deontological approaches are less fallible
to this implementation problem. In fact, primitive attempts at AI were in-
spired by the physical symbol systems hypothesis, which holds that the
mind does not access the world directly, but rather consists of internal rep-
resentations that can be described and organized in the form of symbols
(Cardon et al., 2018), leading researchers towards what we now know as
“Symbolic AI.” However, the attempt to create artificial intelligence based
on explicit logical rules lacked all the nuances in perception and decision-
making capacity of humans: our behaviors are contextual, situated, im-
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plicit, embodied. . . And even though seemingly intelligent machines could
reason according to a set of rules of the system, they did so in a “toy world”
with little correlation with our actual world (Cardon et al., 2018, p. XVIII).

But rule-based AI is not forlorn. This is in part due to the introduction
of heuristics, i.e., rules of thumb to reduce, for example, complex searches
into easier ones. In the same way that heuristics help turning hard prob-
lems into tractable ones, it seems reasonable to think that ethical theories
could be more easily implemented if we followed a similar path. In this re-
gard, Wallach and Allen suggest that a possible way to solve the complexity
of a utilitarian approach could be using rules expected to increment local
utility. By doing so, the system does not have to calculate all the conse-
quences of a given action. This, however, stands on the assumption that the
cost entailed by any action that would have gone better without the rule is
outweighed by the benefit of always following the rule (Wallach and Allen,
2009, p. 90).

By considering different rule-based approaches to AMAs, the authors
ultimately conclude that the possibility of building an AMA with an unam-
biguous set of rules seems highly unlikely (Wallach and Allen, 2009, p. 97).

2.2.2.2 Bottom-up approach
Developmental or bottom-up approaches to machine morality place the
emphasis on creating an environment where an agent explores different
courses of action and learns to act “morally,” according to the reward it
obtains with each action (Wallach and Allen, 2009, p. 80). This is inspired
by various models of acquisition of moral capabilities, such as childhood
development or evolution. Unlike top-down ethical theories, which rely
upon the implementation of a previously specified normative theory, in
bottom-up approaches, if prior theories are used at all they are only used
to specify tasks for the system, not to specify and implement control struc-
tures. Hence, in bottom-up approaches any moral sense derives from per-
formance measures.

Yet it is not clear whether simple reward proxies for behavior in artificial
environments can actually yield moral propensities alike those in humans.
There is a fundamental difficulty in getting the environment right: similar
to the problems related to symbolic AI and their “toy world” highlighted in
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the previous section, fair strategies in theoretical game-like environments

are devoid of the complexity of our real world. Hence, and insofar the evo-

lution of morality is not thoroughly understood, an agent’s moral behavior

is subject to features beyond our understanding. Moreover, and besides the

difficulties related to the environment, the emergence of AMAs based on

the implementation of evolutionary systems presents a further problem.

How should a fitness function be written without explicitly including moral

criteria (Wallach and Allen, 2009, p. 104)?

CIRL defers this question by forcing the machine to learn the “right”

behavior from the human, based on the assumption that morality is em-

bedded in our actions. However, David Silver and his colleagues go one

step further. In their article “Reward is Enough” (Silver et al., 2021), they

hypothesize that intelligence and its associated abilities can be understood

as mechanisms to increase reward. If so, reward is sufficient to allow behav-

iors crucial to our conception of natural and artificial intelligence, such as

learning, language, or generalization among other ones. The authors also

claim that reward explains many of the forms in which intelligence appears

in nature at two separate levels. First, maximization of reward prompts the

appearance of diverse skillsets in different agents. Second, the pursuit of

one goal to be maximized can manifest via various abilities that contribute

towards that maximization (Silver et al., 2021, pp. 1–2).

In such case, one could argue that via reward, systems based on evolu-

tionary algorithms and reinforcement learning could develop a capacity for

moral judgment. But even then, the problem remains unsolved. In the case

of evolutionary systems, the target would be to have the “most moral” spec-

imens thrive; but what does “most moral” mean (Wallach and Allen, 2009,

p. 104)? Moreover, the problem with behavior-copying methods, such as

CIRL is that the game ensures the machine learns to perform a task as we

intend it to. This makes the machine “human-compatible,” or “aligned” [to

some extent], but by no means it entails it behaves morally: even bona fide

attempts to teach machines as good as we can will not ensure they behave

ethically, for that would mean we agree to what “ethically” stands for.
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2.2.3 Intentional statements and reward functions
“Entre
Ce que je pense,
Ce que je veux dire,
Ce que je crois dire,
Ce que je dis,
Ce que vous avez envie d’entendre,
Ce que vous croyer entendre,
Ce que vous entendez,
Ce que vous avez envie de comprendre,
Ce que vous comprenez,
Il y a dix possibilités qu’on ait des difficultés à communiquer.
Mais essayons quand même. . . ”

(Werber, 1993)

Bernard Werber, in the excerpt above, reflects on a problem most of us
have faced at some point: there are multiple sources of difficulty that de-
rive from using language as a vehicle to express our thoughts. Insofar we
need language to verbalize and understand concepts and ideas, the words
available to us restrict the shape and content of such thoughts. And even
though the deep philosophical debates that surround this linguistic remark
fall outside the scope of this chapter, there is a relevant takeaway when it
comes to AI assurance.

Intentional statements are those that connote any property or quality.
However, any given intentional statement can be read at least in two dif-
ferent ways: de dicto and de re. The classical example used to illustrate this
distinction is the assessment of a sentence such as: “Alex wants to marry
the tallest man in California.” This sentence can mean two different things:
Alex, on the one hand, may be obsessed with height, and is therefore will-
ing to marry the tallest man in California, regardless of who that is. This is a
de dicto interpretation: Alex desire relates to the words that are said. On the
other hand, Alex may be in love with a man who happens to be the tallest
one in California. In such case, Alex’s desire is directed towards the person
who the words make reference to, being a “de re” interpretation.
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Dario Amodei is, perhaps, one of the most influential voices in the land-
scape of AI research. Back in 2016, at the yearly NeurIPS conference, he
realized that in one of the games in which his team had used Universe, a
software for training and measuring AI agents, the agent had subverted its
environment and failed to successfully complete the task it was designed
to. The game was CoastRunners. The goal was to win a boat race. How-
ever, in this game each player had a score that increased by hitting certain
targets laid throughout the circuit. Since training an agent by merely stipu-
lating the goal “winning the race” is not an efficient strategy, Amodei and his
colleagues thought that motivating the agent to achieve high scores could
work as a reliable proxy to make it proficient. Alas, the agent found a way to
increase its score without having to finish the race: it got stuck in a harbor,
where it would collect points in an endless loop.6

This failure is representative of a profound problem with AI systems: re-
ward hacking, which consists of obtaining a high reward in an unintended
way (Amodei et al., 2016, p. 7). But beyond the obvious implications this has
when it comes to designing an appropriate reward function for a given RL
system, this is in fact a problem regarding the interpretation of intentional
statements. In Section 2.1.2, Stuart Russell’s approach to provably beneficial
AI systems was briefly discussed. According to Russell, the key to achieving
human-compatible AI systems is to ensure that their goal yields behaviors
that contribute to our objectives (Russell, 2019, p. 11). The main problem
is that when we verbalize our objectives, we do so from a common implicit
understanding of the limits and conditions under which we are willing to
pursue them. When Alex expresses her interest to marry the tallest man in
California, we may doubt for a second whether we should interpret it in a
de re or a de dicto way. We may fail to exercise due diligence and believe she
does not care for who that man is, when she is actually in love with a man
who just happens to be the tallest one in California. But we also know to ask
in case of doubt, and push the conversation until we have enough informa-
tion to know whether her desire relates to the words, or the man behind
them.

6
Dario Amodei and Jack Clark explain this in an OpenAI blog post; see https://openai.

com/blog/faulty-reward-functions/.

https://openai.com/blog/faulty-reward-functions/
https://openai.com/blog/faulty-reward-functions/
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The main problem between a RL agent and its reward functions is that it
can solely relate to it in a de dicto form. For the agent, the appropriateness
of any given action is completely determined by what the reward function
captures. That is, the adequacy of an action is determined by the form of the
reward function, regardless of the underlying intention of the designer who
has defined it. This explains, to some extent, why the parallelism between
RL and utilitarianism is a strong and appealing one. Utilitarianism, as dis-
cussed above in Section 2.2.1.2, is a normative theory that finds a proxy to
determine whether an action is good or bad. By means of “trying to increase
happiness,” we can judge whether an action is desirable or not. However,
happiness is not the ultimate moral goal, it merely serves as a criteria to
choose what actions are we allowed to undertake. But the key with utilitari-
anism or any other normative theory for that matter is that those defending
them are humans, and as such, they understand the instrumentality of their
favorite theory. We know that even though the de dicto interpretation of util-
itarianism compels us to increase happiness or whatever proxy for utility we
deem adequate, the de re goal is not maximizing the proxy but “the Good.”
Machines do not.

2.2.3.1 The problem of specification
The tension between what one formally implements and what one truly
intends is widely acknowledged. And beyond the intentional nuances iden-
tified above, the problem of misspecification is well-understood, with out-
standing work in fields other than AI.7 In a paper called “The Value Learning
Problem,” Nate Soares explores some of the problems related to value learn-
ing in AI systems, highlighting possible tensions in trying to align such sys-
tems with our desires and goals. Drawing from the possibility of a “super-
intelligence” as Bostrom describes it, Soares insists on the need to develop
AI systems that not only identify our goals, but also pursue them, along the
lines of the standard model (Bostrom in Soares, 2015, p. 1). Starting from the
observation that human values are complex, culturally laden, and context
dependent, the author explores the tensions that arise from simple spec-

7
Two examples are statistics (see Kleijn and van der Vaart, 2006) and econometrics (see

Godfrey, 1991).
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ifications of such complex concepts, to then explore ways to develop and
safely tweak systems capable of acting according to our values and goals
(Soares, 2015, p. 1).

To deal with the problem of specification, Russell proposes allowing for
uncertainty into the specification. That is, for each subroutine in a piece
of software, a target output needs to be specified; such target works as the
objective function in AI. However, and when calculations are very diffi-
cult, it may take too long to perform at the level desired. By allowing some
uncertainty into the system’s calculations, it is capable of proposing worse-
performing yet faster solutions within a degree of certainty (Russell, 2019,
p. 248).

An alternative approach is the one proposed in cooperative inverse re-
inforcement learning, which I introduced in Section 2.1.2. By designing an
environment in which a machine and a human can interact via a game, the
need to specify the values we want the agent to be embedded with vanishes.
This points at a deeper philosophical point: it defers the need to explicitly
list and specify a set of values, and assumes that such values underly our
actions. Thus, and by observing, replicating, and modifying some targeted
behaviors, the machine infers a reward function that is consistent with the
values we imbue into all of our actions, instantiating the bottom-up ap-
proach introduced before.

Ultimately, and given the deep philosophical debates around many as-
pects crucial to the development of artificial intelligence, coming up with
ways to avoid such debates seems a reasonable strategy. By engaging in
a CIRL game, we free ourselves from having to face the problem of mis-
specification. Behavior-based learning, in turn, aligns de dicto and de re
interpretations of our intentional behaviors: it bypasses explicitly specified
reward functions, it loads each interaction with a deeper meaning, and it al-
lows the human to guide the process of inferring the reward function. But as
Brian Christian points out in his book “The Alignment Problem,” accuracy
is usually measured against consensus, not against ground truth (Christian,
2020, p. 315). In this regard, bypassing the highly complex task of articulat-
ing our values while, at the same time, training agents that seemingly act
according to such values comes at a price: assuming that our actions are a
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vehicle capable of conferring our values to a machine adds a further layer of
complexity to the problem of explaining and understanding the reasoning
process within AI systems.

Alas, this higher complexity compels us to understand the value align-
ment problem not as something to be solved, but as a sustained and it-
erative process. If we decide to engage in a behavioral value alignment
strategy, that is, avoiding problems such as the one Bostrom calls “choosing
the criteria for choosing” (Bostrom, 2014, p. 256), we must in turn commit
to constantly re-evaluate whether the values we confer via our actions are in
fact being instantiated by artificial agents. On a separate note, we also must
avoid concluding that a successful behavioral game proves that the reward
function of the agent is a perfect implementation of a utilitarian or conse-
quentialist notion of the Good. In such case, the function works as a proxy,
but by no means represents a stable and robust solution to the problem. On
the contrary, it highlights how teleological approaches, such as virtue ethics
are, in fact, more likely to yield aligned systems: it is not the function that
allows the system to be aligned, but its capacity to observe and later infer
the value associated to each action of the human.

This iterative process is consistent with what Roel Dobbe, Thomas
Gilbert, and Yonatan Mintz ultimately aim for in their paper entitled “Hard
Choices in Artificial Intelligence” (Dobbe et al., 2021). The authors exam-
ine the vagueness associated to ensuring ethical and safe behavior of AI
systems, insisting in turn on the need to complement mathematical for-
malisms with a social and political deliberative process. To do so, they
propose a framework that allows, among other things, to identify points
of overlap between design decisions and sociotechnical challenges. This,
together with the feedback channels that the framework establishes, makes
it possible to engage in a deliberative process that shall ensure the safety
and adequacy of AI systems, while advancing a rather deep philosophical
claim: such deliberation is not the means, but the ultimate goal of AI safety
(Dobbe et al., 2021).

2.2.3.2 Moral uncertainty
A few paragraphs above, the idea of uncertainty has been discussed as
a means to avoid the problem of misspecification. The notion of uncer-



Chapter 2 • Setting the goals for ethical, unbiased, and fair AI 49

tainty evoked there is a technical one: instead of aiming for a solution to a
given problem that satisfies a set of conditions, allowing for worse solutions
paired with “a degree of certainty” can facilitate dealing with misspecifica-
tion.

However, when it comes to ensuring that AI systems are ethical in the
context of their development and later deployment, there is another type
of uncertainty that needs to be considered, i.e., moral uncertainty. In this
sense, William MacAskill identifies how several philosophers have insisted
on the need to account for moral uncertainty in our decision-making pro-
cesses, and how doing so may have profound implications for practical
ethics. However, and far from merely embracing this claim, MacAskill ar-
gues by means of two examples8 that the implications for practical ethics
are far more wide-ranging than they have been noted in the literature, and
that we cannot argue in a rather direct way from moral uncertainty to par-
ticular conclusions in practical ethics (MacAskill, 2019, pp. 231–3).

From the brief discussion in Section 2.2.1 about different normative the-
ories, one can easily see how normative ethics has been struggling through-
out its history to settle the debate about which theory works best. A ques-
tion such as “how should we act to live a good life?” allows no definitive
answer, in part due to the incomparable nature of different normative theo-
ries, in part due to normative uncertainty. We can defend an account based
on the ethics of virtue, and argue about which behaviors make us better
persons. We can also find a welfare function for a new utilitarian view, and
defend it against all objections to come. But ultimately, moral uncertainty
is not an exception but the norm: we constantly disagree about both eval-
uative and descriptive ethical matters. In trying to make sense of “whether
there are norms that are distinct from first-order moral norms and, if so,
what those norms are, MacAskill and his colleagues propose what they call
“maximizing expected choiceworthiness,” or the idea that by measuring
and comparing the “choiceworthiness,” i.e., the strength for choosing an
option, of each normative theory, can be compared and ranked (MacAskill
et al., 2020, pp. 1–4). Thus if one intends to formulate the value alignment

8
These are arguments about abortion and vegetarianism (see MacAskill, 2019, pp. 232–3

or MacAskill et al., 2020, pp. 191–2 for a more extended discussion).
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problem so that, to be solved, a normative theory must be selected, this
metanormative framework allows the inclusion of normative uncertainty
when making inter-theoretical comparisons.

On a different note, and regarding all the implications that MacAskill
identifies, there is one claim about egalitarianism, prioritarianism, and
utilitarianism that is highly relevant for the discussion at hand. As Sam
Corbett-Davies and Sharad Goel highlight in their article “The Measure and
Mismeasure of Fairness: A Critical Review of Fair Machine Learning,” there
have been three main formulations of fairness in machine learning. The
first consists on the idea of anti-classification, or that protective attributes,
such as race and gender should not be used to make decisions. The sec-
ond is based on classification parity, or the idea that “false positives and
negatives” are distributed equally among the protective classes that derive
from the attributes described above. Finally, calibration, or the idea that
subject to risk estimates, the outcomes are independent of such protective
classes. However, the authors highlight how these strategies do not meet the
pretended standards, and propose therefore to treat people facing a similar
risk similarly based on the best risk predictions available (Corbett-Davies
and Goel, 2018, p. 1).

Thinking of a classical utilitarian approach to the value alignment prob-
lem seems to be an unsound strategy. Even though it is true that machine
learning and reinforcement learning, due to the optimization-based and
reward-based principles on which they function respectively, seem better
positioned to adopt a normative theory based on a utility metric as a proxy
for “the Good,” under moral uncertainty one should always give a benefit to
someone who is worse-off (MacAskill et al., 2020, p. 184). Hence, the corol-
lary derived from considering moral uncertainty into the equation seems to
be consistent with the statistical analysis presented by Corbett-Davies and
Goel (2018).

So even though some AI frameworks, such as reinforcement learning,
may be better positioned to theorize about an idealized ethical artificial
agent, like David Abel and his colleagues argue in their article “Reinforce-
ment Learning as a Framework for Ethical Decision Making” (Abel et al.,
2016), the problem with ethical decision-making is that it is rarely ideal.
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Our dubious capacity to thoroughly formulate a function that could take
into account all consequences of an action, or an exhaustive enough de-
ontological code, together with problems of specification, and descriptive
and evaluative moral uncertainty, make it extremely hard to think of a ro-
bust way to frame ethical theories in a top-down approach. In fact, trying
to push idealized formulations may be detrimental to the ultimate goal of
AI assurance. Ideal scenarios may seem to provide reasons to adopt certain
value specifications, or accept certain agents based on their performance
in closed environments. But the ultimate goal is to make AI systems fair,
unbiased, and ethical in the real world, not to prove the appropriateness of
a normative theory in a toy world.

2.3 Conclusion
The aim of this chapter has been to understand some of the key philosoph-
ical topics underlying AI assurance. To do so, I summarized three different
approaches to the value alignment problem in the context of artificial intel-
ligence. First, Nick Bostrom’s control and value-loading problems provided
a context for ethical AI in terms of the existential risk that this technology
may pose in the longer run. Second, Stuart Russell’s human-compatible ap-
proach to AI has placed the focus on the need to abandon the standard
model of AI, which conditions our capacity to align AI systems to our best
ability to stipulate the goals AI should pursue, and embrace a behavior-
based approach to developing unbiased, fair, and ethical AI systems. Third,
the overview of Brian Christian’s alignment problem has been useful to
better understand the role of training data and the objective functions we
stipulate when designing an AI.

However, the summation of these three contributions have proven cru-
cial to make two points clearer: one, that ethics of AI is currently experienc-
ing a terminological maze, and two, most of the philosophical discussions
about AI are decontextualized from discussions on other domains. It is in
this regard that AI assurance endows researchers with two invaluable re-
sources: a shared vernacular, and a formal approach to measuring how well
aligned a system is.
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Thus AI assurance provides crucial tools to deal with the growing menace
of AI systems being biased, unfair, or unethical. But before the ineluctable
need to ensure good systems, further questions need to be addressed. In
this regard, the second part of the chapter addressed three crucial concerns.
First and foremost, the difficulty of defining what “ethical AI” stands for.
By providing a brief outline of three of the most salient normative theo-
ries, i.e., ethics of duties, utilitarianism, and virtue ethics, the difficulty of
finding an unquestionable and thorough definition of how someone ought
to act has been stressed. Second, and assuming that a consensus regard-
ing “the Good” was reachable, the discussion has moved onto the difficulty
to implement any given normative theory. By delving on Wendell Wallach
and Colin Allen’s work on artificial moral agents and, in particular, their dis-
tinction between top-down and bottom-up to morality, discussing the pros
and cons of implementing ethical frameworks within the systems has been
possible, as well as the option of letting the agent derive its own norma-
tive schema. Last, the nature of intentional statements has allowed showing
how reward functions are unreliable proxies for moral action, for machines
can only make verbatim interpretations of their goals and rewards. More-
over, and by focusing on the problem of specification and the problem of
moral uncertainty, crucial difficulties that must be overcome via AI assur-
ance have been made clearer.

Russell’s defense of human-compatible AI has proven to be an in-
valuable source for AI assurance. The shift from cognitive approaches to
behavior-based approaches in particular, which Brian Christian also con-
siders, shows great promise to solve the aforementioned problems related
to implementational issues, such as specification or uncertainty. By means
of assistance, games such as the one in cooperative inverse reinforcement
learning, the need to specify a reward system that is aligned with our goals
and values deferred. Moreover, and in contrast with inverse reinforcement
learning, this process allows the human to interact with the agent, making
sure that the scheme that governs the agent is in fact doing what the human
wants it to do.

At this point, AI assurance as a process to align AI systems faces two
critical tasks. On the one hand, and regarding the value-alignment prob-
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lem, CIRL seemingly provides an actionable means to solve the problem.
However, the task of AI assurance is to ascertain that behavior-based ap-
proaches are not only successful in mimicking and adopting desired behav-
iors, but that such behaviors contribute to the benefit of everyone. On the
other hand, and regarding other learning processes, AI assurance is tasked
with scrutinizing and provoking debates around the philosophical assump-
tions and premises on which such systems stand.

Nonetheless, both tasks boil down to the same idea: for AI assurance to
revolutionize the field, the process of ensuring ethical, unbiased, and fair
systems needs to be deliberative, iterative, and interactive. The dilemma
entailed by the disagreement regarding the definition of “the Good,” for
instance, hints at the necessity to constantly engage and challenge any sys-
tem labeled as fair or ethical. In this sense, developing a consequentialist
AI is not enough to satisfy the ethical requirements in AI assurance. But
constantly testing and tweaking the system is, for it ensures that such AI is
constantly overseen, allowing in turn for any undesirable consequences to
be contained. Similarly, and if the implementation problems are duly ob-
served, current AI systems will also be subjected to this endless process,
allowing all stakeholders to influence the systems that increasingly affect
our lives. AI assurance provides a formal approach to ensure that this pro-
cess is contextualized and executed adequately, increasing our chances to
have a better AI, both now and in the future.
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Abstract

Explainable artificial intelligence (XAI) is gaining interest in many fields, such
as Computer vision, biology, and satellite imagery. XAI adheres to the tenants
of interpretability and explainability. This overview chapter connects the foun-
dational concepts of XAI, interpretability, explainability, and model assurance,
while also providing examples of XAI in practice. The XAI models related to
medicine and national security are shown to outperform deep learning or “black
box” approaches, such as convolutional neural networks. Thus the provided ex-
amples highlight the capacity to meet or exceed deep learning-based approaches
using XAI methods and counteract perceived notions of model accuracy.
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Highlights

• XAI algorithms depend upon explainability and interpretability

• Model assurance methods improve confidence in the generalizability of a model

• XAI models are able to outperform deep learning-based solutions

• XAI and deep learning models both require human inputs, but each has different

kinds of inputs

• XAI is preferred for critical applications

3.1 Introduction
Explainable artificial intelligence (XAI) includes methodologies, statistics,
and/or variables that provide insight into how models make predictions
(Barredo Arrieta et al., 2020; Belle and Papantonis, 2020). XAI differs from
more orthodox artificial intelligence (AI) methods, commonly referred to as
“black boxes,” which are difficult for analysts to understand. Recently, there
has been a large push to use “black box” deep learning methods in the re-
search community (Alexandrov, 2020; Gu et al., 2018; Lundberg and Borner,
2019; Valen et al., 2016). Lundberg and Borner (2019) state that this need for
“black boxes” is vital since the human decisions involved in making models
are opaque. Believers in deep learning ascribe that decoding the human el-
ements of models is too complex and encourages irreproducible and poor
performing models (Caicedo et al., 2017; LeCun et al., 2015; Lundberg and
Borner, 2019; Pärnamaa and Parts, 2017).

However, it will be shown that it is vital to understand why and how
modeling systems work, and that XAI models are capable of outperform-
ing “black box” AI methods. Understanding how models work enables users
to more easily diagnose why models make predictions. This is particularly
important for detecting anomalies in the data. Furthermore, XAI is highly
preferred in critical applications. For example, using AI methods to improve
visuals in video games or animated movies is not a critical application. Ana-
lysts do not need to understand how each individual parameter contribute
to making a prediction. When AI makes mistakes in these sorts of appli-
cations, the cost for these mistakes is low. An example of a mistake in this
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case is that water may not make realistic looking splashes. However, incor-
rectly predicting if a patient has a disease or not has serious repercussions
related to, but not limited to, the mental and financial health of a patient.
Being able to explain and interpret every aspect of a model is crucial in crit-
ical applications. Thus providing clear explanations and interpretations for
how features and parameters lead to a certain prediction are vital.

XAI is primarily built upon two tenets: explainability and interpretabil-
ity. Explainability is the property of an element that allows its mechanisms
to be explicitly described, understood, and studied. Interpretability is the
characteristic of an element to have concrete physical meaning. An exam-
ple of an interpretable and explainable metric is area. An example of calcu-
lating area of a square is

Area = s2, (3.1)

where s is the length of a side of the given square. Area is explainable since
one can describe how area is calculated and the properties it has. It is inter-
pretable since area corresponds to the physical concept of the amount of
space an object occupies. An example of an uninterpretable and unexplain-
able modeling algorithm is a neural network (NN), and a convolutional
neural network (CNN) is an example of an NN. Whereas a CNN is able to
estimate any function, the exact function being estimated for all CNNs is
unknown. Therefore a CNN is unexplainable. A CNN is usually composed
of thousands, if not millions, of parameters, which somehow relate to a pre-
diction. However, what these parameters mean is unknown. Thus CNNs are
uninterpretable. Though CNNs are primarily emphasized in computer vi-
sion, the main ideas are applicable to many deep learning networks, such
as artificial neural networks (ANNs) and recurrent neural networks (RNNs).
These deep NNs have an untenable number of parameters; the inexplicably
correspond to predictions. Furthermore, the perceived accuracy of these
NNs is high, whereas other modeling approaches (such as XAI models) are
perceived to be low. However, examples in this chapter will show that XAI
models are able to outperform deep learning-based approaches.

Using both tenets of interpretability and explainability allows us to assess
model assurance. Model assurance helps to evaluate the generalizability of
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a model in an interpretable and explainable manner. Model assurance is
a collection of methods to provide evidence of a model’s ability to provide
consistent results that are interpretable and explainable. Model assurance
methods provide evidence that a model is generalizable to data not used to
build the model. In other words, model assurance includes the concepts of
interpretability and explainability. However, model assurance also incorpo-
rates generalizability as well.

Many deep and machine learning models have high complexity, but have
low interpretability and explainability (Gu et al., 2018; James et al., 2013).
These complex models with low interpretation are utilized in a variety of
different fields that use image classification models (Fukushima, 1980; Gu
et al., 2018; LeCun et al., 1990; Ronneberger et al., 2015). These models are
difficult to interpret and explain, partly due to the large number of features
(Hastie et al., 2017). This problem is exacerbated in classification problems
when the number of classes to categorize is large (James et al., 2013; Lam-
berti, 2020b). A large number of classes often coincides with imbalanced
data (Lamberti, 2020b). Imbalanced data is where the proportions between
different groups within the dataset greatly differ from being equal (Batarseh
et al., 2021). For example, a balanced cancer dataset would have 50% malig-
nant and 50% benign tumors. An example of an imbalanced dataset would
have 75% malignant and 25% benign tumors. An example of an imbalanced
dataset with more than two groups would be the individual workdays and
the weekend. Each workday composes 1

7 of the week, but the weekend com-
poses 2

7 of the week. Even in the age of big data, there are phenomena
that occur infrequently, such as hurricanes in New York City (Jiang et al.,
2020). It is common for models to make inaccurate predictions for these
kinds of anomalies. Thus modeling such scenarios requires explainable and
interpretable methods so that the analysts can confirm that the model is ac-
curately describing these rarer phenomena.

Explainability and interpretability are also important for describing fea-
tures. Shape metrics, such as area and perimeter, are familiar features to
many readers. This familiarity helps those who are encountering inter-
pretability and explainability for the first time to understand these new
concepts. Furthermore, since many shape metrics are scalar values, they
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are used in a variety of XAI models and systems. Transferring the concepts
learned from understanding shape metrics is seamless to features in other
fields, such as economics, political science, or physics. For instance, the un-
employment rate could be described using explainability and interpretabil-
ity. Thus mastering how to describe shape metrics using explainability and
interpretability will enable readers to describe metrics from a variety of
fields.

This chapter’s goal is to accurately apply the definitions of interpretabil-
ity and explainability to statistics, variables, and modeling algorithms. This
foundation provides the necessary vocabulary to describe model assurance
methods. XAI models are then compared to black-box AI methods in appli-
cations using image data related to health informatics and satellite imagery.

3.2 Methods and materials
There are a variety of components for describing XAI systems, including
statistics and evaluation metrics, modeling algorithms, variables, features,
or metrics and dimensionality reduction techniques. These broad cate-
gories are briefly summarized in the Graphical Abstract, Table 3.1, and
Fig. 3.1. Each category is discussed in the following sections, followed by
some examples, which showcase many of these concepts in extended de-
tail. Section 3.2.3 on models ends with a discussion of their perceived ac-
curacies. This chapter posits that these perceived accuracies do not prop-
erly describe each algorithm respective capability for describing how well it
models a particular phenomena.

Each of these components account for different levels of explainability
and interpretability in an XAI solution. For instance, having interpretable
and explainable features does not guarantee that the model will be inter-
pretable and explainable, and vice versa. Thus the statistics and evaluation
metrics, modeling algorithms, and features must be working in concert.
Furthermore, analysts need to be aware of systems with a large number of
features. When the number of features is large, dimensionality reduction
techniques must also be employed to increase model interpretability and
explainability. By using an XAI system, model assurance methods can be
used to more confidently evaluate the generalizability of a model.
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Table 3.1 Statistics, evaluation metrics, modeling algorithms, dimensionality re-
duction techniques, and shape metrics in terms of their respective explainability
and interpretability. The High, Medium, and Low categories were determined by
partitioning each of the four figures in the graphical abstract into 3 hierarchical
groups.

Type Name Section Explainability Interpretability
Statistic Mean 3.2.1.1 High High

Median 3.2.1.2 High High
SD 3.2.1.3 High High

Variance 3.2.1.3 High Medium
Evaluation Accuracy 3.2.1.5 High High

R2 3.2.1.4 High High
Precision 3.2.1.6 High High

Recall 3.2.1.6 High High
F1 3.2.1.6 High Low

Modeling OLS 3.2.3.1 High High
GLM 3.2.3.1 High High

Non-linear models 3.2.3.1 High High
NB 3.2.3.3 High High
Tree 3.2.3.5 High High

Random Forest 3.2.3.6 High Medium
SVM - Linear 3.2.3.7 High Medium

SVM - Non-Linear 3.2.3.7 Medium Low
Knn 3.2.3.2 Medium Low

NN/CNN 3.2.3.8 Low Low
Dimensionality
Reduction

LASSO 3.2.4.2 High High
Ridge 3.2.4.2 High High

Elastic Net 3.2.4.2 High High
PCA 3.2.4.3 High Medium
FA 3.2.4.4 Medium Medium

Fourier Transform 3.2.4.5 Medium Medium
t-SNE 3.2.4.6 Low Low
UMAP 3.2.4.6 Low Low

Shape Metrics Area, Perimeter 3.2.2.1 High High
SP 3.2.2.2 High High
EI 3.2.2.2 High High

Eccentricity 3.2.2.5 High High
Circularity 3.2.2.4 High Low

Number (#) of Corners 3.2.2.6 High Low
Eigenvalues 3.2.2.5 Medium Medium

Fractal Dimension 3.2.2.3 Low Low
Hu 3.2.2.7 Low Low
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FIGURE 3.1 The relative explainability, interpretability, and perceived accuracy (Acc.) of
popular modeling algorithms.

3.2.1 Statistics and evaluation metrics

Statistics and evaluation metrics are used in a variety of fields to summa-

rize data and models. A statistic summarizes a quality of data using a single

value. An evaluation metric is a statistic that summarizes the performance

of a model. The following sections include summaries of some popular

statistics and evaluation metrics.

3.2.1.1 Mean
The arithmetic mean, or mean for short, captures the average value for a

series of numbers. This is represented mathematically as

μ̄ =
∑n

i=1 xi

n
, (3.2)

where n is the number of observations and xi is the ith observation such

that i ∈ {1, ..., n} (Bhattacharyya and Johnson, 1977). The mean is one of

the most popular values to summarize data. It is explainable since analysts

can describe how it captures the typical value of the data. It is interpretable

since the mean corresponds to physical definitions about the typical obser-

vation.
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3.2.1.2 Median
The median, like the mean, is a measure of central tendency. We define the
median as

μ̃ = x(n+1)
2

, (3.3)

where x(n+1)
2

satisfies P(X ≤ μ̃) = P(X ≥ μ̃) = 0.50 (Wackerly et al., 2008).

Note that P() represents the probability function and X is the random vari-
able of interest. In the vernacular, the median is the number that evenly
splits the data into (approximately) equal halves. This value has been well
studied as it is used when the unimodal distribution of interest is long
tailed. When the unimodal distribution is symmetrical, the mean and me-
dian are equal to one another. In practice, the mean is often preferred over
the median since the mean is computationally efficient.

The median is still a highly interpretable and explainable statistic. The
median is interpretable since it has a physical meaning when we use it to
describe the typical observation. It is explainable since analysts can de-
scribe how to calculate the value simply. However, it is not as explainable
nor interpretable as the mean since it is relatively more difficult to use in
mathematical proofs, despite being the same value for symmetrical para-
metric distributions.

3.2.1.3 Standard deviation and variance
Variance and standard deviation (SD) both capture how much the data
varies. The sample variance is usually calculated using

σ̂ 2 =
∑n

i=1(xi − μ̄)2

n − 1
. (3.4)

SD is simply

σ̂ =
√

σ̂ 2. (3.5)

For calculating the sample variance, intuition might suggest that we should
be dividing the numerator by n instead of n−1. However, dividing by n leads
to a biased estimator of the population variance (Wackerly et al., 2008). The
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estimators provided here are unbiased, and therefore are better estimates

of the population variance and standard deviation (Wackerly et al., 2008).

Variance is explainable since it has a number of properties that are easily

understood and studied for understanding how a phenomena fluctuates.

However, since it is a metric that describes the data in units squared, it is not

interpretable. To that end, taking the square root to obtain SD provides the

benefits of both interpretability and explainability. The theoretical statisti-

cal foundations of variance can be extended to SD, which makes it highly

explainable. They are interpretable since they directly describe how much

the data varies. However, they are not necessarily the best value to describe

the variation in the data. Variance and SD struggle to capture the variation

in asymmetric data (Wackerly et al., 2008). They both properly capture the

variation in symmetric unimodal data.

3.2.1.4 R2

The fundamental metric for evaluating a model is the residual sum of

squares (RSS) (Hastie et al., 2017; James et al., 2013; Mendenhall and Sin-

cich, 2011). RSS is defined as

RSS =
n∑

i=1

(yi − ŷi)
2, (3.6)

where i ∈ {1, ..., n}, n is the number of observations, yi is the ith response

variable, and ŷi is the predicted value of the model. It is desired to have this

value to be as close to 0 as possible. Values close to 0 indicate that the model

is producing predictions that are similar to the observed response value.

For linear regression models, one is able to construct the popular R2 eval-

uation metric by using RSS. The denominator of R2 requires the total sum

of squares (TSS). TSS is defined as

TSS =
n∑

i=1

(yi − ȳ)2, (3.7)



64 AI Assurance

where ȳ is the observed sample mean of the response variable. Thus

R2 = 1 − RSS
TSS

. (3.8)

R2 is interpreted as the total amount of variation that the model captures.
It takes on values ranging from 0 to 1, where values close to 1 are desir-
able. For example, if one observed an R2 value of 0.95, one would state that
the model explains about 95% of the variation in the data. Additionally, a
model with an R2 value of 0.25 is worse than a model with an R2 value of
0.95. Thus R2 is a highly explainable and interpretable metric for evaluat-
ing many models. More specifically, R2 is explainable since all of the values
that R2 takes on directly correspond to the idea of capturing how well a
model is fitting to data. Similarly, R2 is interpretable since all of the values
that R2 takes on have a meaning. R2 differs from σ̂ 2, which is highly explain-
able, but not very interpretable. Both R2 and σ̂ 2 are both explainable since
they capture the idea that they are meant to describe well. However, σ̂ 2 is
difficult to interpret, whereas one can easily interpret R2.

3.2.1.5 Accuracy
However, RSS, and by extension R2, is not particularly useful when evaluat-
ing classification models since the response is a non-continuous value with
no intrinsic meaning. Binary classification models are usually character-
ized using true positives (TPs), true negatives (TNs), false negatives (FNs),
and false positives (FPs). TPs are those observations of a particular class,
which have been accurately classified. TNs are those observations belong-
ing to the other class, which have been accurately classified. FNs are those
observations belonging to a given class, which were misclassified. FPs are
those observations belonging to the other class, which were misclassified.

One can combine TP, TN, FN, and FP to create comparative measures
for classification models. Accuracy is one of the most popular metrics for
describing the overall performance of a classification model. For binary
classification problems, overall accuracy is:

Accuracy = TP + TN
TP + TN + FP + FN

. (3.9)
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Accuracy takes values from 0 to 1. A value of 0 means that the model mis-
classified all of the observations. A value of 1 means that the model perfectly
classified all of the observations. A value of 0.75 for overall accuracy means
that 75% of the observations were correctly classified. Accuracy is explain-
able since it provides a straightforward calculation on model performance.
Accuracy is interpretable since it is the calculation that reports the propor-
tion of observations that were correctly predicted.

3.2.1.6 Precision, recall, and F1

Other metrics for describing classification models include precision and re-
call. The definition of precision is defined as

Precision = TP
TP + FP

. (3.10)

Precision is explainable since it describes the performance of a model at
correctly predicting positives using a clear formulation. Precision is inter-
pretable since it is the proportion of correctly classified true positives of all
of the predicted positives.

Recall is calculated as

Recall = TP
TP + FN

. (3.11)

Recall is explainable since it describes the overall classification rate of the
positive class for a model using a clear formulation. Recall is interpretable
since it the proportion of the positive class that is correctly classified.

A popular metric to optimize over is the F measure, or the F1 score (He
and Garcia, 2009; Yoshihashi et al., 2019). The F measure is the harmonic
mean of precision and recall:

F1 = 2 × Precision × Recall
Precision + Recall

= TP
TP + 0.5 × (FP + FN)

. (3.12)

Whereas the F1 score is a popular metric, the final value does not have an
easily understood meaning despite being somewhat explainable. The F1

score is a fairly explainable metric since it is the harmonic mean of pre-
cision and recall. Though being able to write down the exact calculation
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makes the F1 explainable, it does not make it as explainable as accuracy. In
particular, the denominator of the F1 score makes it somewhat unexplain-
able. Whereas the average of FP and FN is a straightforward calculation,
adding that quantity to TP is not intuitive. One is essentially providing equal
weight to FP and FN to obtain a new value, but weighting the TP more than
FP and FN individually. In other words,

F1 = TP
TP + 0.5FP + 0.5FN

. (3.13)

Thus one is applying more importance to TP than FP and FN. This quantity
is describing TP in relation to TP and the errors associated with the positive
class. Accuracy is placing equal weight on all of the values in the denomi-
nator. Thus accuracy is more explainable than the F1 score.

Furthermore, the physical meaning of what the harmonic mean is am-
biguous. Thus the F1 score is less interpretable than the mean. Higher F1

values are indicative a better model, with 1 indicating perfect classification.
Lower values are worse, with 0 indicating an inadequate model. Addition-
ally, a value between 0 and 1 does not have a clear description. In other
words, the F1 score does not provide a clear insight into how to the algo-
rithm behaves. Thus it is not a highly interpretable metric. It is less inter-
pretable than precision and recall, because the harmonic mean of precision
and recall does not have a clear description. The harmonic mean of two dif-
ferent quantities creates an uninterpretable metric.

3.2.2 Shape metrics

Shape metrics describe a particular feature of an object’s form. Though
traditionally relegated to image analysis, most individuals understand the
basic concepts of shape metrics like area and perimeter. Exploring inter-
pretability and explainability for shape metrics is helpful for those unfa-
miliar with these newer concepts. This common foundation makes shape
metrics a good introductory topic for explainable and interpretable fea-
tures. Once interpretability and explainability are understood from these
common shape metrics, one can use interpretability and explainability to
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describe metrics from other fields, such as economics, political science, or
chemistry.

3.2.2.1 Area and perimeter
Area and perimeter are metrics that describe shapes and have been studied
for thousands of years (Euclid, 1728). They are powerful metrics that lay
the foundation for more complicated shape features. These metrics are well
understood for a variety of shapes and are studied in elementary geometry
classes. Area and perimeter are explainable since one can describe precisely
how these metrics are calculated. For instance, the area and perimeter of a
circle are, respectively,

A = πr2, (3.14)

T = 2πr, (3.15)

where r is the radius of the circle. These metrics are interpretable, since one
can describe what these values mean. Area is the amount of space an object
occupies. Perimeter is the length of the outermost edge of an object.

However, translating these concepts of area and perimeter for describ-
ing digital images requires careful consideration. To describe how these
metrics are calculated, we encourage the use of image operator notation
defined by Kinser (2018). The goal of image operator notation is to describe
the computational operations performed on image data. Using image op-
erator notation makes one’s image analysis algorithms more explainable,
since the precise steps of the calculations are provided. It also makes those
calculations more interpretable, since one can provide the physical mean-
ings of each operations performed at each step. Thus using image opera-
tor notations are necessary to provide explainable and interpretable image
processing algorithms.

3.2.2.2 Shape proportion and encircled image-histograms
Analysts are able to use more sophisticated shape metrics to describe ob-
jects such as shape proportion (SP) and encircled image-histogram (EI).
These metrics are found using the shape proportion and encircled image-
histogram (SPEI) algorithm (Lamberti, 2020b). The SPEI algorithm essen-
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FIGURE 3.2 Figure shows a flow diagram of the SPEI algorithm starting from Fig. 3.2a and
ending with 3.2d going from left to right.

tially puts the object in the minimally encompassing circle. Next, the object

is then placed inside the minimal encompassing square. Visual representa-

tions of the SPEI algorithm are provided in Fig. 3.2. The SP is the proportion
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of area of the object divided by the area of the square found by SPEI. The EI
is the area of the object and the area of the square found by SPEI minus the
area of the object.

The circle is placed in a square for convenience, as most digital images
are composed of square pixels. Lamberti (2020b) provides the extended de-
tails of the image processing algorithm.

To better understand how the SPEI algorithm behaves, Lamberti (2020b)
analyzed the theoretical properties of regular polygons and circles. By ap-
plying SPEIs, circles and regular polygons will have unique SP values of

pc = π

4
, (3.16)

pn = n sin(360◦/n)

8
, (3.17)

where n = the number of sides of the regular polygon, p is a shape pro-
portion, and pc is the shape proportion of a circle. One can extend this to
non-polygonal 2D shapes, as shown by Lamberti (2020b).

How each SP value translates into a 2D digital image will be calculated by
simply multiplying the resolution, or total number of pixels, of the image’s
p, the SP value. Borrowing the notation from Lamberti (2020b), the mathe-
matical representation of this is

X = ζ × p, (3.18)

where X = the number of white pixels, p = the SP value, and ζ = the resolu-
tion of an image. Note that here we assumed ζ = (2r)2, where r is the radius
of the minimum encompassing circle. For example, if p = 0.75 and r = 50,
then ζ = 1002 = 10,000. Thus X = 10,000 × 0.75 = 7,500. In turn, the num-
ber of black pixels will be ζ − X = 2,500. The combination of X and ζ − X

gives us the theoretical EI. One is able to use this formulation since the SP
is a proportion of white pixels in a given image. Since EIs are the black and
white pixel counts in an image, it is reasonable to use this to estimate the SP
value. One can use this to estimate the SP value of a shape, whose SP value
is unknown by

p̂ = White EI
White EI + Black EI

. (3.19)
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When the metrics produced by SPEI are used in classification models, those
models are able to outperform CNNs in a variety of scenarios (Lamberti,
2020a,b, 2022). Furthermore, SP was one of the most important variables
for pill shape classification (Lamberti et al., 2021; Lamberti, 2020b). In later
sections, these metrics will be shown to be crucial for classifying icebergs
and ships in satellite imagery and white blood cells as malignant or benign.

The EIs and SP are explainable since one is able to explicitly state how
these values are calculated. Since the EIs are simply the counts of black and
white pixels after applying SPEI and the SP is the proportion of the white
pixel counts over the total number of pixels, they are interpretable.

EIs are interpretable since one can describe the black and white counts.
The white EI counts correspond to the area of the object. The black EI
counts correspond to the relevant area surrounding the object. The SP value
is interpretable since it corresponds to the proportion of white pixels out of
the total number of pixels after applying SPEI.

3.2.2.3 FD
The fractal dimension (FD) is used to describe shapes, such as city outlines,
leaves, and medical image analysis (Klinkenberg, 1994; Lopes and Betrouni,
2009; Morency and Chapleau, 2003; Plotze et al., 2005). There are a variety
of implementations for estimating the FD due to its complexity such as the
box counting, mass-radius, and the Minkowski sausage or dilation meth-
ods (Costa et al., 2018). Lopes and Betrouni provide a more complete list of
FD-based approaches (Lopes and Betrouni, 2009). The discussion will then
end with some commonalities between all of these methods and how ex-
plainable and interpretable the FD is.

The box counting method is primarily concerned with the perimeter of
the object of interest. This approach iteratively covers the perimeter of the
object with increasingly smaller squares. It then computes the limit of the
log of the number of boxes over the log of one over the side length as the side
length goes to zero (Costa et al., 2018). This approach for estimating the FD
does not consider the area surrounding the object, but only the perimeter
of the object of interest.

The mass-radius approach uses incrementally increasing circles to es-
timate the FD (Zode et al., 2017). Given the shape’s center, the overlap-
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ping area between the shape and incrementally larger circles are recorded
(Morency and Chapleau, 2003). Then the slope of the linear relationship be-
tween each of the radii and the overlapping area is reported as the estimate
for the FD (Zode et al., 2017).

The dilation method estimates the area of influence or spatial coverage
(Costa et al., 2018). It does this by dilating the shape by incrementally in-
creasing the radius of the dilation disk (Costa et al., 2018). The estimate for
the FD is then calculated by using the slope of the linear relationship be-
tween area of each shape at each radius (Costa et al., 2018).

All three of the methods for estimating the FD of an object have common
features. Each algorithm creates many subsequent images from a single
image (Morency and Chapleau, 2003). Some quality is extracted from the
image, such as area; this is related to some variable needed to create the
image, such as the radius of a circle. The feature from the created image
and the variable from the algorithm are then usually modeled in the log-log
space (Lopes and Betrouni, 2009). The slope of this relationship is then ex-
tracted and reported as the estimate for the FD for a single image (Lopes
and Betrouni, 2009).

The issue with these approaches for estimating the FD is that none of
them are interpretable nor explainable. These algorithms are not inter-
pretable since these values have no physical meaning for these shapes.
They are not explainable since it is not straightforward to describe what
is being estimated. These sentiments were captured by Costa et al. (2018)
well when they stated that concepts which define the FD are “difficult to
introduce and hard to calculate in practice.” This leads to inconsistencies
between the algorithms, as these definitions lead to varying final values,
which are not readily interpretable.

3.2.2.4 Circularity
Circularity, γ , is defined as follows:

γ = T 2

4πA
, (3.20)

where T is the perimeter of the shape and A is the area (Kinser, 2018). Note
that others have defined γ slightly differently, but the definition presented
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FIGURE 3.3 Figure provides edge and ellipse galaxy examples from the Galaxy Zoo project
(Lintott et al., 2008; Shamir, 2011).

here is essentially the same. For example, some do not have the 4π constant
in the denominator (Rosenfeld, 1974). These clear definitions make circu-
larity a highly explainable metric.

Circularity has a low interpretability, since many of the values it could
have no intrinsic value. Circularity has an interpretation for circles and reg-
ular polygons. For a circle, this value is 1. For a regular polygon with n sides,

this value is
n tan( π

n
)

π
(Lamberti, 2020b). Thus analysts can use circularity to

classify regular polygons (Lamberti, 2020b). For a given unknown shape
that is known to be a regular polygon, the known circularity regular poly-
gon value that it is closest to is a reasonable guess for its class. However, the
interpretation provided beyond these cases is limited. For example, circu-
larity does not provide guidance for what to classify a shape with a value of
1.06. It may very well be the case that it is reasonable to observe octagons or
heptagons with a circularity value of 1.06, however, the metric of circularity
is not equipped to answer this question as one cannot interpret the metric
with any physical meaning.

Lastly, circularity does not provide any suggestions on what the exact cir-
cularity value is for shapes that does not have a mathematically derived
unique value. For example, circularity provides no guidance on what the
value should be for an elliptical or edge galaxy. Examples of edge and el-
liptical galaxies are found in Figs. 3.3a and 3.3b, respectively. One could
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FIGURE 3.4 Figure illustrates the use of eigenvalues for shape analysis. The ratio of the
eigenvalues are used to calculate eccentricity.

conjecture that ellipse galaxies are more circular than edge galaxies. Thus
one would expect the circularity values of ellipse galaxies to be smaller than
ellipse galaxies. Thus these observations makes circularity explainable, but
not as interpretable as SP.

3.2.2.5 Eigenvalues and eccentricity
Shapes can also be described using their eigenvalues (Kinser, 2018). This
approach is particularly useful when the shape has an ill defined perimeter
or when the perimeter cannot be accurately determined. Eigenvalues have
been used in a variety of problems, such as classifying pill shapes (Lamberti,
2020c).

The calculation of the eigenvalues is straightforward. In short, the covari-
ance matrix of a 2D digital shape is calculated. This translates to finding the
shapes x and y coordinates and saving them in a matrix. The covariance
is calculated on this 2 × q matrix, where q is the number of pairs. From the
resulting covariance matrix, the eigenvalues are obtained. These two eigen-
values will describe the shape succinctly. Fig. 3.4 showcases the eigenvalues
of a random sample of multivariate normal data. Note that the eigenvalues
are not the extent of the variation of the data, but that relatively, they dif-
ferentiate the major and minor axes from one another. Thus eccentricity
describes this relative relationship well when multiple shapes are analyzed.
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For these reasons, eigenvalues and eccentricity are somewhat explainable,
but not highly explainable.

However, there are some downsides to using eigenvalues. It is well known
that the eigenvalues estimate the variance of the data. However, this does
not correspond to a physical interpretation of an object in reality. For ex-
ample, a major axis eigenvalue (or variance) of 1 does not correspond to a
major axis length of 1 meter. Thus eigenvalues have medium interpretabil-
ity for describing the shape of a given object.

3.2.2.6 Number of corners
The number of corners provides the counts of corners on an object (Harris
and Stephens, 1988). This metric involves collecting the edges of the object,
smoothing out the object, and then extracting and counting the number of
corners in the image (Lamberti, 2022). Whereas this may seem straightfor-
ward as it is easy to imagine the corners for a square, this is difficult for more
ambiguous shapes. For instance, a circle in one’s imaginations has no cor-
ners. However, one can apply a series of image operators and obtain a scalar
value for the number of corners of a circle. Another confounding example is
a shape as seen in Fig. 3.9b. By observing this object, it is difficult to define
a clear and precise definition of a corner. These examples help to illustrate
the explainability and interpretability of the number of corners metric. It
is explainable since one is able to describe the exact manner in which this
feature was calculated. However, it is not interpretable since it is difficult, if
not impossible, to define a corner for more abstract shapes or circles.

3.2.2.7 Hu moments
Hu moments are popular shape metrics that have desirable theoretical
properties, such as invariation to orientation (Flusser and Suk, 1994; Gon-
zalez et al., 2009; Hu, 1962). Using the notation from Gonzalez et al. (2009)
and Hu (1962), for a continuous 2D function, f (x, y), the moment of order
(p + q) is

mp,q =
∫ ∞

−∞

∫ ∞

−∞
xp[yqf (x, y)dxdy], (3.21)
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for p,q ∈ {0,1,2, ...,∞}. Gonzalez and Wintz state, “... if the function is
piecewise continuous and has nonzero values only in a finite part of the
x − y plane, then moments of all order exist and the moments sequence
(mp,q) is uniquely determined by f (x, y)” and visa versa (Gonzalez et al.,
2009). The central moments are then

μp,q =
∫ ∞

−∞

∫ ∞

−∞
(x − x̄)p(y − ȳ)qf (x, y)dxdy, (3.22)

such that x̄ = m10
m00

and ȳ = m01
m00

. For 2D digital images, Eq. (3.22) becomes

μp,q =
∑
x∈X

∑
y∈Y

(x − x̄)p(y − ȳ)qf (x, y), (3.23)

such that X and Y are the supports of x and y. The normalized central mo-
ments are then

νp,q = μp,q

μ
γ

0,0

(3.24)

such that γ = p+q
2 + 1. Using the second and third central moments, one is

able to obtain the seven Hu moments (Hu, 1962). Only the 3 are presented
here:

φ1 = ν2,0 + ν0,2 (3.25)

φ2 = φ2
1 + 4ν2

1,1 (3.26)

φ7 = (3ν2,1 − ν3,0)(ν3,0 + ν1,2)[(ν3,0 + ν1,2)
2 − 3(ν2,1 + ν0,3)

2]
+ (3ν1,2 − ν3,0)(ν2,1 + ν0,3)[3(ν3,0 + ν1,2)

2 − (ν2,1 + ν0,3)
2] (3.27)

Though these features have some desirable properties for shapes, it is diffi-
cult at best to explain or interpret them. These features do have a formula
to calculate them, but the value in of itself provides no explanation to what
they are capturing. Conversely, circularity is attempting to describe how cir-
cular an object is. Thus the Hu moments are unexplainable. Furthermore,
Hu moments do not have any physical meaning, and are thus uninter-
pretable. This is not to say that there is no physical meaning for all of the
Hu moments. How these values correspond physical characteristics of ob-
jects of interest is currently unknown.
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3.2.3 Modeling algorithms

Modeling algorithms provide a method for describing a phenomena of in-
terest. Models range in terms of explainability and interpretability. The
following sections provide a non-exhaustive collection of modeling algo-
rithms. This foundation allows one to extend the concepts of interpretabil-
ity and explainability to future modeling algorithms. This section is con-
cluded with a discussion of the perceived accuracy of various models of the
scientific community.

3.2.3.1 OLS, GLM, and non-linear models
Linear and non-linear models are important to help understand all other
modeling approaches. Ordinary least squares (OLS) defines a linear rela-
tionship between your explanatory, X, and response variables, Y , using

Y = βX (3.28)

matrix notation (Mendenhall and Sincich, 2011). The parameters to be es-
timated are β. Here is a toy example of an OLS model using scalar notation:

ˆCityDensity = 10 × SP + 5 × Perimeter − 2.25. (3.29)

Each variable in this model is interpretable and explainable. For example,
one would interpret the perimeter’s parameter value from the previous ex-
ample as follows: assuming that the other variables are held constant, for
every unit increase of the perimeter of the city, one would expect the city
density to increase by 5 units. One could interpret the SP value similarly.
However, one knows that the max value an SP value could obtain is π

4 (Lam-
berti, 2020b). Thus one needs to be careful when interpreting this model.
Therefore to interpret SP’s influence on city density, one would state: as-
suming that the other variables are held constant, for every 0.10 unit in-
crease of the SP value of the city’s shape, one would expect the city density
to increase by 1. This value was obtained by multiplying SP’s parameter
value by the proposed unit increase, 10×0.10. This example showcases that
OLS models are interpretable and explainable. The model is explainable
since one can clearly describe how the model captures the linear relation-
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ship of the data. OLS models are interpretable since one is able to translate
the mathematical representation of the relationship into physical meaning.

A normality assumption is usually applied for the errors or residuals of
the OLS model. Other distributions can be assumed, and this extends OLS
into the realm of general linear models (GLMs) (Myers, 2010). Logistic re-
gression (LR) is a type of GLM (Hastie et al., 2017; Hosmer et al., 2013; James
et al., 2013; Myers, 2010). To represent an LR model, let X be an n × p ma-
trix of n observations and p variables, Y is a n × 1 vector, whose contents
are j ∈ {1,2, ..., k}, where each j is a label for each unique class, and f is the
function which models Y and X, where Y = f (X). The model has the form

log
P(C = q|X = x)

P (C = K|X = x)
= βT

q X, (3.30)

where q ∈ {1,2, ...,K − 1}. This series of K − 1 equations can be solved via
maximum likelihood and the Newton–Raphson algorithm to estimate the
parameters of the model (Hastie et al., 2017). The parameters of the logistic
regression model are typically described using the log-odds ration or the
odds ratio (Hosmer et al., 2013; Myers, 2010). Thus one is able to interpret
the odds ratio in the following manner for the qth variable: assuming that all
of the other variables are held constant, for every one unit increase for the
given variable, we expect the natural log of the odds of a success to increase
by β̂q × 100% (Myers, 2010).

When the relationship between the explanatory and response variables
is not linear, non-linear models should be used instead (Myers, 2010). An
example of a non-linear relationship using scalar notation is

y = x2. (3.31)

Though non-linear models are by their very nature more complicated and
are more difficult to estimate than their linear counterparts, they may pro-
vide a more accurate description of the phenomena of interest.

3.2.3.2 Knn
The previous section dealt with parametric relationships since it assumed
the exact form of the model (James et al., 2013). However, the analyst might
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not know what the true relationship is. K-nearest neighbors (Knn) is a non-
parametric version of linear models. Knn uses the K closest observations
to predict the response of a given observation. Using similar notation from
James et al. (2013), assume that K is known, and there is observed explana-
tory data, X, and associated response data, Y . Then, to make a prediction,
the new observation, xν , is found. The response is simply the average re-
sponse or the most common class of the K closest observations from X, Cν .
This can be represented mathematically for classification problems with p

classes as

f̂ (xν) = argmaxj∈1,...,p

∑
X∈Cν

I (Y = j). (3.32)

For regression problems, this is represented as

f̂ (xν) =
∑

X∈Cν
Y

K
. (3.33)

These Knn models are somewhat explainable since one is able to explain
how the model works, however, one is unable to describe or explicitly write
the equation of the final model. Knn models have low interpretability since
one is unable to provide the physical meanings of the parameters in the
model. When Knn is compared to an approach such as OLS, the difference
between each in terms of explainability and interpretability is apparent.

3.2.3.3 Naïve Bayes
Bayes’ theorem or rule is the foundation for numerous algorithms and tech-
niques (Gelman et al., 2003). However, only naïve Bayes will be discussed
due to its popularity in the literature (Hastie et al., 2017). Borrowing and in-
spired by the notation from Laskey and Martignon (2014) and Wackerly et
al. (2008), Bayes theorem is

P(Dj |E) = P(E|Dj)P (Dj)

P (E)
(3.34)

= P(E|Dj)P (Dj)∑K
i=1 P(Dk)P (E|Dk)

, (3.35)
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where k ∈ {1,2, ...,K} are the classes, P(Dj) is the probability of belonging to
the j th event or the prior, E is the evidence, and P(E|Dj) is the probability
of certain evidence given belonging to event j . One is able to change the
denominator in Eq. (3.34) to the denominator in Eq. (3.35) by using the sum
of total probability (Wackerly et al., 2008).

Evidence is usually considered the data we collected for this analysis. The
prior is usually one’s previous beliefs about the phenomena of interest. The
posterior is P(Dj |E) and represented one’s updated beliefs on the phenom-

ena. The fraction P(E|Dj)

P (E)
represents the support of one’s evidence provides

for event Dj .
Bayes’ rule is used as an alternative method to Frequentist statistics for

making inferences. Briefly, Frequentists believe that population parameters
are fixed. Bayesians believe that population parameters take on a range
of values. In other words, they believe that parameters are random vari-
ables (Bolstad, 2012). Using this assumption of how parameters behave and
Bayes’ rule, there are a family of priors called conjugate priors, which have
nice computational properties (Bolstad, 2012; Wackerly et al., 2008). The
well known conjugate priors are related to the exponential family (Bolstad,
2012; Wackerly et al., 2008). Interested readers should refer to Bolstad (2012)
for a deeper introduction into Bayesian statistics and using them for infer-
ence.

Each of these components are explainable since each part has a precise
definition that is well understood. They are interpretable since each part
corresponds to a tangible meaning. Thus each component is interpretable
and explainable, which makes Bayes’ rule interpretable and explainable.

We obtain naïve Bayes (NB) when we assume that all of the evidence is
independent conditional on the given class. Thus Eq. (3.35) is now

P(Dj |E1, ...,Ep) = P(Dj)
∏p

a=1 P(Ek|Dj)∑K
i=1 P(Dk)

∏p

k=1 P(Ek|Dk)
, (3.36)

where a ∈ {1,2, ..., p} are the variables. Thus a given observation belongs to
class j if

argmaxk∈{1,...,p}P(Dj |E1, ...,Ep). (3.37)
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NB is fairly explainable modeling algorithms since one can describe how
the modeling algorithm makes predictions. It is also fairly interpretable
since one can accurately describe the influence of each explanatory vari-
able on the response variable.

3.2.3.4 Linear and quadratic discriminant analysis
Linear discriminant analysis (LDA) and quadratic discriminant analysis
(QDA) are based on Bayes theorem. Using the notation and logic from
Hastie et al. (2017), let gk(x) be the class-conditional density of X in class
C = j , and let πk be the prior probability of class k, with

∑K
k=1 πk = 1. Using

Bayes theorem provides

P(C = k|X = x) = gk(x)πk∑K
l=1 gl(x)πl

. (3.38)

Assume that each class has a multivariate Gaussian density, such that
gk(x) = 2π− d

2 det(	k)
− 1

2 e− 1
2 (x−μk)

T 	k(x−μk), where μk is the mean vector, 	k

is the covariance matrix, and d is the dimension of the distribution. LDA
comes about when it is assumed that all of the classes have a common co-
variance. Conversely, QDA occurs when all of the classes are allowed to have
individual covariances. For a given class, the estimated LDA and QDA dis-
criminant function is

δ̂k(x) = −0.5 log |	̂k| − 0.5(x − μ̂k)
T 	̂k

−1
(x − μ̂k) + logπk, (3.39)

where μ̂k is the sample mean of the training data for the kth class, 	̂k is the
sample covariance matrix for the kth class (Hastie et al., 2017). Thus an ob-
servation is assigned to a class that satisfies

Ĉ(x) = arg maxkδ̂k(x). (3.40)

LDA and QDA are both fairly explainable modeling algorithms since one
can describe how the modeling algorithm makes decisions. However, it is
not that interpretable since one cannot easily write down the algorithm’s
decision making process and how the variables influence that decision.
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FIGURE 3.5 Figure provides an example of a regression tree using R’s rock dataset. The
ends of the tree are called leaves.

3.2.3.5 Trees
James et al. (2013) describes tree-based approaches as approaches which
partition the “predictor space into a number of simple regions.” Lamberti
(2020b) provides general mathematical definition, which encompasses this
idea. Using the notation for the regression and classification trees from
Hastie et al. (2017), Lamberti states that a tree is

f (X) = MRIX∈R, (3.41)

where MR is the modeling operation performed on the subspace R and
IX∈R is the indicator variable for the data, X that belongs to R. For a re-
gression tree, MR = ∑M

m=1 pm and IX∈R = IXi∈Rm
, where M is the num-

ber of regions and pm is a response constant ∀m. For a classification tree,
MR = ∑

x∈Rm

1
Nm

and IX∈R = IYi=k, where k is the associated class and Nm is
the number of observations in a given region or node, m.

An example of a tree is provided in Fig. 3.5 using R’s rock data. The ex-
planatory variables were area, perimeter, and shape. The response variable
was permeability. This shape value is T√

A
, which is a reformulation of circu-

larity in Eq. (3.20).
Trees are explainable since they are merely partitioning the feature space

into discrete parts. To interpret the example model in Fig. 3.5, we follow the
logic at each decision point for each observation. Once the analysts reaches
the end of the tree, one has the prediction for the response variable. In this
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case, if T is greater than or equal to 2536.19, the permeability is predicted
to be 70.9. Otherwise, we continue down the left of the tree. If the obser-
vation then has an area greater than or equal to 3858.5, the observation is
predicted to have a permeability of 460.0. Otherwise, the process continues
until the observations finds a leaf to reside within. Since one can describe
how to make predictions with the model, trees are interpretable.

3.2.3.6 Random forests
Random forests (RFs) are essentially many trees that are combined together
to make a prediction. Once the desired number of trees is built, each tree
votes for what the observation’s predicted value. The value that receives the
most votes is determined to be the RF’s prediction for that given observa-
tion.

Using the notation from Hastie et al. (2017), assume that one has v vari-
ables or features and N observations or instances. In other words, one has
xi , yi for i = 1,2, ...,N with xi1, xi2, ..., xiv. Suppose that one has M regions,
R1, ...,RM , that divide the feature space. The model response is represented
by pmk for each region. Then one has that a given tree, b, is

f (x)b =
M∑

m=1

pmkI (x ∈ Rm). (3.42)

Note that I represents the indicator variable and k ∈ {1,2, ...,K}, where K is
the total number of classes. pmk is estimated by

p̂mk = 1

Nm

∑
xi∈Rm

I (yi = k). (3.43)

This is the proportion of class k instances in a given node or region m. An
algorithm is considered split when using a given variable and split points.
The Gini index is used to grow the tree to find a local optimum. For 2 classes,
the Gini index is

Qm(T ) = 2p(1 − p), (3.44)

where p is the proportion in the second class.
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In the case where one is performing a regression RF, Eq. (3.42) becomes

f (x)b =
M∑

m=1

pmI (x ∈ Rm), (3.45)

where pm is then the response constant for m. The tree is optimized using
the RSS (James et al., 2013).

This process is repeated until the minimum number of nodes is reached.
The RF algorithm repeats this tree building process B times. However, these
trees are built using bootstrapped data. However, only t of the v variables
are selected. This t is tuned during k-fold cross-validation (CV). Once all of
the trees are built, the majority vote for a given observation determines the
class of that observation (Breiman, 2001, 2002; Hastie et al., 2017).

RFs are fairly explainable modeling algorithms since one can describe
the voting mechanism for making predictions. However, it is not that in-
terpretable since one cannot easily write down how the variables influence
making prediction. However, one is able to describe the number of times
certain variables were used to vote for particular variables.

3.2.3.7 SVM
Support vector machines, SVM, are a popular algorithm for classification
and regression problems. To define SVMs, the notation from Hastie et al.
(2017) and James et al. (2013) will be utilized. An SVM can be represented
by

f (x) = β0 +
n∑

i=1

αiK(x, xi), (3.46)

where i ∈ {1,2, ..., n}, n is the total number of instances, αi and β0 are the pa-
rameters to be estimated, and K(x,xi) is the kernel or inner product. There
are several kernels that are commonly used. Some of the more popular ker-
nels are the linear, polynomial, and radial kernels, which are, respectively,

K(x,xi) =
p∑

j=1

xijxi′j , (3.47)
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K(x,xi) = (ν + γ

p∑
j=1

xijxi′j )
d, (3.48)

K(x,xi) = exp(−γ

p∑
j=1

(xij − xi′j )
2), (3.49)

where p is the number of features or variables, d is the degree of the poly-
nomial, γ is a positive constant, ν is a constant, and exp is the exponential
function (James et al., 2013). This representation works for both regression
and classification SVM. However, the specific details do change. Interested
readers should refer to Hastie et al. (2017).

Kernel-based solutions use a computational methods dubbed the “ker-
nel trick” (Hastie et al., 2017; James et al., 2013). This method converts the
original space into a new feature space, where the problem becomes a lin-
ear kernel. This helps to improve the computational efficiency of the model
by working on a simpler problem. Once a solution is obtained, the solution
is able to be converted back to the original space.

Linear SVM is an explainable modeling algorithms since one can de-
scribe how the modeling algorithm makes decisions. It is somewhat inter-
pretable since one can describe the influence of each variable on the mod-
eling decision process (Cuingnet et al., 2011; Guyon and Elisseeff, 2003).
However, one cannot describe that effect in a physical manner.

Non-linear (NL) SVM is somewhat explainable since one can describe
how the modeling algorithm makes decisions. Unfortunately, these deci-
sions can be very different from what we might imagine the solutions to be
for more complicated problems. It is not interpretable since one cannot de-
scribe the influence of each variable on the outcome (Guyon and Elisseeff,
2003). This is due to the use of the “kernel trick.”

3.2.3.8 CNNs
Convolutional neural networks (CNNs) are one of the most popular meth-
ods for image classification (Fukushima, 1980). CNNs have been used on a
variety of image classification problems, such as scene recognition (Zhou
et al., 2018), medical pill similarity (Wang et al., 2017; Zeng et al., 2017), and
face recognition (Parkhi et al., 2015). CNNs are powerful techniques that
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are able to learn features necessary to perform an analysis and due to their
ability to get accurate predictions (Gu et al., 2018). However, they cannot be
easily interpreted or explained.

CNNs are “black-boxes” and prevent analysts from understanding what
is being learned and how it is using what it has learned to make predic-
tions (Lamberti, 2020b; Zeiler and Fergus, 2013). Furthermore, the Euro-
pean Union (EU) passed the General data protection regulation (GDPR) in
2016, which took effect in 2018 (Union, 2016). Recital 71 stated that individ-
uals have a right “to obtain an explanation of the decision reached” (Union,
2016). This means that if an algorithm is used for a person’s health and can-
not be explained to an average person, the solution cannot be used. Thus AI
methods, such as CNNs are not appropriate for critical applications, where
clear explanations and interpretations are required. XAI methods are pre-
ferred in critical applications since one is able to provide clear explanations
and interpretations of the parameters, features, and predictions.

However, there is a substantial amount of excitement around the po-
tential of CNN-based solutions. For instance, CNN-based solutions were
used to evaluate a clinical therapy of images breast or gastric cancer cells
(Zakrzewski et al., 2019). Others used the presence of large amounts of par-
ticular genes to segment the nucleus of a cell via a U-Net (Makhov et al.,
2020). CNNs were also used to segment cells for further using fluorescent-
based images (Keren et al., 2018; Valen et al., 2016). These solutions provide
exciting evidence that explainable and interpretable solutions exist and are
possible for many different applications. However, this does not mean that
CNNs are explainable nor interpretable. Though it is known that CNNs are
able to estimate any function, one does not know what function a trained
CNN estimated. Thus a CNN is not explainable. Furthermore, one cannot
provide physical meanings to each of the thousands, if not millions, of pa-
rameters within a CNN. Thus a CNN is not interpretable.

One downside of using a CNN is that it is difficult to interpret the model
and features regardless of the architecture utilized. The number of features
learned in these models can easily approach 100,000. This makes inter-
preting and explaining the model difficult at best. Some researchers have
attempted reducing the dimensionality of the features used for classifica-
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tion with success. Sahlol et al. (2020) used transfer learning via a VGGNet

alongside a statistically enhanced salp sarm algorithm (SESSA) to extract

more useful features for classifying white blood cells (WBCs) as healthy or

ALL. The resulting approach selected over 1000 features from a potential

25,088 that were then used in an SVM classification model (Sahlol et al.,

2020). However, this approach still provides little insight as to what is im-

portant for distinguishing healthy and malignant WBCs. Since one cannot

assign physical meaning to the variables and parameters learned by CNNs,

they are not interpretable.

There has been some work to try to make CNNs more explainable and in-

terpretable. Samek et al. (2017) provides two possible metrics for explaining

and interpreting the output of an input image’s pixels: layer-wise relevance

propagation (LRP) and sensitivity analysis (SA). Using LRP, analysts can

compute how much each pixel contributes to a prediction of a single image.

Using SA, analysts can compute how much do changes in each pixel im-

pact the prediction of a single image. Though these approaches are helpful

for understanding and interpreting why a CNN made a decision for a given

observation, it fails to provide insight for the model or it’s characteristics

at a global scale. For instance, these approaches fail to provide any insight

into the exact function estimated by the CNN. Furthermore, it fails to pro-

vide any insight to what aspect of a given pixel or a collection of pixels was

important, such as the color or shape. Lastly, these approaches are repre-

sentative of only a particular image and not a collection of images. Though

this process may be repeated many times over many different images, this

still fails to provide meaningful insights to the observations at a global scale

by using interpretable and explainable features.

Deep learning methods, such as autoencoders, can be used to create

latent spaces in an attempt to explain and interpret the model (Way and

Greene, 2018). However, we know that not all latent spaces are explainable

or interpretable (McInnes et al., 2020). Thus since one does not know what

function is estimated by using a deep learning model, one does not know
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if one is able to explain and interpret a latent space produced by a deep
learning model.1 Thus CNNs are unexplainable and uninterpretable.

CNNs and other deep learning methods provide impressive performance
for a variety of tasks (Gu et al., 2018; Hastie et al., 2017). However, the human
analyst must still decide which architecture and other learning method-
ologies to use for the CNN. Thus there is a substantial amount of human
influence for these models. Thus it would be misleading to state that deep
learning solutions are more machine-driven than traditional AI methods. In
fact, deep learning solutions merely shift the human components of model
building to a different set of problems. Deep learning solutions require that
humans design the architecture and learning methodologies, whereas XAI
methods require humans to collect useful metrics and select modeling al-
gorithms appropriate for the task. With this in mind, there is no difference
in the need of human inputs between deep learning and XAI since both re-
quire human interference.

3.2.3.9 DAMG
Lamberti (2020b) introduced decision trees with automatic model genera-
tion (DAMG) as a generalization of decision trees. DAMG can break down
complex classification problems into a series of simpler ones by using vari-
able selection and the conversion of many classes into two classes. This
makes multinomial classification models more interpretable and explain-
able. This series of problems can be represented by a decision tree, which
makes models more explainable and interpretable. An analyst is also able
to set each node to consider as few variables as needed per a decision node.
This is done to increase the explainability and interpretability of the model.
Extended details and experiments are found in Lamberti (2020b).

To represent the DAMG algorithm mathematically, recall the generalized
definition of a tree in Eq. (3.41). By using Eq. (3.41), one has that

f (x) = MRg
IXg∈Rg

,∀g ∈ {1, ...,G}, (3.50)

1
Further details on unexplainable and uninterpretable latent spaces are provided in Sec-

tion 3.2.4.6.
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where g is a given node or binarization of the given subspace, G is the total
number of subspaces, Xg are the observations or instances that belong to
Rg after the meta-class creation, and MRg

is the modeling operation per-
formed on the subspace Rg.

Note that Eq. (3.41) generalizes any other classification modeling ap-
proach. For example, if R was the entirety of the space X occupies and MR
is an SVM model with a linear kernel, one is then simply performing SVM
on data X. Another trivial example is to use any classification method with-
out the use of meta-classes. This will result in a tree with a singular node
and the number of children equal to the number of classes. DAMG can be
implemented to use any classification algorithm. Currently, DAMG has im-
plementations for the RF and SVM with a polynomial kernel algorithms.

Lamberti (2020b) showed that the DAMG model was able to outperform
the CNN-based approaches for many different applications. This shows
that by using interpretable metrics, DAMG is able to classify many shapes
better than CNNs. CNNs are not able to capture features of shapes that are
invarient to orientation. When this is coupled with very limited data, CNNs
are unable to learn the features necessary to discriminate the classes.

DAMG’s ability to be explainable and interpretable does heavily depend
on the implementation. For example, implementing a DAMG that has a
very large number of variables to discriminate meta-classes will drastically
reduce the interpretability. Another example is to use a technique such as a
CNN that the modeler cannot explain nor interpret.

3.2.3.10 Perceived accuracy
Section 3.2.3 provided an overview of many modeling algorithms and de-
scribed each model’s level of interpretability and explainability. However,
each of these algorithms also have a perceived level of accuracy of perfor-
mance. Barredo Arrieta et al. (2020) already described the perceived model
accuracy, and this chapter presents mappings on the perceived accuracies
to their respective modeling algorithms in Fig. 3.7b. While there are some
differences between the presented mappings in this chapter and Barredo
Arrieta et al. (2020)’s on a small number of specific types of models, one
larger shared relationship is present: models that are less interpretable have
higher accuracy and models that are more interpretable are less accurate.



Chapter 3 • An overview of explainable and interpretable AI 89

For example, both mappings agree that OLS is perceived to be more inaccu-
rate than CNNs and that CNNs are less interpretable than OLS. However, it
would be more precise to state that these are perceived accuracies of these
models and not verified truths.

This chapter lays out the argument that these perceived accuracies are,
in fact, severely flawed. It is inappropriate to cast these broad overarching
statements on the capacity of a particular modeling algorithm to accurately
capture the true underlying relationship without contextualizing the prob-
lem or considering the true underlying relationship of the phenomena of
interest. For example, in the scatterplot with the linear regression line of
best fit of the first dataset in Fig. 3.7a has data that bounces along the es-
timated model. However, with the amount of data presented, it is unclear
if the true relationship is linear with some noise or actually follows a cyclic
or polynomial-like pattern. Thus stating that OLS or NLM is more accu-
rate than the other for this example is inappropriate. The modeler must
assume or have some subject matter expertise to make a proper judgment
about which modeling technique is more accurate. Further, Section 3.3 will
show examples where XAI methods are in fact able to outperform CNNs,
which provide two counterexamples to the perceived model accuracies of
the modeling community.

3.2.4 Dimensionality reduction

Despite one’s best efforts, one might not know which variables are impor-
tant for a given task. Even if all of the variables are interpretable and ex-
plainable, it may be difficult to describe how these variables interact with
one another in a meaningful manner. Thus final models can be challeng-
ing to unravel when the number of variables is too large. For example, this
occurs in economics during expert failure, where experts model a complex
phenomena using features (Murphy et al., 2021). Thus dimensionality re-
duction techniques attempt to simplify the amount of features needed to
describe the data. Simpler methods reduce the number of variables used,
whereas others find a latent space for describing the data. If similar eval-
uation metrics and model predictions are obtained using the latent space
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or the model with less variables when compared to the model with all the
variables in the original space, then the simpler model is often preferable.

3.2.4.1 Subset selection procedures
Many of the first attempts at reducing the number of variables used in a
model use rules to reduce the number of variables in a model. The sim-
plest of these rules involved using the top most important variables from
a model with all of the variables, and then rebuilding the model with only
those variables. A variation of this approach could try all possible combi-
nations of a specified number of features. This procedure is called the best
subset selection (Draper and Smith, 1998; James et al., 2013). This approach
is generalizable to many different modeling algorithms.

More sophisticated approaches than using the most important variables
involve iterative algorithms, which add or remove variables until a speci-
fied value converges or other algorithmic criteria are satisfied (Draper and
Smith, 1998; James et al., 2013; Mendenhall and Sincich, 2011). Many of
these approaches were developed for linear models, so the extent of their
applicability is somewhat limited. Some of these approaches are the back-
ward elimination and stepwise selection procedures (Draper and Smith,
1998). Based on the framework from Draper and Smith (1998), the frame-
work for the backward elimination procedure is as follows:

1. Select an evaluation metric threshold value, α0.
2. Build a model with all of the m variables.
3. Build a model with all of the variables except one. Repeat this for every

variable to obtain m models.
4. Select the model from (3.) with the smallest evaluation criterion, α1:

• If α1 satisfies α0, then use the simpler model.
• If α1 does not satisfy α0, then replace the original model with the

model that produced α1. Repeat step (3.).

Draper and Smith described this procedure using the F statistic from a
regression model. However, this procedure is generalizable to many differ-
ent modeling algorithms, such as SVM. The basic idea is to build an initial
model with all of the variables and calculate a metric for evaluation with
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a set criterion. The algorithm then continually removes variables until the
criterion is satisfied.

There are many similar methods to the stepwise procedure, such as back-
ward elimination. In general, these subset selection procedures are inter-
pretable and explainable since every step in the algorithm can be inter-
preted and explained.

3.2.4.2 LASSO, ridge, and elastic net
A popular method in the statistical learning community is the use of the
least absolute shrinkage and selection operator (LASSO) on generalized
linear models (Hastie et al., 2017; James et al., 2013). A similar method is
the Ridge (Draper and Smith, 1998; Hastie et al., 2017; James et al., 2013).
However, both are equivalent to the elastic net (Hastie et al., 2017). These
methods shrink the variables of the model to 0, and retains only the impor-
tant ones.

For the LASSO, for a given objective function, the LASSO is the solution

minβ0,β

1

N

N∑
i=1

f (xi, yi, α,β), (3.51)

subject to ||β||1 ≤ t , where || · ||1 is the L1-norm, and t is a tuning parameter
(Tibshirani, 1994). Ridge provides a similar solution, except it is subject to
||β||22 ≤ t , where || · ||2 is the L2-norm (Hastie et al., 2017). The elastic net
uses the same object function as the LASSO and Ridge, but it is subject to
(1 − δ)||β||1 + δ||β||22 ≤ t such that δ ∈ [0,1]. Thus the LASSO and Ridge are a
special case of the elastic net (Hastie et al., 2017).

One way to understand the LASSO and Ridge is through the use of
Bayesian updating (Tibshirani, 1994). The Ridge assumes that the vari-
ables have a normal prior, whereas the LASSO assumes that the prior is a
Laplace. Similarly, the elastic net has a prior that compromises between the
Gaussian and Laplace (Zou and Hastie, 2005). Thus one is able to have a
highly interpretable and explainable variable selection algorithm since one
is merely performing Bayesian updating.

In practice, one would typically build a model using the elastic net and
obtain a subset of variables. Once the analyst was satisfied with the subset
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of variables, the analyst would rebuild the model using only that subset of
variables. Then the model has the typical interpretation and explanation.
Thus this family of methods are very powerful and has been well developed.
However, it is not applicable to all modeling algorithms.

3.2.4.3 PCA
Principal component analysis (PCA) is a fundamental technique in a variety
of fields. Furthermore, we discussed much of the technical details of eigen-
values for eccentricity. However, PCA also uses eigenvectors to provide a
latent space of the original data. Summarizing the descriptions from Lattin
et al. (2003) and Izenman (2008), PCA attempts to model describe

εj =
r∑

i=1

bjiXi,∀j ∈ {1, ..., t}, (3.52)

such that Xi is the ith vector where i ∈ {1, ..., r}, t ≤ r, εj is the j th princi-
pal component or score, and bj is the j th the eigenvector (Hotelling, 1933).
The theoretical underpinnings of PCA allow us to state that the eigenvec-
tors of the given data, λj , explain the variation in the data (Hotelling, 1933).
For example, one can state that the first principal component accounts for

λ1∑r
j=1 λj

× 100% of the variation in the data. Extended details on PCA’s theo-

retical foundations and computational methods can be found in Hotelling
(1933) and Izenman (2008). The resulting latent space is composed of the
εj ’s, where analysts usually pick 2 (which makes t = 2) so that a 2D scat-
terplot can be constructed. More formally, the number of components to
retain should be determined using an elbow or scree plot or Kaiser’s rule
(Kaiser, 1960). A scree plot includes the numeric value the eigenvalues have
on the y-axis and the order of each of the eigenvalues. Scree plots are help-
ful when there is an obvious large deviation in the amount of variation
explained by the components. Kairer’s rule is less human dependant, and
stipulates that all of those principal components with eigenvalues greater
than or equal to 1 should be retained (Kaiser, 1960). However, other guide-
lines state that the amount of variation explained by the retained principal
components should be at least 50%. Thus there are many tools for assessing
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the results of PCA, but there is not a “best” method. Thus careful consider-
ations must be made when using PCA. PCA is explainable since it is the
linear combination of the data that captures the data. PCA is somewhat
interpretable since one is able to assign meaning to each latent space by
interpreting the loadings.

This approach preserves the variation in the data, so it is able to describe
it in a linear manner. Therefore PCA is able to construct a smaller feature
space to describe the data. It is important to note that PCA often uses the
correlation matrix of the data to capture these eigenvalues and eigenvec-
tors (Lattin et al., 2003). Thus much of what is discovered using PCA is
exploratory and not definitive.

One is able to analyze the eigenvectors to describe what that dimension
of the space means (Lattin et al., 2003). For instance, it may be capturing all
of the shape metrics in the first dimension of the PCA space and the color
metrics in the second. However, there isn’t a defined mathematical method
for analyzing the eigenvectors. It takes practice and intuition to learn how
to describe these eigenvectors. Therefore while one is able to interpret and
explain PCA, the interpretations of PCA are not precise and straightforward.

3.2.4.4 FA
Factor analysis (FA) is similar to PCA (Izenman, 2008; Lattin et al., 2003).
Sometimes to estimate FA, PCA is used instead (Lattin et al., 2003). Thus the
discussion on FA will be brief. However, the theoretical differences essen-
tially amount to a rotation component (Izenman, 2008; Lattin et al., 2003).
When this subtle difference is included in the estimation of FA, it can help
to further separate different groups from one another. For example, it may
make it more obvious when interpreting the loadings that the first loading
corresponds to shape metrics and the second to color. However, this ap-
proach is controversial, as it may not generalize well (Blackith, 1971; Manly,
1994).

The inclusion of the rotation parameter matrix makes FA less explainable
since the choice of estimating the rotation is not straightforward. Though
there are popular choices, such as the varimax rotation (Izenman, 2008;
Kaiser, 1958; Lattin et al., 2003), the choice of the rotation matrix drastically
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changes an analyst’s ability to explain the results. The interpretability of FA
is essentially the same as the reasons for PCA.

3.2.4.5 Fourier transform
The Fourier transform (FT) is a well studied technique from signal and im-
age analysis (Gonzalez et al., 2009; Kinser, 2018; Russ, 1995). Using complex
numbers, the FT is

F(u) =
∫ ∞

−∞
f (x)e−iuxdx, (3.53)

where u represents the frequency space values and i = √−1. It is important
to note that

eiθ = cosθ + isinθ. (3.54)

Thus FT is essentially decomposing a signal into the summation of cosine
and sine waves. One is able to interpret the magnitude of F(u) as the mag-
nitude of u that is in f (x) (Kinser, 2018). It is also well known that

f ′(x) = 1

2π

∫ ∞

−∞
F(u)eiuxdu. (3.55)

Note that f ′(x) = f (x). Thus no information is lost when projecting into
the Fourier space (Kinser, 2018). These relationships can be extended to the
case where one has two variables (such as one does with images). For this
one has that

F(u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−i(ux+vy)dxdy, (3.56)

f ′(x, y) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
F(u, v)ei(ux+vy)dudv. (3.57)

The FT is extremely powerful, and is used for a variety of image pro-
cessing tasks, such as noise reduction, dimensionality reduction, and data
compression (Gonzalez et al., 2009; Kinser, 2018; Russ, 1995). Though these
approaches are not extensively presented in traditional machine learning
or statistic textbooks, a brief introduction to this technique is valuable for
those readers analyzing image data.
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Much work has been done to interpret and explain FT. However, since it is
primarily limited to signal processing, the discussion will be restrained. FT
is somewhat explainable since one is able to describe it’s process precisely,
but it uses complex numbers. Simply stating that complex numbers have
the property that i2 = −1 does not make complex numbers explainable.
The key component which needs to be explicitly described is

√−1. Further-
more, since

√−1 does not have any physical meaning, FT is only somewhat
interpretable. Since many who use models may not have seen the FT or
even complex numbers before, many audiences may struggle to under-
stand this approach. Furthermore, FT assumes that the signal analyzed is
repeating just like a cosine or sine function. This may not be an accurate
representation of the data. Even with this caveat, the FT is still a useful
technique in a variety of situations. For an extensive description of FT, we
recommend reading Kinser (2018); he presents many examples alongside
the theoretical descriptions of image processing methods in Python.

3.2.4.6 Manifolds
There are a number of techniques based on estimating manifolds for di-
mensionality reduction, such as uniform manifold approximation and pro-
jection (UMAP) (McInnes et al., 2020) and t-distributed stochastic neighbor
embedding (t-SNE) (Maaten and Hinton, 2008). These techniques have re-
cently gained popularity in a variety of communities, such bioinformatics
and genomics (Alexandrov, 2020; Bravo González-Blas et al., 2020; Takei et
al., 2021).

Part of the issue with these methods is that a straightforward definition
of a manifold is difficult at best to describe. Izenman (2008) stated that
“It is not easy to give a simple description of a ‘manifold’ because of the
complex mathematical notions involved in its definition.” He attempts to
give a simple definition of a manifold as “a topological space that locally
looks flat and featureless and behaves like Euclidean space.” However, two
prime examples of manifolds are S-curves and swiss rolls (Izenman, 2008).
These objects are not flat in 3D space, yet many traditional clustering or di-
mensionality reduction techniques struggle to represent these objects well.
Thus while one can present examples of manifolds and describe them with
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mathematical notation, one still has difficulty in describing them. There-
fore trying to estimate something that cannot be explained or interpreted
easily is setting up the procedure for estimating the object much more dif-
ficult to explain and interpret as well.

Furthermore, UMAP, t-SNE, and similar manifold-based approaches for
dimensionality reduction do not preserve global distances nor do they
loadings by which to interpret or explain their results (McInnes et al., 2020).
In addition, it is unclear whether these methods will perform well in small
data scenarios. It should be noted that small data scenarios are not from a
bygone era, but are still a part of the age of “big data” (Lamberti, 2020b).
For example, we may have millions of observations in a given dataset, but
only a handful (less than 10) of a particular class. These rarer cases may
be of extreme importance, such as terrorist attacks or a rare case for an
illness. One would not want to casually label such cases as an outlier and
remove them from the data. Thus one would also not want to use a tech-
nique to describe cases that one has very few observations. This does not
mean that approaches, such as UMAP, should never be used. Data may be
so untenable that using an uninterpretable and unexplainable solution may
be the best an analyst is able to provide. However, using these approaches
comes with a cost, and an analyst should be aware of the benefits and
weaknesses of these approaches. In essence, manifold-based approaches
for dimensionality reduction are unexplainable and uninterpretable since
one cannot clearly describe a manifold and ascribe physical meaning to
their latent spaces, respectively.

3.2.5 Model assurance

There are a number of ways to provide model assurance, such as resampling
methods, effect comparison, analysis of influential observations, human-
in-the-loop (HILT) models, and visualization methods. We want to build
models that are generalizable so that the models are useful beyond the data
that they were built with high levels of confidence and trust. Model assur-
ance confidence is increased by using explainable and interpretable models
and metrics. Using model assurance methods alongside interpretable and
explainable features and modeling algorithms provides the analyst insight
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into the model’s predictions and internal logic. Using model assurance also
helps to identify a clear path to improve the model or to collect different
features.

Model assurance differs from data assurance. We define data assurance
as processes which help to evaluate that the sample data accurately de-
scribes the population data. Similar to increasing confidence for model as-
surance methods, adhering to interpretability and explainability increases
confidence in the sample data. Thus the primary difference is the subject:
the data for data assurance and the model for model assurance. Model and
data assurance are the two main pillars of AI assurance. Interested readers
in AI assurance are invited to read Batarseh et al. (2021) for extended details
and discussions.

3.2.5.1 Resampling methods
Resampling methods are used in a variety of fields to verify that a model
is robust. Though collecting more data would be the most obvious way to
check if a model is robust, this cannot always be possible. Various costs,
such as time or money, may make collecting data untenable. Thus model
validation approaches are developed to verify that models are robust with
limited amounts of data. There are three primary model validation meth-
ods: training-validation splits (James et al., 2013), cross validation (CV)
(James et al., 2013; Kohavi, 1995; Takei et al., 2021), and the bootstrap
(James et al., 2013; Kohavi, 1995; Takei et al., 2021).

One need to define some terminology before one discusses the specifics
of CV. Be aware that different communities define these terms differently
and may interchange their definitions. Thus it is vitally important to en-
sure that these terms are defined explicitly. Training data is the data used
to build the model. Testing data is data used to check the model and may
be used to train the model. Validation data is data used to check the model,
but never used to train the model. Before any model is built, the data is usu-
ally randomly allocated to the training and validation data using a 70% and
30% split from the original data (James et al., 2013). However, it is not un-
common to observed different values from these splits (Lamberti, 2020a; Li
et al., 2019). This method is usually called the holdout method (James et al.,
2013).
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FIGURE 3.6 Figure is a 4-folds CV visualization.

The next approach is called k-folds CV, where the training data is split
into k approximately equal parts, which take turns being the training and
testing data (Kohavi, 1995). This is exemplified in Fig. 3.6. For example, in
the first experiment, the data is built using all of the data except the first
split (the blue (dark gray in print version) partition). The first split is then
used to check the quality of the model. For the second experiment, all of
the data is used except for the second split. The second split is then used to
check the quality of the model. This process is continued for each split. A
good model would have similar values across all of the splits.

Sometimes k-folds CV is combined with the holdout method. This com-
bination first creates the training and validation data. k-folds CV is then
applied to the training data. A model is built using all of the training data,
and then checked using the validation data. A robust model would have
similar model evaluation metrics cross all of the folds and for the validation
data.

The bootstrap works by treating the collected data as an empirical esti-
mate of the population’s distribution (Efron, 1979; James et al., 2013). The
observed data is randomly sampled with replacement to a specified sample
size, n. A model is built using this estimate and evaluated. This is repeated
m times. The m evaluation metrics are then analyzed by ensuring that they
have a small variance. A small variance ensures that the model is not chang-
ing and remaining consistent.

In computer vision, a popular approach to increase the number of obser-
vations in the dataset is to use data augmentation. This process is similar
to the bootstrap since both are approaches used to increase the size of
one’s dataset. Data augmentation is essentially a series of transformations
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applied to the images. The types of transformations vary, but include rota-
tions, smoothing, flipping, and scaling (Mikolajczyk and Grochowski, 2018;
Miller et al., 2000; Wang et al., 2017). Data augmentation is a useful tech-
nique for increasing the total number of observations in a given dataset,
but the process of data augmentation is not applicable to non-image data.

3.2.5.2 Effect comparison
One of the primary ways to perform effect comparison is the use variable
importance (VI) by comparing the VI values on two different datasets. For
instance, calculating VI changes depending on the type of model used for
the analysis. The VI for linear regression models is calculated using the
absolute value of the coefficient’s t statistic (Molnar, 2020), whereas a ran-
dom forest model’s VI is based on the Gini index (James et al., 2013). It is
important to note that a model agnostic method does exist, but it is a post-
hoc analysis (Breiman, 2001). Regardless, the final values for a given model
with the same variables can always be compared with the same type of
model. One can exploit this fact to measure the differences between differ-
ent models. One would expect similar models to have very small differences
between the VI measures, whereas different models would have large dif-
ferences. Thus one would show evidence for model assurance when there
are small differences between the VI values for separate models built on
similar but different data. Using interpretable and explainable modeling al-
gorithms and metrics are critical for this method to be useful. When the
analysts cannot interpret and explain the algorithm’s parameters and met-
rics, the effect comparison becomes less helpful for model assurance.

3.2.5.3 HILT models
Combining human and machine learning is another approach to ensure
that a robust model is built (Lamberti, 2020b; Trzaskoma et al., 2020; Valen
et al., 2016; Witten et al., 2011). This mixture of intelligences can help to bol-
ster the other’s weaknesses. Machine learning can provide the strict rules
needed to generalize tedious and computationally heavy tasks. Human
learning can guide computational methods to more accurate descriptions
of a phenomena. However, these models can be obtuse to those who were
not involved in the model building process. The human components are
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also difficult for other humans to replicate unless the analysts provide clear
and precise descriptions of the their choices. Therefore these types of mod-
els provide evidence in favor of deep learning methods (Caicedo et al., 2017;
LeCun et al., 2015; Lundberg and Borner, 2019; Pärnamaa and Parts, 2017).
Though HILT models provide useful initial steps for explaining a phenom-
ena, replacing the human components with interpretable and explainable
computational methods is highly encouraged.

3.2.5.4 Influential observations
Observations which impact model’s parameters more than other observa-
tions are considered to be influential observations or outliers. Influential
observations are typically considered important for a particular algorithm.
For instance, SVMs define the support vectors as those observations that
are needed to define the separating hyper-object (Hastie et al., 2017; James
et al., 2013).

The term “outliers” usually has a negative connotation. It is not un-
common for these observations to be removed to provide more accurate
estimates for parameters of interest (Mancl and DeRouen, 2001; Menden-
hall and Sincich, 2011; Miller, 1974; Preisser and Qaqish, 1996). However,
the removal of potential outliers is not straightforward (Draper and Smith,
1998). For example, this outlier could provide evidence that the initial data
collection missed an entire subset of the population or indicates that a sub-
population is rare (Lamberti, 2020b; Wand et al., 2021; Wojcik et al., 2019).
Conversely, if the goal of the analysis is to model the typical observations,
then outliers should be removed. Though this might make the model pro-
vide more accurate predictions for those typical observations, rarer obser-
vations will have larger errors on this altered model. Thus great care must be
taken when considering to remove outliers when the effects on the model’s
parameters change dramatically.

There are several methods for assessing influential observations. Data
visualization techniques, such as boxplots can provide evidence of the pres-
ence of outliers (Peck et al., 2008). Leverage and Cook’s distance are useful
measures of an observation’s influence on general linear and non-linear
models (Myers, 2010; Preisser and Qaqish, 1996).
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3.2.5.5 Visualization methods
Using visualization tools can provide greater insight to an analyst’s model
and help to bolster the robustness of the model (Anscombe, 1973; Cleve-
land, 1993). Though this idea is not new, it still holds much relevance for
model assurance. Furthermore, visualization methods are able to make
variables or algorithms more explainable and interpretable. Both of these
concepts are well illustrated using the famous Anscombe datasets
(Anscombe, 1973).

The Anscombe datasets provide 4 pairs of explanatory and response vari-
ables. When the analyst builds a simple linear model for each of the four
pairs, the resulting models are strikingly similar. All have similar values for
the model’s parameters, R2 values of about 0.667, t-statistic values of about
4.24, and stand error estimates of about 0.118 (Anscombe, 1973). However,
if one were to plot the data against the estimated model, one will observe
concerning aspects, as seen in Fig. 3.7a. The first dataset is the only model
that adequately captures the phenomena. The second data appear to fol-
low a polynomial pattern, and thus a simple linear model is inappropriate.
The third dataset does follow a linear pattern, except for one observation.
It is unclear if that one observation is an outlier, error in the data collection
process, or part of the phenomena of interest. The fourth dataset has one
observation that is drastically changing the estimated model. Thus observ-
ing the statistics, model parameters, and other model evaluation metrics
are usually not sufficient for determining if the model adequately captures
the relationship in the data.

Though one cannot provide a complete overview of graphics for mod-
eling and model assessment, using visualizations is an excellent method
for ensuring the robustness of a model (Bhattacharyya and Johnson, 1977;
Cleveland, 1993; Peck et al., 2008; Wickham, 2016). One of the fundamental
methods for visualizing data is the scatterplot. By plotting the data, an-
alysts might be able to quickly assess the relationship data follows. This
assessment will help in selecting a modeling algorithm that would best
describe the data. For example, one familiar with the art would select a
non-linear (possibly parabolic) model for the second Anscombe dataset af-
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FIGURE 3.7 Figure showcasing utility of visualizations for model assurance.

ter one observed the non-linear relationship displayed in the scatterplot in
the topright of Fig. 3.7a with green (gray in print version) solid points.

Another useful tool based on scatterplots for assessing models is observ-
ing the relationship between the residuals and the predicted values of a
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model (Draper and Smith, 1998). For OLS models, this plot should have a
random scatter surrounding the residual axis at 0. Fig. 3.7b provides evi-
dence that the OLS model built does not fit the data well. There are a variety
of other visualization tools available for OLS, such as the scale-location plot
in Fig. 3.7d and the residual versus leverage plot in Fig. 3.7e (Belsley, 2004;
Mendenhall and Sincich, 2011).

If one is able to make assumptions about the parametric distribution of
the data, one should use QQ-Plots to assess if the data does follow the as-
sumed distribution (Peck et al., 2008). Since an OLS model was used for the
Anscombe datasets, one is able to assess if the residuals follow a normal
distribution using a normal QQ-plot. Data that follow a normal distribu-
tion will follow a straight line from the bottom left of the plot to the top
right. Since Fig. 3.7c does not follow a straight line due to the observation
in the top right of the plot above the reference line, one has strong evidence
that the data does not follow a normal distribution.

Whisker-plots or boxplots are a useful visualization to assess the distri-
bution of data (Cleveland, 1993; Peck et al., 2008; Tukey, 1977). Based on
quantiles, they quickly provide a visual for analysts to obtain a high level
view of the data. Potential outliers are indicated by singular points beyond
the “whiskers” of the plot. They are those observations more extreme than
the first or third quantile minus or plus, respectively, 1.5 × IQR, where
IQR = Q3 − Q1 such that Q1 is the first quantile and Q3 is the third quan-
tile. Fig. 3.10 in Section 3.3.2 provides an example of a boxplot. For an ideal
symmetric distribution, one would expect both sides of the boxplot to be
symmetrical with few, if any, potential outliers.

If an analyst is able to exploit an algorithm by using visualizations to
describe how the model is making decisions, this makes the model much
more explainable and interpretable. Visualizations that are able to describe
all of the observations used to build and check the model are much more
impactful than describing a visualization for a single observation. Further-
more, visualizations that use metrics that are universal across different
models are much more interpretable and explainable than visualizations
that describe a relative latent space. For example, describing how a model
performs using the residual versus fitted values is much more interpretable
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and explainable than a PCA plot of the first two principal components,
since principal components must be interpreted for each unique dataset.

3.3 Experiments using XAI models
The following sub-sections provide examples of using XAI models. The first
example is classifying satellite images of icebergs versus ships. The second
example is classifying malignant versus healthy white blood cells (WBCs).
The final models in both examples are compared to the state-of-the-art
deep learning CNNs. Furthermore, the XAI models are able to outperform
the deep learning methods. Thus XAI approaches are capable of tenable so-
lutions when compared to deep learning solutions.

3.3.1 Satellite imagery

Lamberti (2020a) created a RF which provides highly accurate classifica-
tion between icebergs and ships using satellite images. This corresponds to
outperforming CNN-based approaches by about 7% and 11% on the test-
ing and validation data, respectively. The first step is processing the images
to extract the shapes of the objects. Shape metrics are then collected on
the final objects. These shape metrics indicate that the important variables
for discriminating these two classes are eccentricity and shape propor-
tions (SPs). Readers interested in extended details should refer to Lamberti
(2020a).

The data used in this model came from the “Statoil/C-CORE Iceberg
Classifier Challenge” (Kaggle, 2017). These images are obtained from the
Sentinel-1 satellite. The data was saved in json format, where each im-
age was 75 × 75 pixels with two bands. The bands are radar backscatter
produced from different polarizations. The first band corresponds to trans-
mitting and receiving the waves horizontally (HH). The second band cor-
responds to transmitting the waves horizontally and receiving the waves
vertically (HV). Each pixel value corresponds to real numbers in dB units.
Examples of these images and the resulting extracted objects are provided
in Fig. 3.8. There are 851 ships and 753 icebergs. This corresponds to a total
of 1604pairs of images.
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FIGURE 3.8 Figure provides examples satellite images and the final extracted shapes.

After performing 10-fold CV, the tuned parameter for the number of vari-

ables to check was 6. This resulted in an accuracy of about 95%. We then

used the complete testing data to build a RF model with the tuned param-

eter value. This resulted in an accuracy of just over 99% and 95% on the

testing and validation data, respectively. This is summarized in Table 3.2.

The CV error presents a much more accurate estimate of the validation data

accuracy rate as they only differ by about 1%.

The confusion tables for the testing and validation data are provided in

Table 3.3. The model classified more icebergs incorrectly on the testing data

and misclassified more ships on the testing data. Nonetheless, the model

was able to correctly classify both classes with a high level of accuracy.
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Table 3.2 The table depicts accuracy of the CV
accuracy estimate, the complete testing data,
and the validation data. Notice that the CV esti-
mate is very similar to the testing data estimate.

Data Accuracy
CV 95%

Testing >100%
Validation 96%

Table 3.3 Table is the confusion matrix for the final model
using all of the testing data. The validation data is in paren-
theses and boldened. This corresponds to an overall accuracy
just under 100% and about 96% on the training and valida-
tion data, respectively.
Prediction/Reference Ship Iceberg

Ship 2721 (650) 18 (25)
Iceberg 3 (30) 2392 (577)

Table 3.4 Table provides the rescaled importance of each of
the variables; 100 means that the variable is the most impor-
tant and 0 means that the variable is the least important. The
2 most important variables were eccentricity and SP.

Metric Variable Importance
Eccentricity 100.00

SP 86.56

EI: White 85.84
EI: Black 83.35

Circularity 79.01
Rectangularity 65.27

White Bounding Box 49.45
Black Bounding Box 42.28

1st Eigenvalue 0.60
2nd Eigenvalue 0.00

The relative importance of the variables are provided in Table 3.4. The
importance was calculated using the decrease in the mean number of cor-
rectly classified observations when that given variable was removed from
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Table 3.5 Table includes the CNN results from Li, Huang, Peters, and Power
and the RF from Lamberti on the testing and validation data (Lamberti, 2020a;
Li et al., 2019). The RF model outperforms all of the CNN-based approaches.

Metric (%) CNN 1 CNN 2 CNN 3 CNN 3 RF Data
Accuracy 91.5 92 93.5 94.9 >100.0 Train

MP 92 94 94 94 >100.0 Train

Mean Recall 92 94 94 94 >100.0 Train
Mean F1-Score 92 94 94 94 >100.0 Train

Accuracy 86.51 87.72 84.83 87.02 95.71 Valid
MP 87 88 85 87 95.68 Valid

Mean Recall 87 88 85 87 95.72 Valid
Mean F1-Score 86 88 85 87 95.70 Valid

the model. The 2 most important variables in the model were eccentricity
and SP.

We provide the summary of the CNN and RF models’ accuracy, mean
precision (MP), mean recall, and mean F1-score for the testing and valida-
tion data in Table 3.5. This corresponds to a 7% and 11% mean outperfor-
mance when using overall accuracy for the RF model.

3.3.2 White blood cell

Lamberti (2022) created a RF model, which provides highly accurate classi-
fication between malignant and healthy white blood cells (WBCs). State-
of-the-art solutions use a CNN-based solution using a large number of
features (Sahlol et al., 2020). However, Lamberti was able to outperform
these solutions with dramatically less features, while using a more explain-
able and interpretable XAI algorithm. Since one is able to extract the VI, he
was able to show that the batch effects have a strong effect on the model.
These effects must be considered when building a model for deployment
at a clinical level. Readers who want additional details should refer to Lam-
berti (2022).

The two sources of data used in this example were the publicly available
ALL-IDB (Labati et al., 2011) and C-NMC (Duggal et al., 2016; Gupta et al.,
2017) datasets. The ALL-IDB data was provided by the Department of In-
formation Technology - Università degli Studi di Milano. The image data
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was captured with a microscope with a Cannon PowerShot G5 camera and
are retained in JPG format with 24 bit color depth (Labati et al., 2011). The
files were received as TIFs. The ALL-IDB source has two datasets, but only
the ALL-IBD2 data will be utilized. The ALL-IDB2 data contain cropped ar-
eas of interest of WBCs that are malignant and healthy. These cells retain
the background and other potential nearby cells. There are a total of 130
of malignant and healthy cells, for a total of 260 images. Examples of the
ALL-IDB2 dataset are provided in Figs. 3.9a and 3.9c.

The C-NMC dataset comes from the ISBI 2019 challenge. The images are
saved in the BMP format. There are a total of 7272 malignant cells and 3389
healthy cells for a total of 10,661 images. The cells were extracted by an ex-
pert oncologist. Examples of the C-NMC dataset are provided in Figs. 3.9e
and 3.9g. By using two datasets, one is able to compare the VI for the two
separate RF models. When one compares each model’s VIs, one can char-
acterize the batch effects between the two sources.

An important distinction between the ALL-IDB2 and C-NMC datasets
is that they both have differing backgrounds. This is crucially important
as the segmenting algorithm Lamberti developed can be applied to both
datasets without any changes. This provides evidence that the segmenta-
tion algorithm is generalizable to other data sets. Examples of the resulting
segmentation results are provided in Fig. 3.9.

A variety of non-shape metrics related to the color and texture of the
extracted objects for classifying the WBCs were selected. The mean and
standard deviation of the amount of red, green, blue, cyan, magenta, yellow,
and black in the objects were chosen as metrics to capture various aspects
of the color of the cells. This corresponds to a total of 14 color metrics.
The mean and standard deviation of the co-occurrence matrix was used.
The co-occurrence matrix captures how often grayscale intensity values are
next to other intensity values (Kinser, 2018). Large values indicate that a
given grayscale intensity is usually next to another given grayscale intensity,
whereas small value means that it is rarely next to another given grayscale
intensity. Therefore a large mean indicates that values tend to be rough as
intensities are nearby many different values. A small mean would indicate
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FIGURE 3.9 Figure provides examples from the ALL-IDB2 and C-NMC datasets with their
corresponding extracted shapes.
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Table 3.6 Comparison with related works for the WBC datasets. The best approaches
for the smallest number of features and highest accuracy are boldened. Note that # =
number, Exp. = Explainability, Inter. = Interpretability, and Acc. = Accuracy.

Data Source # of Features Model Exp. Inter. Type Acc.
ALL-IDB2 Singhal and Singh

(2014)
256 SVM Low Low AI 89.72%

Singhal and Singh
(2016)

4096 Knn Low Low AI 93.84%

Bhattacharjee and
Saini (2015)

8 Knn Low Low AI 95.24%

Sahlol et al. (2019) 45 Knn Low Low AI 95.67%
Sahlol et al. (2020) 1087 CNN& SVM Low Low AI 96.11%
Lamberti (2022) 24 RF High Medium XAI 100.00%

C-NMC Kulhalli et al. (2019) 25 × 106 CNN Low Low AI 85.7%
Ding et al. (2019) 87 × 106 CNN Low Low AI 86.7%

Marzahl et al. (2019) 11 × 106 CNN Low Low AI 86.9%
Sahlol et al. (2020) 1115 CNN&SVM Low Low AI 87.9%
Lamberti (2022) 24 RF High Medium XAI 90.1%

Table 3.7 The relative VI of the categories for the ALL-IDB2 and C-NMC data.
Relative Importance Most Important Secondarily Important Least Important

ALL-IDB2 Color: 1.000 Shape: 0.357 Texture: 0.052
C-NMC Shape: 1.000 Color: 0.776 Texture: 0.152

that intensities tend to be smoother. The standard deviation indicates how
much variation there is in the typical grayscale intensity value.

Table 3.6 provide the results for the presented approach compared to
other state-of-the-art approaches for the ALL-IDB2 and C-NMC datasets.
Both of these models used the same preprocessing steps to ensure a fair
treatment of the data. The presented model outperformed the other state-
of-the-art approaches by about 6.31% and 3.81%, on average, for the ALL-
IDB2 and C-NMC datasets, respectively.

Table 3.7 provides the relative variable importance (VI) by category. The
most important category is color; shape is secondary, and texture is the
least important. Table 3.8 provides the two relative VI for the two datasets.
Table 3.9 compares the VI for the two datasets. Tables 3.8 and 3.9 show that
the VI changes between the two datasets. This provides strong evidence in
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Table 3.8 The table provides the relative VI of the features for the ALL-IDB2 data
in the first two columns and the C-NMC data in the second two columns. The most
important feature for the ALL-IDB2 was the mean pixel value in the blue channel,
followed closely by the mean pixel value in the black channel, and then circularity.
The most important feature for the C-NMC data was the White EI value, followed
closely by the Black EI and Eccentricity.

Feature Relative VI Feature Relative VI
Mean Magenta 1.000 White EI 1.000

SD Black 0.791 2nd Eigenvalue 0.664
SD Blue 0.660 1st Eigenvalue 0.614

2nd Eigenvalue 0.539 Mean Blue 0.436

White EI 0.458 Black EI 0.427
Mean Green 0.393 Mean Black 0.414
SD Magenta 0.253 Mean Red 0.265
Mean Black 0.229 Mean Co-Occurrence Matrix 0.250

Mean Blue 0.214 Mean Green 0.248
SD Green 0.209 SD Magenta 0.247
Circularity 0.207 SD Co-Occurrence Matrix 0.245
SD Cyan 195 Number of Corners 0.204

1st Eigenvalue 0.146 SD Black 0.176
SD Red 0.139 Mean Magenta 0.175

Mean Co-Occurrence Matrix 0.124 SD Blue 0.165
Number of Corners 0.105 Circularity 0.162

SD Co-Occurrence Matrix 0.097 SD Green 0.154
Mean Red 0.087 SP 0.129
SD Cyan 0.066 Mean Cyan 0.103

SP 0.057 SD Red 0.088

Black EI 0.052 Eccentricity 0.060
Eccentricity 0.023 SD Cyan 0.056

Mean Yellow 0.001 Mean Yellow >0.000
SD Yellow >0.000 SD Yellow >0.000

the batch effects between these two datasets. Furthermore, the mean and
standard deviation of the absolute value of the difference of the VIs be-
tween the two datasets are about 0.017 and 0.019, respectively. The boxplot
of these values are shown in Fig. 3.10. This showcases that there is a mea-
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Table 3.9 The VI of the features for the ALL-IDB2 and C-NMC data.
Feature Mean Decrease in

Accuracy for ALL-IDB
Mean Decrease in
Accuracy for C-NMC

White EI 0.039 0.083
Black EI 0.004 0.035

SP 0.005 0.011
Circularity 0.018 0.013
Eccentricity 0.002 0.005

1st Eigenvalue 0.012 0.051
2nd Eigenvalue 0.046 0.055

Number of Corners 0.009 0.017

Mean Red 0.007 0.022
SD Red 0.012 0.007

Mean Green 0.033 0.021
SD Green 0.018 0.013
Mean Blue 0.018 0.036

SD Blue 0.056 0.014

Mean Cyan 0.017 0.009
SD Cyan 0.006 0.005

Mean Magenta 0.085 0.015
SD Magenta 0.021 0.021
Mean Yellow >0.000 >0.000

SD Yellow >0.000 >0.000
Mean Black 0.019 0.034

SD Black 0.067 0.015

Mean Co-occurrence 0.010 0.021
SD Co-occurrence 0.008 0.020

surable difference between the features in the two datasets. Thus analysts
must consider batch effects when using models in deployment.

3.4 Discussion

XAI is preferred over AI approaches in many critical, significant, and life-
altering applications since XAI methods have clearer explanations and in-
terpretations. Though it may be tempting to believe the results AI meth-
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FIGURE 3.10 Figure provides boxplot of the absolute value of the difference of the paired
VIs between the two WBC datasets.

ods in all applications, XAI incorporates interpretability, explainability, and
model assurance to produce models that have fundamentally the same
amount of utility as AI approaches. For instance, the examples presented
in the previous section showcase various instances of XAI models employ-
ing interpretability, explainability, and model assurance in various capac-
ities. Furthermore, both examples showcased XAI models that were able
to outperform AI-based approaches. Although both XAI and traditional AI
methods have human components, they differ in how the human interacts
with the specific algorithm. In addition, though each example analyzed im-
age data, the concepts presented can be easily extended to non-imagining
problems.

3.4.1 XAI vs. AI in critical applications

Critical applications need to be explainable and interpretable. Having these
qualities is not only necessary for the right to explainability, but are also vi-
tal for moral and ethical reasons. Obtaining a prediction which could have
major impacts on an individual’s life or livelihood need to be carefully ex-
plained and have clear precise interpretations, because getting these pre-
dictions wrong has dramatic repercussions in critical applications. While
AI methods are able to provide evidence that a more interpretable and ex-
plainable solution exist, they do not provide clear insights as to what influ-
ences individual predictions. Thus XAI solutions are preferred for critical
applications.
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3.4.2 Explainability, interpretability, and model assurance in
practice

A RF model was used in both applications and employed explainable and
interpretable features and methods alongside model assurance techniques.
For example, both approaches utilized the model assurance technique of
stratification during the training-validation split. The RF model has high
explainability and medium interpretability. Since a RF model was used, one
could extract the VI. Furthermore, since interpretable and explainable met-
rics were used, one can state what aspects of the objects were important for
classifying the different groups from one another. We also utilized a boxplot
to showcase the difference between the WBC data VI values. This provided
evidence that the data differs from each another.

3.4.3 XAI models outperform CNN-based solutions

The XAI RF model for satellite images outperforms the CNN-based ap-
proaches by about 7% and 11% on the testing and validation data, respec-
tively, when we used the overall accuracy as the metric of choice. This
showcases the power of using XAI features, which accurately describe the
icebergs and ships.

The XAI RF model for classifying malignant and healthy WBCs was able
to outperform the other advanced methods by about 5.20% on average. Fur-
thermore, the presented approach used the smallest number of features
when compared to the other approaches except for one. This is particularly
impressive since the methods to extract the features were the same on both
WBC datasets. Thus the presented approach is applicable to a large variety
of different kinds of WBC data sources.

Therefore stating that deep learning methods are superior since they are
able to outperform XAI is inaccurate. As one has shown in the examples, XAI
models are able to outperform the state-of-the-art deep learning models.

3.4.4 XAI, deep learning models, and human inputs

XAI and deep learning models both require human analysts. The deep
learning models need to be impregnated with an architecture and an ap-
propriate method for learning features. XAI requires the human to select
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relevant features, an appropriate modeling algorithm, and/or hyperparam-
eters. Both XAI and deep learning require human analysts, but require dif-
ferent actions from those analysts.

3.4.5 Extending the lessons learned to non-image problems

Much of what we discussed in this chapter is directly applicable to non-
image-based problems. The metrics extracted from the images were all
scalar values that are used in XAI models. However, the concepts of explain-
ability and interpretability we applied to the presented shape metrics can
be directly applied to other metrics. For instance, one could examine gross
domestic product (GDP) in terms of its explainability and interpretability.

3.5 Future work
Incorporating deep learning methods using a DAMG implementation may
provide greater insight to the deep learning decision process for classifica-
tion problems. This could help deep learning methods by simplifying the
classification tasks. This could in turn reduce the number of needed fea-
tures to learn, as there would only be a binary classification task. This could
then allow for a simpler deep learning architecture. Visualizing the layers
of these deep learning models could help with interpreting the results. Fur-
thermore, each child deep learning model could use transfer learning from
the parent deep learning model to learn the needed features quicker. This
could help to make deep learning solutions more interpretable and explain-
able.

Though interpretability and explainability are important topics, it is dif-
ficult to quantify them. This is similar to assigning a numeric value to “joy,”
“pain,” or “intelligence.” There are systems designed to quantify some of
these concepts, such as a grade point average (GPA), but it is difficult to
quantify interpretability and explainability. Additionally, systems such as
GPAs are not without their issues. One could argue that GPAs merely cap-
ture an individual’s ability to regurgitate what teacher expects a student to
know in a classroom setting. In other words, it does not directly capture a
student’s intelligence. Thus though a student’s GPA and intelligence may
correlate positively with one another, GPA is not a true measurement of
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intelligence. Nevertheless, the design of a metric or index that would encap-
sulate interpretability and explainability would provide a useful guideline
to quantify these concepts.

3.6 Conclusion
Explainability and interpretability are key components of XAI. They pro-
vide a foundation for model assurance methods, such as effect comparison
and influential observations. Furthermore, the provided examples showed
that the XAI models are able to outperform deep learning approaches us-
ing interpretable and explainable metrics for image data in health sciences
and satellite analysis. These examples show that the perceived accuracies of
various modeling approaches do not hold. The concepts discussed easily
extend to non-imaging-based problems, which extends the impact of ex-
plainability and interpretability. Thus explainability and interpretability are
powerful concepts to help analysts provide robust and generalizable mod-
els.
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Abstract

Artificial Intelligence (AI) has provided one of the most significant break-
throughs in computing in the past several decades. From the automated landing
of space rovers on the martian surface and self-driving delivery trucks to making
swift trading decisions, AI has significantly changed how we perceive intelligent
computers or robots. However, all these advancements in AI and their real-world
applications come with an increased cost of validation. Validation in AI is an
extensive topic dealing with challenges related to assessing safety and thorough
usability. The advances and widespread use of AI come with challenges in val-
idating AI, specifically for bias, fairness, and assurance. On the positive side,
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many studies in the past decade have focused on such challenges concerning
technical, legal, ethical, and philosophical aspects. Now, it is time to look at
these AI challenges with more holistic eyes.
In this chapter, we first provide a comprehensive introduction to the bias, fair-
ness, and assurance concepts in AI, starting with their definitions. Then, we
discuss how AI has had unintended effects on society and present some concrete
examples where this occurs. We then provide an overview of the literature that
covers validation methods for AI from different aspects. Improved AI assurance
and understanding of how bias occurs is important, as well as tackling the issue
of bias in model validation. By synthesizing the literature, this chapter provides
an overview of ways to formalize the process of bias reduction and assurance in
AI. This comprehensive synthesis provides AI researchers, data scientists, poli-
cymakers, and practitioners a way to assess how a particular AI model can be
evaluated against bias, fairness, and assurance for a particular goal.

Keywords

AI assurance, bias in AI, AI validation, AI fairness

Highlights

• AI systems can support better decision-making

• Current AI platforms can lead to biased outcomes

• AI assurance is tied to both a decrease in bias and an increase in performance

• Enhanced validation methods constitute one of the means of facilitating AI

assurance

• A synthesized set of methods provides a reliable way to improve results across

different AI platforms

4.1 Introduction

Artificial Intelligence (AI) is no longer a futuristic notion but a feature of ev-
eryday life. Technological advances have allowed AI to be in many forms,
from algorithms, natural language processing (NLP) to robots is present in
fields from education and medicine to social media and shopping (Blod-
gett et al., 2020; Hagras, 2018; Osoba and Welser, 2017). The abundance of
algorithms that exist to take in large amounts of data to facilitate processes
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and systems has become the norm for how governments and businesses
operate (Munoko et al., 2020).

Our reliance on AI systems in almost every aspect of our daily lives has
made it more apparent how much bias has been translated into the AI sys-
tems that we depend on. The day-to-day need for transparency in AI sys-
tems and innovative techniques for how we can validate our systems for
fairness and assurance is crucial to the performance of our systems and the
reduction of injustices that arise from biased tools. This chapter is meant
to provide a synthesis and an overview of validation methods that can be
useful for AI researchers, policymakers, and practitioners from all fields, so
that these methods can be incorporated into the systems we create and use.
Perhaps, what we can do is not exacerbate the problem, but instead ensure
that we can maximize the objectivity of our AI tools to perform with less
bias and higher efficiency than humans do at these tasks for which the AI
has been built.

Mathematical models have become the guidepost for decision-making
and “micromanaging the economy, from advertising to prisons” (O’Neil,
2016). Assurance in AI is a growing field, meant to tackle the issue of bias
and errors with machine learning methods and AI, as well as ensuring that
accuracy is attained with the same or greater level of expertise that a hu-
man would have in that role (Fujii et al., 2020; Dwork and Ilvento, 2018),
“including outcomes that are valid, trustworthy, and ethical, unbiased in
its learning and fair to its users” (Batarseh et al., 2021).

By building AI systems and models that incorporate these elements into
the outcome, the task that belonged to an error-prone human can be opti-
mized for better performance and reduced bias. Many other complications
arise from organizations and institutions relying on AI outcomes, where au-
tomated systems make recommendations that are either ignored due to
“algorithm aversion” and a lack of trust in the outcomes provided by the
AI system, or at the other extreme, blindly employed, despite information
showing that the AI output is incorrect (De-Arteaga et al., 2020).

As more data becomes available for training AI systems in different fields,
ethical and legal issues regarding human data, privacy, and equity come to
the forefront. Achieving a balance between the uses of AI and the protection
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of individual privacy while remaining within the realm of legality and ethics
is a rising challenge (Rodrigues, 2020). Though testing of AI has shown ad-
vances, particularly with the availability of data (Byun and Rayadurgam,
2020; Gore et al., 2017), the issue of bias within data and within our social
constructs and their reproduction in AI is still an ongoing issue, particularly
when relying on statistical output without an understanding of the underly-
ing mechanisms that produce these statistics (Lum and Isaac, 2016). To this
point, there is a difference between “statistical fairness, and individual fair-
ness” (Chouldechova and Roth, 2018), where minimizing the average error
to fit the populations has extreme results on the fairness at the level of the
individual. This is an example of bias in AI, where the biased data and the
need to minimize error for a better fit have ethical consequences.

How do we ensure that our AI systems are tested to maximize perfor-
mance while also ensuring results that comply with ethical frameworks?
Can we ensure that in our validation efforts in AI, we can comply with
certain parameters and agreed-upon standards for minimizing bias in AI?
Assurance has traditionally been understood within the context of some-
thing performing well in both reliability and fairness (Batarseh et al., 2021;
Ören, 1987), but is it also being accountable? This can be the case in fields
where decision-making supported by AI can lead to human harm, such as
in the medical field, or where finances and audits, or prison sentences are
concerned (Dressel and Farid, 2018; Munoko et al., 2020; Habli et al., 2020).

Beyond some of the theoretical and philosophical underpinnings of
these questions, this chapter seeks to provide an overview and compilation
of the current methods that allow for processes to be examined and tested
to ensure that the algorithms we use perform within an ethical framework
that can add to existing methods of performing assurance (Balci, 1997).

4.2 Assurance and ethical AI
To understand how AI can be ethical, we could turn to a more philosophi-
cal notion of ethics, but discussions over the ontology of ethics in AI would
take away from the task since what is needed is a concrete and transparent
way of understanding ethical AI. Particularly given the practical applica-
tions of AI and the need for a common understanding of how to measure
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AI assurance, as well as for purposes of testing, a more pragmatic definition
is needed to ensure that the goal of fairness and decreased bias is attained.
For this, we will reduce the focus on the philosophical discussion of ethics
in AI to provide a more concrete definition for how we can interpret what is
ethical and what is not. At the basis for our understanding of ethical AI, we
rely on the existing legal protections that are formed by social contract and
the law (McNamara et al., 2017).

These legal protections cover discrimination against race, gender, ability,
and many other attributes, and we assume those to be the pillars on which
the ethical performance of AI is measured against. AI bias can be seen
when two individuals with the same attributes, with differing protected at-
tributes, receive different decisions from an AI program. An example of this
would be two individuals having identical attributes, with the exception
that one individual is male and the other female, or where two individu-
als have the exact attributes with only “race” being the differing attribute
(Romanov et al., 2019; Agarwal et al., 2018).

4.2.1 Overview of bias and lack of assurance in AI

The reliance of AI on a single attribute or a set of attributes that do not have
any relevance to the output is a feature of a system that relies on available
data, but cannot discern, qualitatively, which attributes provide relevant
outputs. This reliance on data without the next step of having knowledge
of what is predicted is central to the question of bias. One such example
where this is clearly demonstrated is with the issue of recidivism and prison
sentencing. Models that predict recidivism have been shown to favor indi-
viduals who fall within certain races, and in Section 4.2.2, we give a more
detailed example of how this occurs. By providing data of biased human
decisions from previous cases to the AI tool, the data is then used to main-
tain a loop, where individuals are not able to receive fair sentencing due to
prevalent discrimination in the legal systems that support sentencing de-
cisions (Nabi and Shpitser, 2018). Other examples show that college accep-
tances and placements favor individuals with certain profiles and greatly
disfavor individuals who do not meet a certain criterion that has little to do
with performance and much to do with race, gender, and socioeconomic
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status (Osoba and Welser, 2017). The challenges have traditionally been
consigned to policy issues, but with AI replacing many human-led systems,
where individuals were the decision-makers, the need for greater AI assur-
ance to optimize these decisions becomes crucial.

Many examples of bias in AI come from discrimination based on race,
gender, socioeconomic status, and educational attainment, because sur-
veys usually contain fields for these types of attributes, and the prevalence
of bias from these attributes occurs so widely and across so many problem
spaces, that they are easier to spot. Some other ways where bias occurs and
has gained significant attention comes from using names in job applicant
selection (Carlsson and Rooth, 2008), social media user detection (Mislove
et al., 2011), as well as determining disparities based on race and ethnicity
(Elliott et al., 2009). Names, which can, in turn, be associated with gender,
ethnicity, and race, lead to a new way of using data to maintain bias through
an attribute that identifies a person, but does not provide any true context
beyond being a vehicle for biased decision-making. This is another exam-
ple of how human biases are introduced into the AI systems used that end
up creating an unreliable biased tool that may be faster than a human, but
is just as unreliable.

Data bias can be due to poor sampling methods, historical biases based
on socioeconomic factors, or decisions on categorizing and defining data.
Mehrabi et al. (2019) provide a comprehensive list of different types of AI
bias and examples of how they occur. Data bias can also be due to repre-
sentation bias, measurement bias, and the choices of how to measure an
attribute. Aggregation and population bias have to do with assumptions re-
sulting from observations of a certain population. Simpson’s paradox is a
good example of aggregation bias, where some conclusions about subsets
of the data which are meaningful and informative become erased, reversed,
or changed when the subgroup is considered within the context of the en-
tire sample (Malinas and The Hegeler Institute, 2001). Due to the aggrega-
tion of the data, the data provides conclusions about the population as a
whole, and any other conclusions about subsets of the data become ab-
sorbed and disappear into the larger numbers of the entire population.
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Behavioral bias is another type of bias that relates to how users behave

in different contexts and platforms that come along with social media use.

Some ways behavioral bias can be observed in social media use can be

broken down into popularity bias, ranking bias, and other human-related

behaviors that are taken to be representative, despite the data being highly

contextual to certain situations and platforms (Olteanu et al., 2019). These

are some of the ways in which bias occurs and how pervasive bias can be,

highlighting how difficult it is to detect bias in many situations, including

our use of these tools in our daily lives.

Thus far, we have maintained a fundamental assumption in this chapter

that AI should be less biased and more objective than a human in a similar

role. We maintain this because technology has traditionally been imple-

mented to improve upon human systems that have been inefficient and

perhaps ineffective (Varshney, 2019). With AI playing a greater role in all

processes, there is an underlying understanding that the efficiency and ef-

fectiveness of AI should outperform that of a human or allow for processes

to become easier for humans to follow (Madras et al., 2018). This can be

shown by improvements in medicine, such as automating parts of surgery.

However, one issue that continues to be present is that AI systems are heav-

ily reliant on data (Hagras, 2018), and while we have a lot of data available,

the integrity of both the sampling methods, the cleanliness of the data, as

well as issues of privacy and ethical uses of the data become a factor.

Data, due to collection methods, interpretations, categorizations, and

other decisions that need to be made for the data to be useful, comes with

some built-in bias (Pedreshi et al., 2008). Many times the reading in of data

is automated, and the next system follows along with the next steps with

less emphasis on verifying and validating the data or other aspects of the AI

system. In Section 4.3, we discuss how this process of validating our data is

also an important step in AI assurance, and we provide some suggestions

for how this can be done after we share some examples and limitations of

how this bias manifests in different situations.
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4.2.2 Current assurance methods for bias reduction

Goodhart’s law states that “when a measure becomes a target, it ceases to
be a good measure” (Strathern, 1997). This has proven true in standardized
testing, link recommendation algorithms, and medical software (Shore and
Wright, 2015). In the example of incarceration and recidivism, the attempt
to predict which individuals would commit crimes and return to jail proved
to be a self-fulfilling prophecy. The measures were over-emphasized at the
expense of the true target, leading to a perpetuation of systemic racism
and bias (Chouldechova, 2017; Dressel and Farid, 2018; Mahadevaiah et al.,
2020). As the AI trains on a biased sub-set of data, which already includes
biases, a cyclical process develops, where meeting measurements provided
by the data is the goal. In social media sites, this can be observed through
echo chambers, where there is very little cross-over in information sharing
and a large presence of polarization (Papakyriakopoulos et al., 2020). This
occurs because AI is rewarded with validation against biased data, and it
does not go beyond that.

An example in the field of standardized testing is to favor students who
meet scores on specific exams (Ntoutsi et al., 2020). The end goal is to
demonstrate knowledge of the subject matter and translate learning skills
from one educational setting to another. However, what occurs instead
is that receiving a high score on the test becomes the goal, regardless of
whether there is sufficient comprehension of what is being tested. With
the process of automated scoring for these exams, as well as systems that
screen applicants to educational institutions, the human element, which
may have had more context for interpreting the applicant holistically, is
removed, and instead what is left are students who match one profile, de-
creasing diversity and representation, but increasing bias in a domino-like
effect, which is then perpetuated in the job market, and other social spheres
(Zemel et al., 2013).

This is also the case in recruiting for large companies, where employees
may never be vetted due to the bias in the AI systems used for screening ap-
plications (Abdollahi and Nasraoui, 2018). In some ways, the optimization
of the work that was performed by a human fails to meet assurance stan-
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dards, because the AI system simply becomes a faster stand-in for the same
flawed process it was designed to replace.

Chen et al. (2018) describe fairness as something which can be evaluated
in the context of protected groups. A marketing model that includes bias
and ends up targeting based on certain characteristics may be less harm-
ful than a model that is meant to save lives in the health field (Habli et al.,
2020) or provides decision-making assistance to lawmakers. Determining
what is fair is a philosophical problem, but some definition is important
to practically tackle this issue. There is also the greater issue of a trade-off
between fairness and accuracy, particularly in reinforcement learning, but
this trade-off can be reduced. There are simple but effective solutions for
doing this, which entail increasing the training set size, and measuring ad-
ditional variables that may result in less issues with bias (Chen et al., 2018).
Chen et al. (2018) also illustrate this with some examples on income pre-
diction, and mortality predictions from clinical notes, and find that bigger
training sets, and looking at other variables, help to greatly reduce the issue
with fairness, while still keeping accuracy.

Across the AI community, this is also a question that comes up as an on-
going balance and trade-off between exploration and experimentation of
machine learning models. Exploration is the process of training the model
with data (which generally contains bias) and experimentation, where
these models are then tested, usually with users participating in this pro-
cess by organically using tools, such as social media applications (Bird et
al., 2016). Bird et al. (2016) state that both of these methods present ethical
and social issues, including privacy concerns and how to navigate a field
and methodology that moves so quickly in innovation that it is difficult for
policies and laws to keep up. This is an ongoing issue for the population as
a whole, with different complexities that are difficult to capture and tackle
fully.

To further expand on a specific example we have mentioned, Choulde-
chova (2017) looks at recidivism prediction instruments (RPI’s), which pro-
vide decision-makers with an assessment of whether a criminal defendant
is more or less likely to commit a crime in the future. Chouldechova (2017)
illustrates that the issue with some of these instruments is that they make
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into a statistical problem, a problem that is essentially ethical. Choulde-
chova (2017) uses the example of Boward county data and a tool called
the correctional offender management profiling for alternative sanctions
(COMPAS) RPI, which relies on a psychometric test to look at two races,
Black and Caucasian, and predicts on a few attributes, such as previous
crimes and severity of crimes the “probability of recidivism.” The instru-
ment uses a classifier based on a threshold, as well as the recidivism preva-
lence between groups. The outcome of the RPI shows that recidivism of
Black defendants was 51 percent versus 39 percent for White defendants,
meaning that the tool determined, based on race alone and all other at-
tributes being equal, that 51 percent of people who had their race listed as
Black were more likely to commit crimes after being released. The results
for every range of prior offenses (regardless of whether there were 0 or more
than 10) show that Black defendants are categorized as being more likely to
commit future crimes based on the RPI. How is this possible?

One explanation is that the distribution used for the underlying RPI in-
struments, as well as the use of binary parameters, show that the output
is heavily biased towards White defendants being granted bail more often.
One of the reasons that White defendants are being granted bail more of-
ten is exactly because the data going into these decision-making tools is
biased towards sentences that grant bail more often to White defendants.
The research focused on race and crime show that there is great racial dis-
parity in the U.S. criminal justice system, especially when looking at the
percentages of a minority population in society compared to the percent-
ages of minority populations that are represented in the criminal justice
system (The Sentencing Project, 2018; Taxman and Byrne, 2005). These dis-
parities regarding race and ethnicity are present in the data, which leads to
systems and tools using the same biased “decision-making” that prove to
be just as biased and unreliable as human decision-makers.

Despite the possible unreliability of these tools, such as in the example
of the COMPAS RPI, these tools can still be more useful and error-free than
human judgment, particularly when implemented with an understanding
of assurance in mind. However, it is important to illustrate how a model can
be rendered unusable due to the self-enforcing loops of biased sentences.
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These sentences form the basis of the data that is meant to train the sys-
tem to determine whether defendants are more likely to commit crimes,
but due to being biased data, the AI system performs poorly in terms of
fairness and assurance. These models are meant to be set up to contain
the correct attributes, but how we interpret the results concerning the error
scores, confidence intervals, and the constraints on the false positive and
false negative rates depends on the user. However, if bias is present in the
data, the model works against the intended use, and the measures it pro-
vides could end up doing more harm than good (Dressel and Farid, 2018).

Malik (2020) provides another definition of limitations of machine learn-
ing by creating a hierarchy of limitations and focusing on four key aspects.
Beyond the general limitations of models, summarized by George E Box as
“all models are wrong, but some are useful” (Box, 1976), there are other lim-
itations beyond usefulness and the lack of complete representation that we
should address when modeling. The four key aspects are:

1. A reliance on using only quantitative analysis over qualitative analysis,
when a combination may be more thorough;

2. Using probabilistic modeling instead of mathematical models or simu-
lations;

3. Focusing on predictive modeling over exploratory modeling;
4. Reliance on cross-validation, in lieu of evaluating model performance.

These issues all contain limitations that leave us with the following prob-
lems: the first issue is leaving the qualitative parts of the problem space
aside to the detriment of our solution-space. By doing this, we are left with
a loss in significance, context, and meaning. This point asks us to focus on
the question at the very heart of modeling, which is what is being asked of
the model and our problem space. The measurements and responses are
context-dependent, so a qualitative explanation with descriptions of the
problem space needs to be included in both the formulation of the model
as well as the validation of the model (Malik, 2020; Brennen, 2020).

The next issue is probability; by using probability, we force outliers and
entities to fit a structure that produces a minimization in error. Many times
this minimization contributes to the bias and loss of fairness by forcing a
central tendency, where one may not naturally exist. A focus on predictive
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modeling takes correlations and attempts to make larger pronouncements
about them, which may result in many issues and misinformation. Alterna-
tively, by focusing on the exploratory analysis, we can understand some of
the causality, which can be more helpful, and “change things [for better] in
the world by looking at the data and results more holistically” (Malik, 2020).

The over-reliance on cross-validation, instead of using model perfor-
mance, tends to be more forgiving of models that over-fit. A model that is
based on performance may undergo more scrutiny and may take longer to
become validated. Malik (2020) uses the medical field as an example, where
a model is useful for how it does on actual tasks where accuracy is crucial.
This leads to the greater question of how we can validate these models to
represent the real world accurately and provide the least biased representa-
tion of what is being modeled.

Jacobs and Wallach (2019) show that the bias lies in the translation of
what goes into the first stage of model building, under “construct” that is
initially masked, and then is modified in various steps of the “operational-
ization” stage. Several steps along the way, at each stage of the modeling
process, there can be errors resulting from biases that were abstracted from
the initial biases that went into the model. The authors show some exam-
ples of this using the simple example of “height.” The construct of height
is seemingly simple and intuitive; however, when operationalized, several
questions come up, such as position, “slouching,” whether the person is in
a wheelchair and other instruments that aid in measuring height, which
may introduce a set of questions and issues that need to be looked at.

As with any representation, the authors emphasize that modeling these
terms presents sub-questions that need to be decoded. Another example
is socioeconomic status. “Income” can seem like the correct way to oper-
ationalization the construct of socioeconomic status, but it turns out that
it is more complicated and requires taking into account many other fac-
tors as attributes that may not initially seem intuitive, including geographic
area, the compared income of other people in that area, social standing,
and so on. Thinking about the problem-space and social constructs and
how we operationalize them becomes a key factor in ensuring that our AI is
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validated throughout each process to reduce and avoid the introduction of
bias.

We have previously discussed how validation methods are an important
part in ensuring that our systems and models function appropriately for
both the task they were built and outputting information that is both useful
and fair. Validation is tied with assurance, in the sense that both refer to the
output of the AI system and provide an answer to the question of whether
the system or model “is the right tool, doing the right job” (Balci, 1997).
Validation can be an extensive process, and there are several ways in which
it is accomplished, as we will see in the next section.

4.3 Validation methods
The resulting question from this is how then we can measure bias, given
that it presents in many different ways, and may not be something we may
thoroughly know to consider. What are some ways we can work to make
these models more “fair”? Bird et al. (2016), for example, present a solu-
tion by modifying a naïve Bayes classifier to be “discrimination-free.” Other
suggestions include modifying the probability distribution of the sensitive
attribute to artificially remove the positive values from one class by adding
more probability values to the discriminated sensitive values, which im-
proves the “discrimination” value, but leaves all other attributes untouched
(Romanov et al., 2019).

Another approach is to use the latent variable model, which forces the
model to focus on only the attribute deemed to be the cause of the dis-
crimination to optimize the parameters. These approaches presume prior
knowledge of the bias, which in the case of gender-pay inequality may be
simple (Calders and Verwer, 2010), but can be a problem with more at-
tributes and how they relate.

In their example of income by gender, Calders and Verwer (2010) ob-
tain a probability of male versus female earning more, and the results show
there is income disparity based on gender. However, though this may be
the result of their naive Bayes model based on gender, the authors bring up
a counterpoint of how do we know if this is discrimination by the model
or a reflection of the redlining effect, which is present in the world, where
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pay discrimination based on gender truly does exist. Though they state that
their approach does help solve the issue for models that are fairly simple
and look at one attribute, it can become more complicated with several in-
terrelated attributes and may result in other effects, which are unknown.

Measuring discrimination and fairness is challenging. Jacobs and Wal-
lach (2019), provide another approach that focuses on the validation of the
model throughout the modeling process. They propose using an array of
different types of validation techniques to test our models. The authors use
interdisciplinary methods of cross-validating a range of models to produce
a few different ways to approach the issue of validating models for bias.

Though the focus has been largely on validating models to decrease bias,
verification is also an important factor that allows for better decisions when
partitioning data for training and testing, as well as all the effort that goes
into the AI system before the user sees any results. We have mentioned
some verification efforts, particularly when looking at ways to reduce bias
in the input data. Verification is a crucial first step in reducing some of the
bias by ensuring that the system is functioning correctly, with the correct
inputs needed, and some new ways of automating some of the verifica-
tion processes can prove to help increase assurance. Automating some of
the verification and validation processes can help bolster efforts in AI as-
surance. However, regardless of the techniques used, the crucial part of AI
assurance is to examine and calibrate our AI tools to reduce constantly, and
if possible, eliminate bias (Balci, 1997; Wing, 2020; Lynch et al., 2020).

Optimizing the systems that do this demands time and effort and context
knowledge, which we understand as the role of understanding the nuances
of a problem that comes from understanding the context of the problem-
space. This term is related to domain expert or third-party stakeholder
(Srivastava and Rossi, 2019), which emphasizes that experience in under-
standing the problem area as a whole can allow for new insights, which may
not be as easily gleaned from our AI systems (Dobson, 2015).

In studies where stakeholders were asked about what AI assurance
meant to them, similar themes included a lack of transparency, primarily
when used to understand the black-box decisions of many of the AI sys-
tems (Brennen, 2020). Difficulties in identifying bias and in utilizing the
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decisions for analysis due to output that is not user-friendly. Working in
interdisciplinary teams to create checklists and standards for ensuring a
common understanding can result in a reduction in bias throughout the
process (Madaio et al., 2020). Third-party validation of decisions and bias
recognition, particularly in languages and language translation software
(Srivastava and Rossi, 2019), can also support AI assurance and increase
accountability.

Accountability and transparency come from reducing the opacity of AI
systems (de Laat, 2018). Transparency could increase with a push for pre-
senting AI decisions and outputs as ranked based on performance, as well
as including a way to compare different models and output. Along with
transparency comes the need to protect individual privacy. It is a difficult
balance; however, starting with multi-model systems and comparing pre-
dictions, privacy can be maintained while still being judicious about using
AI for decision-making.

Additionally, the high test accuracy can be seen as a favorable classifier
outcome, but it can allow for hidden bias. With the introduction of new data
and more scrutiny for how the high accuracy is achieved, and a better un-
derstanding of how to interpret and deal with noisy data, more trustworthy
AI can be developed (Zhang et al., 2018; Fogliato et al., 2020; Go and Lee,
2018). An expanded version of utilizing data to bolster the AI system is to
“harness adversarial examples” instead of consistently using and relying on
representative data. Another approach relies on using “corrupted or incon-
sistent training data” to build a more robust sample and help make models
less biased (Goodfellow et al., 2015; Kaul, 2018; Kulkarni et al., 2020).

Automated ways of validating AI systems and models can also help with
speed while maintaining accuracy. Due to the extensive efforts required to
validate AI systems, some authors propose automated methods that bol-
ster validation by constructing accurate and effective unit tests that allow
the system to be tested and improved in each step of the process (Breck et
al., 2019). These proposed techniques are generally accompanied by deci-
sion output that is user-readable and explainable. This process allows for
automation by creating better tests and allowing the user to have input on
the decisions. Some examples proposed by automating the explainability
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of predictions include using restricted Boltzmann machines (RBM), with
a restriction that includes the formation of paired nodes from each group
so that nodes become “visible” as they connect to another single-node,
instead of falling within the “hidden” group, where some of the learning
becomes obfuscated to the user, which has been the case with many neural
networks (Abdollahi and Nasraoui, 2018).

Similarly, individual discrimination can be reduced by combining sym-
bolic execution and local expandability and interpretability so that effective
tests are generated, with the predictions as user-friendly output, such as de-
cision trees or linear models. Other examples utilize a process for reducing
data errors that “adversely affect the quality of the generated model,” but
provide a more nuanced solution space. This is accomplished by including
a data analyzer, a data validator, and a model unit tester to perform checks
along the way (Breck et al., 2019).

4.4 Synthesis of the literature
Many of the approaches are best used in conjunction with others, and the
more thoroughly validated each step in the AI system is, the greater the
chances of the final system providing reliable and fair outcomes (Yang and
Stoyanovich, 2017). Jacobs and Wallach (2019) provide a breadth of defini-
tions and examples of how to validate AI along each part of the process of
utilizing AI. Due to the thoroughness of their work, we have combined their
validation methods along with some of the other proposed bias-reducing
methods into the following categories. Table 4.1 is a compiled list of the
different types of validation methods, and additional examples we have
summarized from different ways of reducing bias in AI and increasing as-
surance. The table provides validation techniques and ways to frame the
problem space with an eye for bias. We provide a comprehensive list that
seeks to capture ways we can implement these techniques in our current AI
systems, particularly within the greater framework of verifying and validat-
ing the models we use.

Validation: Validation is an important step in bias-reduction. Jacobs and
Wallach (2019) provide several categories and descriptions of how this can
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be accomplished. Construct validity, which interrogates the quality of the
measurement used; face validity, which asks if measurements produced
look correct; content validity, which checks to see if the model captures ev-
erything it needs to; convergent and discriminant validity, which checks for
models aligning with other models; predictive validity and hypothesis va-
lidity, which relates to the correct properties and theoretical constructs of
the model; and consequential validity, which relates to the consequences of
the outcomes. Each sub-category listed is meant to interrogate our tools to
ensure a minimization of bias (De-Arteaga et al., 2020; Jacobs and Wallach,
2019; Mehrabi et al., 2019).

Data integrity: This category covers better partitioning of data for training
and testing, as well as checking, quantitatively and qualitatively, that our
system has the correct inputs. Data integrity also refers to the quality of
the chosen measurements, as well as reducing data errors that “adversely
effect the quality of the generated model.” Some innovative ways of doing
this with data include “harness[ing] adversarial examples” in our data, in-
stead of consistently using and relying on representative data. This step also
encourages questioning high test accuracy to ensure thoroughness of data
being used (Jacobs and Wallach, 2019; Goodfellow et al., 2015; Balci, 1997;
Ören, 1987).

Explainability: This category relates to the clarity of the model and out-
puts, as well as how the tool can be explained. Consulting with domain
experts and third-party stakeholders can help us check if the model is us-
able and if anything is operating with assumptions that may be incorrect.
Using multi-model systems instead of one system helps, as it offers the op-
portunity for several systems to produce results that can be compared to
each other. Similarly, predictions from these tools can be ranked and ex-
plained for a more thorough understanding of the tool (De-Arteaga et al.,
2020; Jacobs and Wallach, 2019).

Interpretability: A similar concept to explainability, but it differs in who the
audience is. Interpretability has to do with the “black box” operations that
occur, as well as the mechanics of the systems. Explaining the outputs and
predictions is less important for this step than interpreting what is occur-
ring with our AI tools and reducing the opacity of our AI systems. This step
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helps reveal any assumptions that may be embedded and helps bring the
inner workings of our tools to light (Jacobs and Wallach, 2019; Dwork and
Ilvento, 2018).

Accountability and transparency: Accountability and transparency is a
critical step in bias reduction. It provides the basis for questioning assump-
tions, as well as making the AI tools more usable and accessible to a wider
public. This helps reduce “black box” decisions, but also forces account-
ability for the outcomes and predictions of the systems. It allows for users
to question the system openly, as well as the ability to replicate the systems
to test for biases (Batarseh et al., 2021; Jacobs and Wallach, 2019; Abdollahi
and Nasraoui, 2018).

Third-party validation: Optimizing the systems with guidance from do-
main experts or third-party stakeholders who can provide more informed
feedback. Reliability of using these tools in the real world with both users
and testers, as well as subject-matter experts, policymakers, academics,
and others who can agree on the systems and the implementation of the
tools (Jacobs and Wallach, 2019; Srivastava and Rossi, 2019; Batarseh and
Gonzalez, 2018; Chouldechova and Roth, 2018).

Interdisciplinarity: This encourages a wide range of fields to converge and
allows for different fields to contribute to different parts of the system. This
allows for a holistic and thorough approach in exploring a complete version
of the system being created. AI tools are built on assumptions and ideas
about how they should operate and their possible uses. By engaging experts
from various domains, the tools can be more thoroughly, completely, and
thoughtfully built (Madaio et al., 2020; Jacobs and Wallach, 2019; Batarseh
and Gonzalez, 2018; Chouldechova and Roth, 2018).

Automating validation: There is consensus that validation is challenging
work, and ensuring constant validation, verification, and calibration of our
AI tools is difficult. Providing innovative and reliable ways of automating
some of these steps ensures that validation is a priority during the entire
process (Jacobs and Wallach, 2019; Breck et al., 2019; Abdollahi and Nas-
raoui, 2018; de Laat, 2018).
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Combining methods: This category contains all the other categories and
their processes. It is a thorough way of checking to make sure that more
than one method of validation is included in our AI assurance process. It
also encourages interrogating “corrupted or inconsistent training data” to
build a more robust sample, instead of removing any noisy data points.
Combining methods indicate that bias-reduction techniques are best used
in conjunction with one another (Kulkarni et al., 2020; Breck et al., 2019;
Goodfellow et al., 2015; Kaul, 2018).

Evaluation: Consistently testing and checking our systems for bias and be-
ing thoughtful about the effects of our tools. This relies on constructing
accurate and effective unit tests that allow the system to be tested and im-
proved in each step of the process. The evaluation of our tools allows users
to have input on the decisions, as well as provide feedback to the tools
through reinforcement learning. This step allows for users to actively en-
gage with and interrogate the biases of the tools being used (Brennen, 2020;
Jacobs and Wallach, 2019; Zhang et al., 2018; Agarwal et al., 2018; Messick,
1998).

We have also provided some suggested approaches, questions, and ex-
amples that we hope capture these different methods of reducing bias in AI.
Table 4.1 is a compilation of the categories and is meant as a starting point
for the expansion of additional methods of bias reduction. In this section,
we would like to highlight that there is not a “one-size-fits-all” method for
bias reduction. The methods used will depend highly on context and the
problem space, but we would like to suggest that a thorough approach may
be one where there is a combination of the different methods we explore.

4.5 Conclusion
In this chapter, we have provided a general introduction and overview of AI
assurance. We have also explored some definitions of AI fairness, bias, and
assurance, with some examples of how this occurs in different fields. We
have also shared how AI assurance is currently being tackled in different
domains and show some concrete ways of implementing different types of
validation methods that lead to AI assurance.
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Table 4.1 Approaches for bias reduction in AI.
Categories of
bias reduction

Questions to ask and examples Key references

Validation - Have we interrogated our process throughout each step?
- Do the measurements capture relevant facets?
- Are the measurements valid at a glance?

Blodgett et al. (2020)
De-Arteaga et al. (2020)
Jacobs and Wallach (2019)
Mehrabi et al. (2019)

Data integrity - Do our measurements match other accepted
measurements of this problem space?
- Performing through cross-validation and other validation
techniques.

Balci (1997)
Jacobs and Wallach (2019)
Ören (1987)

Explainability - Is our AI explainable?
- Do stakeholders and users have the ability to use the
outputs for real-world problems?
- Are we increasing accessibility and clarifying “black box”
processes?

De-Arteaga et al. (2020)
Jacobs and Wallach (2019)

Interpretability - “When a measure becomes a target, it ceases to be a
good measure.” Goodhart’s Law. Is this happening?
- Are we using the data to gain insight or reaffirm biases?
- Are we relying on the tool for answers, or is the AI a
support to decision-making?

Dwork and Ilvento (2018)
Jacobs and Wallach (2019)
Strathern (1997)

Accountability
and transparency

- What are the societal impacts of the AI tool?
- What are some possible outcomes of relying on the
outputs of our AI?
- Are we able to explain the outcomes and interrogate
possible biases?

Abdollahi and Nasraoui
(2018)
Batarseh et al. (2021)
Jacobs and Wallach (2019)

Third-party
validation

- Do we have a good theoretical understanding of the
problem space?
- Are we relying on users and subject-matter experts for
thoroughness?
- Ex: Using language experts for natural language
processing and translation software

Batarseh et al. (2021)
Chouldechova (2017)
Jacobs and Wallach (2019)
Srivastava and Rossi
(2019)

Interdisciplinarity - Are concepts represented accurately by all or many of
their components?
- Ex: Using language experts for natural language
processing and translation software

Batarseh et al. (2021)
Chouldechova (2017)
Jacobs and Wallach (2019)
Madaio et al. (2020)

Automating
validation

- Is our AI producing reliable results consistently?
- Does automatically updating the AI with new datasets
produce reliable results?
- Ex: Restricted Boltzmann machines (RBM) making each
step visible

Abdollahi and Nasraoui
(2018)
Breck et al. (2019)
de Laat (2018)
Jacobs and Wallach (2019)

continued on next page
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Table 4.1 (continued)
Categories of
bias reduction

Questions to ask and examples Key references

Combining
methods

- Can we use all the data for a more through picture?
- Can we rely on “noise” and “adversarial examples” to
supply more nuance to our AI?

Breck et al. (2019)
Goodfellow et al. (2015)
Kaul (2018)
Kulkarni et al. (2020)

Evaluation - Evaluation as part of the AI process
- Avoiding a built and done process
- Creating an evaluation process for shared use
- Incorporating AI assessment into both the construction
and output process

Agarwal et al. (2018)
Brennen (2020)
Jacobs and Wallach (2019)
Messick (1998)
Zhang et al. (2018)

Technology moves fast, and with different advances come new chal-
lenges and the need for new ways to tackle assurance in AI. Though there
are philosophical ramifications to tackling a topic like AI assurance, and
though it is still challenging to come to a complete definition of “fairness,”
the suggestions in this chapter can help provide some initial steps for how
validation can make a difference in how we tackle the problem of bias in
AI. As a society, we have expectations of what is fair, even if we have a more
difficult time agreeing on a definition. Due to the difficulty in describing
fairness, it becomes harder to detect our biases in our day-to-day lives.

In many cases, the biases we hold, which we may not be able to quickly
or easily identify, provide the opportunity for us to encode these biases
into our algorithms unintentionally. There is also the more significant is-
sue of assuming that our data, due to the availability and accessibility of
large sample sizes, are accurate or free of bias. Additionally, we need to con-
sider our use of training data and whether or not the sample we are using
is representative, especially due to data integrity issues and biases in data
collection (Mehrabi et al., 2019). This also applies to cases where data may
not be available or accessible. We hope that despite these limitations, we
have shown that there are ways of verifying and validating our algorithms,
and even calibrating our models to ensure better, bias-free practices (Bird
et al., 2016).

The validation methods explored in this chapter range from computa-
tionally simple to more complicated automated methods of reducing bias.
The methods provided can also have reliable results across different model-
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ing communities. It is important that data scientists and AI specialists focus
on being transparent in reporting findings, having results that are validated
across a wide range of thresholds (Malik, 2020), as well as allowing for in-
formation to be accessible in a simple way so that people can understand
the “what” and “how” of the tools being used.

When we manage these tools wisely, we can gain new insights we
might not have gained, thereby providing new knowledge about the con-
sequences of our tests. “Thus, evidence of construct meaning is not only
essential for evaluating the import of testing consequences, it also helps
determine where to look for testing consequences” (Messick, 1998). AI as-
surance and the many components that makeup assurance are here to stay
as our technologies and societal needs advance. The importance of under-
standing that our tools are not consequence-free is an essential first step in
addressing bias in AI (Batarseh et al., 2021). The greatest challenge is for us
to advance while also improving upon our systems to ensure that fairness
and accuracy go hand in hand.

Our goal with this chapter is to provide a synthesis of some of the efforts
made in AI assurance and to provide AI researchers, data scientists, poli-
cymakers, and practitioners with a greater understanding of the problem
space. With that understanding, our hope is that transparency, dialogue,
and providing both useful and fair solutions can be the way forward to a
more bias-free world.
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Abstract

As much as Artificial Intelligence is estimated to transform humanity, ethics
of these systems are questioned, and strict regulations are univocally called
upon.This chapter aims to analyze the ethical frameworks adopted by countries
across the world and quantify using a CGE model, the benefits from full adop-
tion of AI across the world, the gains that each country could make from erecting
regulatory frameworks that govern ethical usage of AI, and the losses from impo-
sition of such strict liabilities. Results reveal that there would be enormous gains
from complete adoption of AI across the world. Australia, China, and USA would
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gain the most. Countries that experience data theft and cybersecurity crimes,
for example, Argentina, Brazil, USA, and Germany, experience higher losses. As
against the conventional argument that automation could lower employment
rates, the model estimates a rise in employment of skilled labor.

Keywords

Ethical AI, AI economics, policy shocks, liability

Highlights

• Under complete adoption of Artificial Intelligence, the Australia, China and USA

would gain the highest and their GDP is estimated to increase by about 6.77

• Where cybercrime and data theft is a problem, to benefit and leverage the fullest

potential of AI, countries require legal frameworks to govern the development and

usage of AI systems.

• Argentina, France, Australia, Turkey, and South Africa experience higher losses due

to imposition of strict liabilities, as it slows down adoption of the technology and

further innovation. In certain countries, such as Australia, Japan, Korea, India,

Canada, Mexico, France, Russia, Turkey, and South Africa, losses from strict liabilities

outweigh the benefits, and so it becomes essential for regulatory institutions to

erect a harmonized legal framework and ensure that such frameworks do not end

up being adoption barriers.

5.1 Introduction
Artificial Intelligence is broadly perceived as computational systems that
display higher levels of intelligence, including “narrow AI,” which demon-
strates and excels at the automation of certain specified tasks, and “general
AI,” which produces an intelligent agent with higher ability to learn and
reason (Davidson, 2019).

AI is gaining momentum with widespread adoption across the globe and
is anticipated to revolutionize and transform the way we live and work in
unprecedented ways. More evident than ever before, the greater prolifera-
tion of AI to virtually disrupt mainstream business processes have made it
a mandate for organizations to fully harness the potential of AI and other
disruptive technologies to stand apart in an extremely competitive world.
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The public budgetary allocation varies across different countries, from $500
million in countries such as Japan, Korea, and the UK to around USD 1 mil-
lion in countries such as Australia, Estonia, Lithuania, Portugal, and Greece
(OECD, 2021).

The rapid technological advancements and scientific breakthroughs in
decision-making capabilities have brought AI to the forefront of digitization
and the fourth industrial revolution. It’s scope in transforming the business
activities and industrial operations to greater heights, and in gravitating the
future to enormously higher degrees of automation are paramount. From
increasing the efficiency of farming through crop and soil monitoring, de-
coding crimes through predictive analytics, to diagnosing diseases and sup-
porting minimally invasive surgeries, AI-powered tools and solutions are
finding adoption in improving our lives in myriad ways by performing op-
erations that were once considered impossible.

PWC (2018) predicts that adoption and application of AI would bring
about an increase in the global GDP by 14% by 2030, adding $15.7 tril-
lion to the economy. Bughin et al. (2018) has estimated an increase in the
global economic output of $13 trillion, and 1.2% increase in global GDP ev-
ery year. It has predicted that the adoption may follow a S-curve, meaning
that though the initial investments may be slow, its adoption will increase
with an accelerated investment at later stages in the attempt to bag compet-
itive advantages. It also advocates that those early adopters and frontrun-
ners would make disproportionate gains and additional economic benefits
between 20–25% compared to the rest. Several studies have predicted the
enormous scope and scale of the impact of AI on businesses, economy,
and society and have advocated their concerns that ex-ante regulations
may hinder the broad-scale adoption of AI. Countries across the globe have
channelized their efforts and resources in harnessing the fullest potential
of AI to gain technological leadership on one hand and on the other, are
strategizing action plans, innovative policies, and regulatory measures to
mitigate the risks concerning irresponsible use of AI in certain crucial op-
erations.

Though AI has the power to promote inclusive growth, it presents new
challenges to formal governance procedures and incumbent legislative
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frameworks particularly in terms of ensuring transparency, privacy, and
security to everybody involved. The increasing adoption in performing cru-
cial operations in healthcare, national security, etc., pose potential risks,
and countries are in the process of putting forth regulatory measures to
confront such risks and ensure a safe democratization of AI. The intrusion
of such technologies into the privacy of our lives, and the higher chances of
it being mishandled by criminals to execute illegitimate activities have also
raised concerns.

Methods to build trust and understanding become even more significant
as these technologies are increasingly used to design mainstream solutions
that demand automated decision-making and problem solving, rather than
merely being perceived as supportive tools and solutions. In light of the
changing economic and social landscape, there is a significant need to draw
meaningful policy suggestions from research in this domain and propose
policies that shall go hand-in-hand with the existing ones spearheaded to-
wards achieving an accelerated penetration of such technologies.

The implementation of any new path-breaking technology requires de-
velopment of well-functioning policies, legal frameworks, and sound gov-
ernance to ascertain that the development, deployment, and diffusion of
such technologies has a positive impact on people and countries all around
the world.

This study aims to understand the best practices and ethical frameworks
adopted by countries across the world to streamline AI adoption and to
leverage the benefits such technologies are capable of offering, to the fullest
possible extent. We use a computable general equilibrium (CGE) model, the
Global trade analysis project (GTAP), to estimate the possible gains from
full adoption of AI technology across each country/region in the world. Be-
cause the model is capable of capturing the inter-sectoral linkages between
different regions, it becomes possible to carry out analysis at a granular
level.

The model has 141 regions/countries and 65 sectors referenced to the
year 2014. We aggregated the GTAP database to finally cover 26 regions and
24 regions, with a focus on G-20 countries. The impact of AI across the re-
gions at the sector-level are analyzed in three scenarios: (1) first considers
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complete adoption of AI across all the countries to quantify the economic
benefits of AI athwart all industry sectors and its positive impact on vari-
ables such as output (GDP), productivity, trade, investments, innovation,
consumer welfare, and increase in worker wages; (2) second considers the
gains that each country can make from adopting ethical frameworks and
standards to curb illegitimate usage of such technologies and to regulate
their adoption; and (3) third scenario estimates the losses that each coun-
try/region would endure due to the imposition of strict liabilities and re-
strictive legal norms, which in turn could curb countries from leveraging
the true potential of AI.

Results of the study reveal that there will be a gain in GDP of all the re-
gions when full adoption is assumed in scenario 1. Australia, China, and
USA would gain the most to about 6.77%, 6.38%, and 6.1% of GDP, respec-
tively. In scenario 2, the study estimates a loss in GDP to all countries when
cybercrimes and data thefts are left unprotected. Argentina, Brazil, USA,
and Germany experience higher losses as cybercrime rates as a percentage
of their GDP is higher in these countries. Such losses could be mitigated by
imposing and strategizing legal frameworks to govern the development and
usage of AI systems. In scenario 3, when the model is shocked to estimate
the losses due to imposition of strict liabilities and ex-ante regulations,
Argentina, France, Australia, Turkey, and South Africa experience higher
losses. In some countries, the loss in GDP in scenario 3 is higher than in
scenario 2, meaning the losses that incur from restrictive legal practices is
higher than the losses from cybercrime attacks. The rate of employment in-
creases in scenario 1 against the typical argument and concern raised by
most experts stating that automation could lower employment rates. The
rise in employment in the model is due to the employment of more skilled
labor.

The rest of the chapter is organized as follows: Section 5.2 covers the liter-
ature review and details the best practices adopted by each country to reg-
ulate and monitor AI related applications. Section 5.3 covers the methodol-
ogy and details the intricate details of the GTAP model, scenarios, and as-
sumptions we have made to take forward the analysis. Section 5.4 presents
the results of three different scenarios and estimates of the change in GDP,
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exports, imports, employment and sectoral output for each country due
to the adoption of AI as well as due to ethical frameworks, and regulatory
norms, whereas Section 5.5 concludes and presents final remarks.

5.2 Literature review
This chapter leverages descriptive and qualitative analysis to understand
the ethical impacts of AI, and to propose a strategic and policy framework
to deploy AI. The following provides an outline of the legislative norms and
relevant ethical principles that are adopted by countries or regional institu-
tions to regulate the development and usage of AI.

The European Commission in April 2021 published its first legal frame-
work, following the white paper that was released in February 2020 to regu-
late and put forth a comprehensive package to ensure trustworthy AI. They
follow a risk-based approach by classifying the applications under unac-
ceptable, high-risk, limited risk, and minimal risk. Those applications that
include systems that are a clear threat to safety and to the rights of the
citizens would be brought under unacceptable risk: AI systems, including
critical infrastructure, educational training, safety components of products,
employment, workers management, and access to self-employment, essen-
tial private and public services, migration, asylum and border control man-
agement. Those with specific transparency commitment, such as chatbots
are brought under limited risk and those that allow free usage of applica-
tions, such as video games, etc. are categorized under no risk or minimal
risk category. By doing so, the commission intends to address risks with a
flexible set of rules based on specific applications or usage of AI (European
Commission, 2020).

USA has the highest number of AI policy institutions and initiatives, fol-
lowed by Austria and the United Kingdom. The policy landscape is rather
decentralized, and the country’s policy emphasizes collaboration between
federal agencies, academia, the private sector, and non-profit organizations
to bolster an innovation ecosystem (OECD, 2021). The Department of De-
fence (DoD), USA, adopted 5 principles of AI based on recommendation of
Defence Innovation Board (DIB): responsible, equitable, traceable, reliable,
and governable (U.S. Department of Defense, 2020).
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Indonesia’s economy is expected to shift into a higher gear with AI, with
an expected US$366 billion added to the country’s gross home product by
2030 (Hunt, 2020). Though AI adoption is still in its infancy in Southeast
Asia, more than 70% of AI users, suppliers, and investors regard it as critical
to the region’s future. Recently, the Indonesian government introduced a
national strategy that will guide the country in developing AI between 2020
and 2045, focusing on education and research, health services, food secu-
rity, mobility, smart cities, and public sector reform. In terms of progress
in AI, a 2018 International Data Corporation survey found that Indone-
sian companies had the highest rates of AI adoption in Southeast Asia, with
24.6% of organizations integrating the technology into their operations. In-
donesia has joined the ranks of countries such as Singapore, South Korea,
and Canada in developing national AI plans. While many governments’ AI
policies focus on economic development, Indonesia’s strategy stands out
for its focus on using AI to solve specific problems. For example, it wants to
employ AI to assist solve its problems with child malnutrition and to digitize
government services.

The United Kingdom has played an essential part in the history and de-
velopment of AI. In addition to the UK having been extensively involved
in AI development from the beginning, it also contributed to the industry’s
first AI Winter (gov. uk). AI’s promises resulted in a significant reduction in
government, research, and university funding. The study had a gloomy ap-
proach to AI and was harshly critical of several key elements of research in
the field. With the return of interest and investment in AI, the UK has re-
sponded by making significant investments in the area, demonstrating its
strength in the sector. According to a McKinsey Global Institute study, the
United Kingdom has one of the best AI strategies in the world, with signifi-
cant government support for AI, research activity in the area, VC financing
for AI companies, and business AI activity and adoption (McKinsey Global
Institute, 2019). The UK formed an All-Party Parliamentary Group on AI in
2017 to discuss ethical problems, industry standards, regulatory alterna-
tives, and societal effect of AI in Parliament (Cain et al., 2020).

The Chinese State Council in 2017 proposed the New generation AI de-
velopment plan (NGADP), for adopting AI (AI) ethics principles. The “Bei-
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jing AI Principles” given by the Beijing Academy of AI (BAAI), which is sup-
ported by the Chinese Ministry of Science and Technology and the Beijing
municipal government states the guidelines for research and development
in AI, including major rights to be respected on human privacy, dignity,
freedom, autonomy, etc. (Arcesati, 2021).

In 2018 AI standardization white paper issued by the Chinese Electronics
Standards Institute (CESI) recommended three significant ethical consid-
erations for AI: “human interest,” “liability,” and “consistency of rights and
responsibilities,” which extensively discusses the safety measures, ethical,
and privacy issues and highlights the government’s wish to use technical
standardization as a tool in domestic and global AI governance (Gal, 2020).

The Japanese Society for AI (JSAI) has formalized the ethical guidelines
for its members, which serves as a moral foundation for JSAI members to
use AI effectively, while understanding the social and ethical responsibili-
ties (ELSI, 2021). These include points such as i) contribution to humanity
(human rights), ii) abidance of laws and regulations (IPR and R&D), iii)
equality, and iv) security. Japan also follows the OECD AI principles and
aims at establishing an AI economic society, where all use AI and data users
actively participate in social and economic activities.

Russian President Vladimir Putin called on the international commu-
nities to help foster AI and restrict its use for the benefit of humanity; he
also asked UN members to seek AI regulations, which support military and
technological security, law, and morality (Bendett, 2020). In October 2019,
Russian Government released a national AI strategy on the development of
AI in the Russian Federation, which focuses on the future goals of develop-
ing AI and forming a regulatory system that guarantees public safety and
also helps in stimulating the development of AI (Bendett, 2020).

The Canadian government in 2018 started an ethical analysis in AI, by ex-
amining the data storage at the Department of National Defence. In January
2020, the Office of the Privacy Commissioner (OPC) launched a consulta-
tion on the regulation of AI and enhanced some policy measures, such as
human rights of privacy, transparency, and other social beneficiary topics,
which were earlier looked after by the Personal information protection and
electronic data act (PIPEDA) that governs the data privacy in Canada.
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In January 2019, Singapore with the help of the Personal Data Protection
Commission (PDPC) released the Model AI governance framework, which
focuses primarily on four broader areas: internal governance, decision-
making models, operations management, and customer relationship man-
agement (PDPC, 2019). The Cybersecurity strategy of Singapore along with
digital security infrastructure helps in maintaining the Cyber Watch Cen-
tre’s operational excellence and also helps in timely detection of and re-
sponse to a cyber incident.1

AI has the potential to add $957 billion, which is 15% of India’s GDP
in 2035. In 2018–19, the finance ministry of India proposed a spending of
|7000 crore ($1 billion) for the next five years, which is very low when com-
pared to the investment made by other developing countries, including
China and USA (Menon and Roy, 2021). If India is to catch up with China
and other nations in the growing area of AI, it will need to invest heavily
in creating all the essential enabling technologies and eco-systems, as well
as a framework for AI ethics and standards. AI has recently been used on a
modest but successful scale in a variety of industries, ranging from robotic
concierges in hotels to automated entertainment or cell phones. AI has re-
shaped a variety of sectors (Global Legal Insights, 2021). The NITI Aayog
has suggested establishing an oversight organization to establish standards,
rules, and benchmarks for the usage of AI across industries, which will be
required for government procurement. Field experts from computer sci-
ence, AI, legal experts, sector specialists, and representatives from civil so-
ciety, humanities, and social science are likely to make up the body. The
oversight group, according to the proposed paper, must serve an enabling
role in the broad fields of AI research, technical, legal, policy, and soci-
etal concerns. Additionally, it should clarify responsible behavior through
design structures, standards, and guidelines, as well as give access to re-
sponsible AI tools and approaches (Mondaq, 2020).

Hwang and Park (2019) examined various AI charter of ethics (AICE) in
the Republic of Korea in suggesting response to threats from AI. AI threats
are classified into three categories: Firstly, AI’s value judgment, malicious

1
https://indiaai.gov.in/country/singapore?standard=interoperability.

https://indiaai.gov.in/country/singapore?standard=interoperability
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use of AI, and human alienation. Secondly, Korea’s seven AICEs with the ob-
jective to create, develop, and utilize AI in a manner ensuring human safety
and improves well-being by accurately identifying the positive and nega-
tive impacts that may arise from AI, and Korea has got seven documents
classified as AICEs.

Seven Al charters of ethics in South Korea:

1. Draft of the robot ethics charter (DREC) (Ministry of Commerce Indus-
try and Energy, 2007 March) identifies human-centered ethical codes for
existence of humans and robots.

2. Kalao algorithm ethics charter (KAEC) applies social ethics to all efforts
related to algorithms to benefit and bring happiness for humankind.

3. Ethical guidelines - for intelligence information society (EGIIS) aims to
realize the value of sustainable symbiosis to move towards safe and reli-
able intelligent information.

4. Intelligent government ethics guidelines: for utilizing AI (IGEG) aims to
respond to problems that are caused by AI, using government services
according to the basic plans of intelligent government announced in
March 2007.

5. Charter of AI ethics (CAIE) aims to find adverse effects of AI and find
ways to respond to them.

6. Principles for user oriented intelligence society (PUOES) suggest public
rules for a safe intelligent information society protected from the risks
that are caused by adoption of new technology.

7. Ethical guidelines for self-driving cars aims to improve human safety and
welfare, to ensure safe and convenient freedom on right of mobility, to
consider human life first before animals lives or property damage, and
to minimize personal and social loss from accidents.

AI in Africa’s health care can improve various aspects of health care. It
can reduce annual expenditure, allow early detection of disease, provide
around-the-clock monitoring of chronic disorders and help limit the ex-
posure of healthcare professionals in a contagious environment. In Africa,
the main focus of AI is in healthcare industry to eliminate inefficiencies
in misdiagnosis, shortage of healthcare workers, and wait for the recovery
time. However, it is important to safeguard against issues such as privacy
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breaches, lack of personalized care, and accessibility and this study is to
suggest policy makers to strike a balance between allowing innovation and
protecting data (Observation Research Foundation, 2019).

The main objective of the Australia’s AI ethics framework is to perceive
key governance canons and measures that can be used to accomplish
the best conceivable results from AI, while keeping the well-being of Aus-
tralians as the top precedence and designing safer and reliable outcomes.
These principles mainly focus on human, societal, and environmental well-
being, privacy protection and security, reliability and safety, transparency,
and explain ability and contestability and accountability. It further ensures
that AI systems should respect and uphold privacy rights and data protec-
tion and safeguard the security of data. Adequate access to information on
the AI algorithm and inferences drawn is mandatory to ensure contestabil-
ity and design an effective system of oversight so as to make appropriate use
of human judgment. Responsibility and accountability for AI systems and
their outcomes both before and after design, development, and operation
is mandated (Commonwealth Scientific and Industrial Research Organisa-
tion, 2019).

5.3 Methodology & modeling
In this study, we have used a multi-sector, multi-regional computable gen-
eral equilibrium (CGE) model to analyze and estimate the gains to each
country/region and the losses that incur from strict liability imposed by
legal regulatory norms to govern the usage and adoption of AI. We used
an extension of the standard GTAP framework designed and developed
by the Center for Global Trade Analysis to be used by researchers and
economists to study the impact of trade policies and frameworks. The fact
that the model is so widely used by international organizations, such as the
United Nations Conference on Trade and Development (UNCTAD), World
Bank, World Trade Organization (WTO), and Organization for Economic
Co-operation and Development (OECD) speaks volumes about its reliabil-
ity and effectiveness.

The widely used GTAP modeling approach was designed and developed
by Professor Hertel, head of the Global trade analysis project from Pur-
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due University. The model generates impact results for national account
aggregates, industry output and prices, factor inputs and prices, and trade
flows. For a technical description of the GTAP model, see Hertel (1997); for
a discussion of the degree of confidence in CGE estimates, see Hertel et al.
(2004).

The GTAP model designed by Hertel is executed and implemented in
real-time using GEMPACK (general equilibrium modeling package), a pack-
age that has a suite of economic modeling programs and software designed,
developed, and provided by Centre of Policy Studies (CoPS), Victoria Uni-
versity. The standard case in a static CGEs is that savings determine the
investment demand, but that the capital stock is fixed, and thus not linked
to changes in investment.

The GTAP model is characterized by perfect competition, constant re-
turns to scale and Armington elasticities. Such a multiregional, multisec-
tor, computable general equilibrium (CGE) model can capture the macro-
economic aspects, the supply-chain effects, factor-use effects of various
commodities, economy-wide equilibrium constraints, apart from the com-
plete linkages between different sectors and countries. The model assumes
inter-sectoral substitution and so is also able to capture the potential sub-
stitution of one sector by another, which is a significant aspect.

We use the latest and publicly available data from the GTAP 10 database
(Aguiar et al., 2019), which contains global trade data for the years 2004,
2007, 2011, and 2014, with input-output tables and data on the current ap-
plied levels of trade protection.

The GTAP 10 database covers 141 regions/countries, and 65 sectors. For
the convenience of analysis, the 141 regions are aggregated into 26 coun-
tries/regions as follows: Australia, China, Japan, Korea, Indonesia, India,
Canada, USA, Mexico, Argentina, Brazil, France, Germany, Italy, the UK,
Russia, Saudi Arabia, Turkey, South Africa, Rest of EU, Rest of Oceania, Rest
of Asia, Rest of America, Rest of World, Middle East and North Africa, and
Sub-Saharan Africa.

The 65 sectors are aggregated into 24 sectors as below: Agriculture, Ex-
traction, Consumer Packaged Goods, Light Manufacturing, Other Manu-
facturing, Chemicals, Pharmaceutical and Medical Products, Basic Metals,
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Automobiles, Computer Manufacturing, Electrical Equipment, Machinery,
Services, Trade, Travel, Transport & Logistics, Tele-Communication, Bank-
ing, Insurance, Business Services, Media & Entertainment, Public and So-
cial Services, Education, Health and Social services.

The 2014 data that is available in the GTAP 10.0 database is scaled to
2017 with data provided from World Bank and International Monetary Fund
(IMF). The GTAP model effectively captures the direct linkages and indi-
rect interactions in the economy. The model is widely preferred for policy
analysis owing to its unique capability to effectively model supply-chain
effects, macro-economic aspects, economy-wide equilibrium constraints,
linkages between different sectors and countries, and the factor-use ef-
fects of various commodities to predict economic variables, such as GDP,
trade balances, investments, innovation, consumer welfare, productivity,
employment, and wages.

GTAP’s ability to capture both sectoral and regional linkages help under-
stand the impact of AI adoption of each country, not just pertaining to their
individual socioeconomic realities, but also considering the socioeconomic
linkages across other regions.

5.3.1 Scenario 1: full adoption of AI across all regions

Chui et al. (2018) has estimated that AI has the potential to create between
USD 3.5 trillion and USD 5.8 trillion across nineteen industries. The study
predicts that AI could add about $13 trillion to the global output by 2030.
The paper analyzes more than 400 use cases across 19 industries and nine
business functions. In the study, a “use case” is referred to as a targeted
application of digital technologies to a specific business challenge, with a
measurable outcome. Based on this definition, each use case was further
bucketed on what analytical techniques could be used, traditional versus
deeper machine learning forms. The use of these techniques varied based
on the industry and function in which the use case was used, and a range
was created to capture this variation in use of analytical techniques. And
finally, these AI techniques determined the performance/productivity im-
provement observed by each industry.
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Table 5.1 Estimated AI gains across different sectors.
Sector AI Impact in %

(of Industry revenues)
Aggregate dollar
impact ($ Trillion)

Retail 3.2–5.7 0.4–0.8
Transport & Logistics 4.9–6.4 0.4–0.5
Travel 7.2–11.6 0.3–0.5
Consumer packaged goods 2.5–4.9 0.2–0.5
Public & Social Sector 1.1–1.4 0.3–0.4
Automotive & Assembly 2.6–4.0 0.3–0.4
Healthcare systems & services 2.9–3.7 0.2–0.3
Banking 2.5–5.2 0.2–0.3
Advanced electronics and
semiconductors

3.3–5.3 0.2–0.3

Basic materials 1.6–3.1 0.2–0.3
High tech 5.7–10.2 0.2–0.3
Oil and Gas 1.8–1.9 0.2–0.2
Insurance 3.2–7.1 0.1–0.3
Agriculture 2.4–3.7 0.1–0.2
Chemicals 1.0–2.3 0.1–0.2
Media and Entertainment 2.9–6.9 0.1–0.2
Telecommunications 2.9–6.3 0.1–0.2
Pharmaceuticals and Medical
Products

4.2–6.1 0.1–0.1

Aerospace and Defense 1.8–3.2 <0.1T

Source: McKinsey Global Institute study.

Table 5.1 summarizes of sector-level percent gain estimates due to the
adoption of AI.

Scenario 1 in our study quantifies the impact of full adoption of AI tech-
nology across all countries based on the sectoral total factor productiv-
ity (TFP) shocks derived from the above-mentioned McKinsey study. We
shocked our model with the average of the limits mentioned in the table
above.

5.3.2 Scenario 2: estimation of gains from AI ethical
frameworks across all regions

To estimate the gains that each region could derive from adoption of eth-
ical frameworks, we first identify the losses that each region could endure
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if there were no such regulatory policies. Morgan (2020) has estimated that
cybercrimes are a major threat to the economy as they are capable of inflict-
ing global economic damage of $6 Trillion USD in 2021 and could escalate
to $10.5 Trillion USD by 2025. These costs include stolen money, data de-
struction, theft of personal data, theft of financial data, attacks that distort
the normal functioning of the business, reputational harm, restoration of
the system after being hacked or damaged, theft of intellectual property,
etc.

These costs are so high that when measured as a country, this ranks—
after the USA and China—as the third largest world economy. Given the
high magnitude of cybercrime losses, we estimate the economic losses to
AI’s estimated potential gains due to cybercrime attacks. Center for Strate-
gic and International Studies (2014) have estimated the economic impact of
cybercrime attacks by measuring cybercrime losses as a percentage of each
country’s GDP. Swiatkowsa (2020) have estimated the regional distribution
of cybercrime by estimating losses as a percentage of each regional GDP.

Dean et al. (2012) has estimated the internet economic activity of 2016
as a percentage of GDP for various G20 countries, which altogether were
estimated to 4.2 trillion. In some countries such as the UK, the internet
economy is as high as 12.4% of its GDP. We use the data of cybercrime losses
and internet gains from the above-mentioned studies to estimate the per-
centage of losses to internet gains from data and cybercrime attacks. We
then calculate the losses that could incur to AI gains using the estimated
losses from above, and the GDP gains to each country/region from the es-
timates in scenario 1. Using the factor input change per region from the
results, we derive the sectoral shocks or the sectoral losses to AI from data
breaches and cybercrimes (see Table 5.2).

AI losses from cybercrimes

= Loss from cybercrimes ∗ economic benefits from AI

AI losses in terms of GDP

= AI losses from cybercrimes ∗ (−Estimated GDP value)
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Table 5.2 Shock to calculate estimated AI gains from a harmonized regulatory frame-
work.
Countries Loss from

Cybercrime
attacks (%)

Economic
benefits
(%)

Loss to
Internet
gains
(%)

GDP estimate
from
Scenario 1
(%)

Loss to
AI gains
(%)

Factor
input
change
(%)

Australia 0.08 3.7 0.022 6.77 −0.146 −0.22
Rest of Oceania 0.09 3.7 0.024 5.1 −0.124 −0.12
China 0.63 6.9 0.091 6.38 −0.583 −0.19
Rest of Asia 0.53 5.6 0.095 5.16 −0.488 −0.39
Japan 0.02 5.6 0.004 5.59 −0.02 −0.04
Korea 0.71 8 0.089 5.04 −0.447 −0.34
Indonesia 0.53 10 0.053 5.15 −0.273 −0.32
India 0.21 5.6 0.038 4.54 −0.17 −0.2
Canada 0.17 3.6 0.047 5.09 −0.24 −0.15
USA 0.64 5.4 0.119 6.1 −0.723 −0.45
Mexico 0.17 4.2 0.04 4.78 −0.193 −0.16
Rest of America 0.42 4.2 0.1 5.04 −0.504 −0.4
Argentina 0.42 3.3 0.127 5.65 −0.719 −0.49
Brazil 0.32 2.4 0.133 5.23 −0.697 −0.22
Rest of EU 0.41 5.7 0.072 5.49 −0.395 −0.32
France 0.11 3.4 0.032 4.49 −0.145 −0.17
Germany 0.41 4 0.103 5.22 −0.535 −0.39
Italy 0.04 3.5 0.011 4.74 −0.054 −0.08
UK 0.16 12.4 0.013 5.61 −0.072 −0.12
Rest of the World 0.84 5.7 0.147 5.04 −0.743 −0.54
Russia 0.1 2.8 0.036 4.19 −0.15 −0.17
MENA 0.11 3.8 0.029 4.08 −0.118 −0.15
Saudi 0.17 3.8 0.045 2.77 −0.124 −0.18
Turkey 0.07 2.3 0.03 5.02 −0.153 −0.13
Sub Saharan Africa (SSA) 0.14 2.5 0.056 5.78 −0.324 −0.27
South Africa 0.14 2.5 0.056 5.08 −0.284 −0.25

5.3.3 Estimation of loss due to strict liabilities across all
regions

Evas (2020) reveals that the existing regulatory framework in EU that im-

poses strict liabilities on applications of AI and robotics could cost 0.04% to
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GDP of the region or in other words, if there is a better harmonized regula-
tory policy, the region could gain 0.04% of GDP.

Lee-Makiyama and Narayanan (2020) examined the cost of ex-ante reg-
ulations and strict liabilities by calculating the economic losses that could
happen due to a shift from ex-post regulations to ex-ante regulations in on-
line services. The study estimated that such costs could be as high as 0.56%
of EU’s GDP, and among countries, France could experience a loss of 0.89%
in its GDP, Italy about 0.43%, the UK and Germany could experience a loss
of about 0.41% of GDP.

To arrive at a realistic estimate of the losses to AI gains due to imposi-
tion of strict liability frameworks, we take an average of the loss estimates
from the afore-mentioned papers. The sector-wise losses are estimated us-
ing the same procedure adopted in scenario 2 to estimate the shocks (see
Table 5.3).

AI losses from strict liabilities

= Loss from strict liabilities ∗ Economic benefits from AI

AI losses from strict liabilities in terms of GDP

= AI losses from strict liabilities ∗ (−Estimated GDP value)

5.4 Results and analysis
All the simulations/scenarios are performed with year 2017 as the baseline,
and in the first scenario we modeled the benefits that each country/region
could gain from full adoption of AI technologies. In the second scenario, the
model is shocked with estimated losses in AI gains from data breach and cy-
bercrime attacks to estimate the possible gains from erecting a harmonized
regulatory framework to govern AI applications, and in the last scenario the
losses from imposition of strict liabilities and ex-ante regulations are con-
sidered.

5.4.1 Impact of policy shocks on GDP of countries/regions

An analysis of the impact of full adoption of AI across all countries/regions
in scenario 1 reveals that all countries experience a gain in GDP. The model
estimates that Australia will experience the maximum gains of 6.77% of its
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Table 5.3 Shocks to calculate estimated AI losses due to strict liabilities and
ex-ante regulations.
Countries Loss from

strict
liabilities
(%)

Economic
benefits
(%)

Loss to
Internet
gains
(%)

GDP es-
timate
(%)

Loss to
AI gains
(%)

Factor
input
change
(%)

Australia 0.30 3.7 −0.081 6.77 −0.549 −0.31
Rest of Oceania 0.30 3.7 −0.081 5.1 −0.414 −0.32
China 0.30 6.9 −0.043 6.38 −0.277 −0.16
Rest of Asia 0.30 5.6 −0.054 5.16 −0.276 −0.23
Japan 0.30 5.6 −0.054 5.59 −0.299 −0.22
Korea 0.30 8 −0.038 5.04 −0.189 −0.17
Indonesia 0.30 10 −0.030 5.15 −0.155 −0.2
India 0.30 5.6 −0.054 4.54 −0.243 −0.22
Canada 0.30 3.6 −0.083 5.09 −0.424 0.09
USA 0.30 5.4 −0.056 6.1 −0.339 −0.23
Mexico 0.30 4.2 −0.071 4.78 −0.341 −0.27
Rest of America 0.30 4.2 −0.071 5.04 −0.360 −0.28
Argentina 0.30 3.3 −0.091 5.65 −0.514 −0.34
Brazil 0.30 2.4 −0.125 5.23 −0.654 −0.07
Rest of EU 0.30 5.7 −0.053 5.49 −0.289 −0.23
France 0.47 3.4 −0.138 4.49 −0.621 −0.48
Germany 0.23 4 −0.058 5.22 −0.300 −0.23
Italy 0.24 3.5 −0.069 4.74 −0.325 −0.27
UK 0.23 12.4 −0.019 5.61 −0.104 −0.11
Rest of the world 0.30 5.7 −0.053 5.04 −0.265 −0.21
Russia 0.30 2.8 −0.107 4.19 −0.449 −0.36
MENA 0.30 3.8 −0.079 4.08 −0.322 −0.27
Saudi 0.30 3.8 −0.079 2.77 −0.219 −0.21
Turkey 0.30 2.3 −0.130 5.02 −0.655 −0.51
Sub-Saharan Africa 0.30 2.5 −0.120 5.78 −0.694 −0.42
South Africa 0.30 2.5 −0.120 5.08 −0.610 −0.45

GDP, China will gain by 6.38%, and USA by 6.10%. Argentina is expected to

gain by 5.65% and the UK will gain by 5.61%.

In scenario 2, when shocked with estimated loss from AI gains due to

data theft and cybercrime with data on economic losses from Morgan
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Table 5.4 Impact of policy shocks on GDP of countries/regions.
Countries Base Value

(in millions USD)
Scenario 1 (%) Scenario 2 (%) Scenario 3 (%)

Australia 1,330,295 6.77 −0.78 −2.58
Rest of Oceania 259,429 5.10 −0.50 −1.72
China 12,143,477 6.38 −1.60 0.09
Rest of Asia 3,477,350 5.16 −2.00 −1.18
Japan 4,859,953 5.59 −0.07 −1.21
Korea 1,530,731 5.04 −1.70 −0.78
Indonesia 1,015,416 5.15 −1.05 −1.07
India 2,652,244 4.54 −0.64 −1.02
Canada 1,646,867 5.09 −0.78 −1.32
USA 19,485,402 6.10 −2.85 −1.45
Mexico 1,157,740 4.78 −0.77 −1.33
Rest of America 1,943,690 5.04 −1.95 −1.49
Argentina 642,691 5.65 −2.88 −2.13
Brazil 2,053,594 5.23 −2.17 −1.90
Rest of EU 14,323,426 5.49 −1.69 −1.30
France 26,792 4.49 −0.54 −2.50
Germany 255,756 5.22 −2.14 −1.20
Italy 141,510 4.74 −0.19 −1.31
UK 2,666,217 5.61 −0.34 −0.56
Rest of the world 1,765,886 5.04 −2.82 −1.04
Russia 1,578,624 4.19 −0.55 −1.65
MENA 2,515,801 4.08 −0.43 −1.18
Saudi 688,588 2.77 −0.26 −0.58
Turkey 852,674 5.02 −0.59 −2.66
SSA 1,343,885 5.78 −1.29 −2.72
South Africa 349,552 5.08 −1.17 −2.48

(2020), all countries experience a loss in GDP. Argentina experiences a loss

of 2.88% and USA a loss of 2.85% in GDP. Brazil is expected to experience a

decline of 2.17% of GDP, and Germany a loss of 2.14% in GDP. If regulatory

policies and legal frameworks are erected, these losses could be reduced

and avoided. The GDP decline is lower for countries that have a lower rate

of cybercrime attacks. See Table 5.4.
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In scenario 3, where we intend to estimate the losses due to strict liabil-
ities and ex-ante regulations, there is a decline in GDP of almost all coun-
tries. This is due to the fact that imposition of such strict guidelines hinders
countries from harnessing the AI benefits to the fullest extent. There may be
a decline in investment of some regions, and so some countries may lag in
adoption of AI technologies. Such frameworks also incur costs, reduce the
pace of research and innovation, affect industrial prices, and may not be
able to cope with the competition. The GDP losses from such regulations
are high for Turkey (−2.66%), Australia (−2.58%), France (−2.50%), South
Africa (−2.48%), and Argentina (−2.13%).

In countries such as Australia, Japan, Korea, India, Canada, Mexico,
France, Russia, Turkey, and South Africa, the loss in scenario 3 is higher than
scenario 2, meaning that the losses from ex-ante regulations and strict lia-
bilities is higher than the loss from cybercrime attacks and data breaches.
Thus it requires a harmonized framework that brings about a trade-off be-
tween ensuring data privacy and protecting AI systems from unwarranted
cybercrime attacks to reduce the losses that incur from such problems, and
ensuring that such regulations do not hamper investments, innovation, and
research activities relating to development and adoption of AI systems.

5.4.2 Impact of policy shocks on output of countries/regions

The change in output of the three scenarios is shown in Figs. 5.1–5.3.
In scenario 1, it can be seen that most of the countries gain in man-

ufacture of pharmaceuticals and medical products, light manufacturing,
travel, extraction, telecommunication, machinery and equipment, etc. In
Australia, the output of services sector increases, wheres that of the man-
ufacturing sectors decrease. On the other hand, in Canada, the output of
manufacturing sector increases, whereas that of the services sector de-
creases. In China all of the manufacturing sectors experience an increase in
output, whereas it decreases in some of the service sectors. The decrease in
some of the sectors in selected set of countries is due to the distribution of
endowment commodities, such as land, labor, and capital from those sec-
tors to that of the other sectors.
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FIGURE 5.1 Impact of policy shocks on output of countries/regions; Scenario 1.

FIGURE 5.2 Impact of policy shocks on output of countries/regions; Scenario 2.
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FIGURE 5.3 Impact of policy shocks on output of countries/regions; Scenario 3.

As in Fig. 5.2, most sectors experience a decline in output when shocked
with cybercrime losses in scenario 2. Such losses could be avoided, and
the gains from AI adoption could be maximized when proper regulatory
regimes are erected.

Though the output of scenario 3 declines for most sectors in almost all
the countries, the decline is lower than the decline in scenario 2. In some
countries, such as China, Indonesia, Canada, and Brazil, the decline in out-
put in scenario 3 is greater than scenario 2, meaning that the losses due
to ex-ante regulations and strict liabilities is higher than the losses due to
cybercrime attacks and data theft.

5.4.3 Impact of policy shocks on employment of
countries/regions

When full adoption of AI is studied across all regions, it estimates an in-
crease in the employment of unskilled labor across all regions. The high-
est increase is in Australia (10.1%), USA (7.25%), and the European Union
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Table 5.5 Changes in employment of unskilled labor.
Countries Scenario 1 (%) Scenario 2 (%) Scenario 3 (%)

Australia 10.10 −0.44 −4.24
Rest of Oceania 6.04 −0.58 −2.10
China 6.41 −1.90 0.87
Rest of Asia 5.01 −1.97 −1.16
Japan 6.44 0.22 −1.35
Korea 5.03 −1.72 −0.69
Indonesia 4.85 0.03 −1.10
India 2.91 0.11 −0.80
Canada 5.72 −0.96 −3.85
USA 7.25 −3.55 −1.75
Mexico 5.41 −0.92 −1.49
Rest of America 5.63 −2.06 −1.72
Argentina 5.88 −3.02 −2.22
Brazil 5.29 −3.85 −4.24
Rest of EU 6.73 −2.15 −1.54
France 3.93 −0.24 −2.70
Germany 5.94 −2.67 −1.31
Italy 5.23 −0.33 −1.35
UK 6.97 −0.02 −0.56
Rest of the world 5.74 −3.44 −1.09
Russia 2.61 0.74 −2.19
MENA 4.17 −0.13 −1.28
Saudi 1.86 1.12 −0.27
Turkey 5.54 −0.65 −3.13
SSA 5.85 −1.23 −2.94
South Africa 6.02 −1.36 −3.05

(6.73%). Though it is often argued that automation and technological en-
hancements from the adoption of Industry 4.0 and disruptive technologies,
in our study the adoption of AI is estimated to increase the employment.
This could be due to the fact that the automation increases the employment
of skilled labor force. See Table 5.5.

In scenario 2, when cybercrime losses are considered, there is a consid-
erable decline in employment of Brazil (−3.85%), the USA (−3.55%), Ar-
gentina (−3.02%), and Germany (−2.67%). These losses could be offset and
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the gains in scenario 1 could be fully achieved by designing and adopting
strict regulatory frameworks.

When losses from ex-ante regulations are fed as shock to the model as in
scenario 3, the model estimates a considerable decline in the employment
of Australia, Brazil, Canada, Turkey, and South Africa. In these countries,
the decline in scenario 3 is greater than the losses in scenario 2. Thus these
countries should identify and minimize interventions and strict liabilities
that result from stringent regulatory measures and ensure that such regula-
tions do not hinder the AI adoption.

5.4.4 Impact of policy shocks on export of countries/regions

In the first scenario, the export of almost all the countries increases, and it
is predominant in India, Turkey, Argentina, and Japan. A sectoral analysis
reveals that the increase is brought about by increase in exports of man-
ufacturing industries. On the other hand, there is a decrease in export of
Australia, because there is an increase in domestic consumption, which
could be due to increase in wealth of the consumers.

In the second scenario, the export of most of the countries decline; In-
donesia, Japan, India, UK, Turkey experiences a significant decline in ag-
gregate exports. The decline is due to the loss in the output brought about
by cybercrime attacks. Strict liabilities and regulatory frameworks could
reverse this loss. Countries that have lower rate of cybercrime attacks expe-
rience a gain in exports. Those countries that have higher rate of cybercrime
attacks produce a lower economic output and so may depend on imports
from those countries that have a lower rate of data theft.

In scenario 3, the export of most of the countries decline: China, India,
Japan, and Korea. Those countries that have higher estimates of losses in-
curring from strict liability framework as a percentage of GDP, experience a
decrease in exports and other countries with lower loss estimate experience
an increase in exports. See Table 5.6.

5.4.5 Impact of policy shocks on import of countries/regions

In scenario 1, where it is assumed that all countries adopt AI in all sectors,
there is an increase in imports among most of the countries. Countries such



Chapter 5 • Evaluation of potential global impacts of AI assurance 177

Table 5.6 Change in exports.
Countries Base Value

(in million USD)
Scenario 1 (%) Scenario 2 (%) Scenario 3 (%)

Australia 272,131 −10.80 −5.75 10.60
Rest of Oceania 64,910 8.44 −4.72 −0.88
China 2,408,744 9.03 5.69 −16.80
Rest of Asia 2,029,627 8.22 −3.31 −1.41
Japan 843,535 13.50 −12.00 −2.57
Korea 713,906 9.83 −3.72 −2.18
Indonesia 220,358 7.21 −14.00 −0.22
India 459,663 20.20 −10.20 −3.51
Canada 493,295 4.99 −0.74 17.40
USA 1,892,909 −4.53 8.27 4.28
Mexico 452,007 10.00 −4.98 −1.48
Rest of America 467,173 7.05 −3.63 −0.73
Argentina 75,018 15.20 −4.99 −0.43
Brazil 269,937 5.16 25.20 43.90
Rest of EU 6,080,126 4.66 −2.81 −0.23
France 20,001 7.21 −3.06 −0.91
Germany 97,858 7.32 −2.49 −1.26
Italy 131,845 5.47 −3.24 −0.51
UK 658,723 2.83 −10.10 −2.67
Rest of the world 862,421 5.10 −1.83 −0.92
Russia 546,065 6.59 −5.08 0.45
MENA 1,069,971 5.58 −2.84 −1.08
Saudi 360,495 4.97 −2.76 −1.14
Turkey 208,325 16.90 −7.82 −2.18
SSA 357,509 2.61 −2.81 1.46
South Africa 116,985 6.08 −3.30 0.49

as Australia, USA, Sub-Saharan Africa, and China experience a significant
increase in imports. See Table 5.7. This is due to an increase in import of
manufacturing sectors in some countries, where an increased output may
demand more capital goods and raw materials. Whereas in other countries,
there is an increase due to increase in consumption.

In scenario 2, there is a significant decline in the import of Brazil, USA,
and China, as these countries experience higher losses in GDP due to cyber-
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Table 5.7 Change in imports.
Countries Base Value

(in millions USD)
Scenario 1 (%) Scenario 2 (%) Scenario 3 (%)

Australia 267,659 19.20 2.50 −10.00
Rest of Oceania 77,630 1.85 1.50 −1.46
China 2,093,751 7.47 −4.13 5.93
Rest of Asia 1,944,355 4.08 −1.42 −0.84
Japan 889,156 2.96 3.47 −0.82
Korea 617,480 4.53 −1.39 −0.56
Indonesia 194,033 4.16 4.85 −1.63
India 548,038 −0.30 2.65 −0.62
Canada 520,500 5.97 −0.90 −4.76
USA 2,791,386 11.40 −6.98 −3.70
Mexico 417,780 4.06 −0.50 −0.93
Rest of America 485,681 2.97 0.25 −1.11
Argentina 86,331 −0.17 1.09 0.43
Brazil 261,884 5.70 −13.60 −19.70
Rest of EU 5,920,725 5.10 −1.40 −1.16
France 21,291 3.31 −0.08 −2.21
Germany 94,371 4.41 −2.10 −0.85
Italy 117,803 4.37 −0.73 −0.68
UK 825,183 5.97 2.88 0.24
Rest of the world 770,065 4.52 −2.95 −0.65
Russia 323,879 1.71 4.50 −3.78
MENA 1,019,416 3.06 1.15 −0.93
Saudi 171,911 2.47 2.61 −0.12
Turkey 252,628 1.56 1.30 −2.13
SSA 355,966 7.58 0.74 −5.61
South Africa 104,636 4.28 0.34 −3.24

crime attacks. Some countries, such as Indonesia, that experience a higher
rate of cybercrime are estimated to experience an increase in imports. This
is due to the increase in imports of such countries to meet the domestic
consumption demands on account of decline in industrial output. Coun-
tries, such as the UK, Japan, and Australia, that experience a lower rate of
cybercrimes, are expected to increase their imports due to increase in eco-
nomic activity.
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In scenario 3, all the countries experience a decline in import. The de-
cline is significant in Brazil, Australia, Canada, South Africa, and Russia, as
these countries experience a higher loss (as a percentage of GDP) due to
imposition of strict liabilities and restrictive legal frameworks.

5.5 Conclusion
We attempted to discuss the potential gains from full adoption of AI tech-
nology across many countries /regions of the world; the losses that may
occur due to the lack of a strong ethics framework to protect AI from cyber-
crimes and the potential challenges in strict regulations that may be aimed
at enforcing ethics in AI, but end up harming the economy as a collateral
damage. The global economic model we use (GTAP) is capable of capturing
the inter-sectoral linkages between different regions.

The impact of AI across the regions at the sector-level are analyzed in
three scenarios: the first considers complete adoption of AI across all the
countries to quantify the economic benefits of AI athwart all industry sec-
tors and its positive impact on variables such as output (GDP), productivity,
trade, investments, innovation, consumer welfare, and increase in worker
wages; the second considers the gains that each country can make from
adopting ethical frameworks and standards to curb illegitimate usage of
such technologies and to regulate their adoption; and the third scenario
estimates the losses that each country/region would endure due to the im-
position of strict liabilities and restrictive legal norms, which in turn could
curb countries from leveraging the true potential of AI.

We find that there will be a gain in GDP of all the regions when full adop-
tion is assumed in scenario 1. Australia, China, and USA would gain the
most to about 6.77%, 6.38%, and 6.1% of GDP, respectively. In scenario 2, the
study estimates a loss in GDP to all countries when cybercrimes and data
thefts are left unprotected. Argentina, Brazil, USA, and Germany experience
higher losses as cybercrime rates as a percentage of their GDP is higher in
these countries. Such losses could be mitigated by imposing and strategiz-
ing legal frameworks to govern the development and usage of AI systems. In
scenario 3, when the model is shocked to estimate the losses due to imposi-
tion of strict liabilities and ex-ante regulations, Argentina, France, Australia,



180 AI Assurance

Turkey, and South Africa experience higher losses. In some countries, the
loss in GDP in scenario 3 is higher than in scenario 2, meaning the losses
that incur from restrictive legal practices is higher than the losses from cy-
bercrime attacks. The rate of employment increases in scenario 1 against
the typical argument and concern raised by most experts stating that au-
tomation could lower employment rates, thanks to much greater economic
expansion than the extent to which capital may substitute labor due to the
lower labor intensity of AI.

Overall, the economic benefits from AI outweigh the costs and losses
that could incur from cybercrimes, data thefts, strict liabilities, and em-
ployment. Strict regulations that are originally imposed with a purpose of
preventing data privacy have adverse impacts on innovation and imple-
mentation of AI systems in some countries. Thus a harmonized framework
is the need of the hour.
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Abstract

This chapter explores trustworthiness in AI and penetrates the black-box opacity
through explainable, fair, and ethical AI solutions. AI remains a spirited topic
within academic, government, and industrial literature. Much has occurred
since the last AI winter in the early 1990’s; yet, numerous sources indicate the
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initial successes solving problems like computer vision, speech recognition, and
natural sciences may wane — plunging AI into another winter.
Many factors contributed to advances in AI: more data science courses in uni-
versities producing data-science capable graduates, high venture capital fund-
ing levels encouraging startups, and a decade of broadening awareness among
corporate executives about AI promises, real or perceived. Nonetheless, could
sources like Gartner be right? Are we approaching another AI winter? As the
world learned during the COVID-19 pandemic, when we find ourselves in a
crisis, focusing on the fundamentals can have a powerful effect to easing the
troubles.
As AI makes history, it relies on progress from other domains such as data avail-
ability, computing power, and algorithmic advances. Balance among elements
maintains a healthy system. AI is no different. Too much or too little of any el-
emental capability can slow down overall progress. This chapter integrates fun-
damental ideas from psychology (heuristics and bias), mindfulness in modeling
(conceptual models in group settings), and inference (both classical and contem-
porary).
Practitioners may find the techniques proposed in this chapter useful next steps
in AI evolution aimed at understanding human behavior. The techniques we
discuss can protect against negative impacts resulting from a future AI win-
ter through proper preparation: appreciating the fundamentals, understanding
AI assumptions and limitations, and approaching AI assurance in a mindful
manner as it evolves. This chapter will address the fundamentals in a unifying
example focused on healthcare, with opportunities for trustworthy AI that is im-
partial, fair, and unbiased.

Keywords

AI assurance, cognitive bias, intrinsic bias, machine learning, Bayesian statis-
tics, causal inference, systems validation

Highlights

• Continued progress in artificial intelligence (historically deterministic and structured

problems) will broach the boundaries to understanding human behavior

• Leading researchers in artificial intelligence highlight the need (and potential) from

incorporating causal inference into deep learning

• Capturing causality in systems requires not only data but also conceptual

understanding using established practices from systems dynamics and the social

sciences



Chapter 6 • The role of inference in AI: Start S.M.A.L.L. 187

• The Start S.M.A.L.L. approach is a practical method to aid practitioners with mindful

modeling in various domains and help discover bias sources

6.1 Real wisdom on artificial intelligence
Artificial Intelligence (AI) attained a new high-water mark, expanding the
domain not just in mathematical optimization techniques but also statis-
tical approaches and exploiting access to large amounts of data. AI is a
big deal that will continue to shape the next half century. Media cover-
age highlights promises and cautions, but what are lay people and analytic
practitioners to make of the hype and the concerns?

Much occurred after the last AI winter (a period of reduced resources
and progress) and AI boomed in popularity since the mid-2000s, first within
academia and now within government and corporate enterprises.

The new spring in AI is the most significant development in computing
in my lifetime. Every month, there are stunning new applications and
transformative new techniques. But such powerful tools also bring with
them new questions and responsibilities (Vincent, 2018).
— Sergey Brin

Many factors contributed to this boom: cost effective distributed com-
puting power, numerous personalized data sources, data science courses in
universities producing more data science capable graduates, ample access
to venture capital encouraging startup businesses, and a decade of broad-
ening awareness among corporate executives about AI promises to boost
profits and improve operations. Nonetheless, could experts at Gartner (Kin-
sella, 2017) be right? Are we approaching the next AI winter?

Like any technology, AI will experience its natural plateaus on the tech-
nological S-curve (Sterman, 2000). The last AI winter was one such plateau.
Right now, AI is somewhere in the growth phase. Has the boom consumed
the “low-hanging fruit” of this era? By low-hanging fruit the authors mean:

• automated work agents like chatbots, data pre-processing, and auto-
mated machine learning
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• improved predictive power in physical systems or problems having an
underlying structure, like computer vision, speech recognition, and the
natural sciences

• successful penetration into commercial markets with deep learning so-
lutions

As the world learned from the COVID-19 pandemic, during a crisis,
focusing on the fundamentals can have a powerful effect in promoting
progress. AI relies on many elemental capabilities: data availability, com-
puting power, algorithmic advances, and fundamentals. Like many compa-
rable systems in the world, equilibrium is required to maintain a healthy
system. This is no different in AI. Too much or too little of any elemental ca-
pability slows down overall progress. This book explores trustworthiness in
AI and penetrates the black-box opacity through explainable, fair, and eth-
ical AI solutions. This chapter highlights fundamentals found throughout
science that continue to garner attention in the literature and could sup-
port continued progress in AI evolution:

• cognitive bias and heuristics bias from a psychological perspective,
based on the work of Kahneman and Tversky

• mindful modeling approaches to complement increased capabilities for
data mining, based on the work of Sargent (conceptual modeling) and
Luna-Reyes (group model building)

• the roles of inference and causality, based on the work of Sterman (sys-
tem dynamics) and Pearl (causal inference)

As the low-hanging fruit disappears, this chapter identifies opportunities
to undertake and solve the next evolutionary cycle of problem sets. Im-
pacts from the next AI winter may be blunted through proper preparation:
appreciation for the fundamentals, consideration of the importance of AI
assurance and how it relates to AI bias, and discussion of inferential meth-
ods to support AI assurance. This chapter will address the fundamentals in
a unifying example focused on healthcare, with opportunities for trustwor-
thy AI that is impartial and fair (free of conscious and unconscious bias).

The chapter is organized into two parts: fundamentals and application.
Section 6.2 provides important fundamentals for AI practitioners: decision-
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making, heuristics, and bias. It provides a relevant summary of psycholog-
ical constructs to support later chapter sections. Section 6.3 lays out two
other topics fundamental to AI: the discipline of modeling and a summary
of inferential methods. AI assurance design in Section 6.4 provides a work-
ing scenario focused on how medical errors are causing a healthcare crisis.
The section integrates the fundamentals along with the emerging literature
on AI assurance using the S.M.A.L.L. framework for mindful modeling. Sec-
tion 6.5 provides a short summary and takeaways, and Section 6.6 provides
further reading suggestions for those interested in learning more.

6.2 Fundamentals: decision-making, heuristics and cognitive
biases

In the context of a society whose dominant elements justify their posi-
tion by arguing the genetic inferiority of those whom they dominate, it
is hard to be neutral (David, 2001).
— Richard David, MD, Stroger Hospital of Cook County, Chicago

There are two categories of decision-making theories: philosophically
normative theories (e.g., how people should make decisions) and the em-
pirically supported descriptive theories (e.g., how people do make deci-
sions; (Beresford and Sloper, 2008)). This section reviews only the descrip-
tive decision-making theories, as they apply directly to medical decision
making as a use case where AI has penetrated the market. Most such the-
ories subscribe to the two-system, dual-process view of decision-making
(Hogarth, 2002; Kahneman, 2011; Sloman, 1996).

The leading dual-process theory of decision-making is prospect the-
ory, developed by Daniel Kahneman and Amos Tversky (1979). Prospect
theory was developed as an alternative to the previously dominant Ex-
pected Utility Theory (Neumann and Morgenstern, 1953) that asserted hu-
man rationality is equivalent to a specific mathematical model, interpreting
every choice as the maximization of an individually tailored, real-valued
utility function with specific mathematical properties (e.g., monotonicity).
Prospect theory is an alternate theory of decision making under uncer-
tainty and risk that better aligns with both experiment and experience.
It explains how individuals without extensive education or experience at-
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tempt to make optimal choices without assuming they are naïve utility
maximizers. A main premise of the theory is that people use heuristics
(quickly-applied rules of thumb that guide behaviors without the need for
deep processing) in order to make decisions under uncertainty. Heuristics
are subjective and individualized, such that a person’s use of heuristics is
based solely on what they know at the point of decision-making. Heuristics
do not suppose additional information-seeking before a decision is made
(Kahneman, 2011). Similar to habits, heuristics are developed based on in-
dividual experiences.

6.2.1 Dual-process model of decision-making

The dual-process model of decision-making describes two different modes
or processing styles under which decisions are made. These are referred to
as System 1 and System 2. System 1 thinking is intuitive, operates auto-
matically and quickly, requires little effort, and is often strongly influenced
by emotions. An example of System 1 thinking is stereotyping (Kahneman,
2011); humans often make impressions of others only seconds after meet-
ing them. Although hostile stereotyping can be harmful, the overall process
of categorizing people (e.g., angry and dangerous versus friendly and harm-
less) is adaptive, useful, efficient, and fast. The need to categorize and make
judgments of situations quickly, without using more complex and effortful
reasoning, is the basic function of System 1 (Evans, 2008).

Unlike System 1, System 2 thinking is deliberate, analytical, and re-
quires greater cognitive effort and attention (Kahneman, 2011); performing
a mathematical calculation is an example of System 2 thinking. There is lit-
tle use of intuitive thought when performing complex calculations. Instead,
a person focuses their attention on the problem and engages in the cogni-
tive efforts of following general rules. Cognitive strain can have a negative
impact on the performance of System 2. Poorly designed processes, physi-
cal spaces, or software can further heighten cognitive strain throughout the
day.

Both System 1 and System 2 are susceptible to biases and errors. In cer-
tain situations System 1 may perform well in collecting relevant informa-
tion; however, due to our bias towards ignoring evidence we dislike (see
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confirmation bias in Section 6.2.3 below), System 2 may make a mistake:
I went for a run this morning, so it is fine to have a big slice of cake now.
Conversely, System 1 (which commonly uses heuristics) may have gathered
biased evidence so even if the System 2 processes run accurately, the out-
come may be incorrect. Lastly, neither System 1 nor System 2 are superior
to one another. Kahneman (2011) clearly states that System 1 is not often
error-prone and System 2 is not always correct. Research comparing the ac-
curacy of prediction using System 1 heuristics (take-the-best, tallying, and
minimalist) to two predictive analytic strategies (linear regression and naïve
Bayes) found that System 1 strategies outperformed the complex System 2
strategies when there was limited initial data (Hertwig and Pachur, 2015).

6.2.2 Error and bias in medical decision-making

It is important to note that System 1 and System 2 thinking do not op-
erate in isolation from one another or other influences. Decision-making
theorists agree that the two systems lay at the ends of a continuum and
that people are often making decisions by employing both analytical and
intuitive thought. The location within the continuum on which a health-
care decision-maker falls would vary based on their prior life experiences
or learning; cognitive and emotion regulation abilities; and implicit and
explicit biases. System 1 thinking can provide great benefits in terms of
medical decision making. It allows providers to perform in situations po-
tentially harmful to their patients. For example, when a patient exhibits
life-threatening physiological symptoms (e.g., rapid change in vital signs),
the provider’s reaction aimed at saving the patient’s life is quick and intu-
itive, and there may be strong emotions related to the process (e.g., anxiety).
Furthermore, the effortless nature of System 1 thinking empowers providers
with the cognitive ease that makes everyday tasks less exhausting. In other
words, System 1 thinking allows providers to use their cognitive resources
for more critical dilemmas regarding patient needs. Unfortunately, System
1 driven provider thinking may not be optimal when the provider’s reac-
tion to ambiguous symptoms is too emotional, non-rational, and in itself
harmful to the patient (e.g., unnecessary treatment with antibiotics for a vi-
ral infection, due to provider anxiety brought on by demanding patients).
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Also, potential issues may arise when a provider’s System 1 response is mal-
adaptive, arising from a problematic learning history involving explicit and
implicit bias, for example.

Similarly, a healthcare provider engages in System 2 thinking if they are
actively considering the best treatment option or diagnosis for their patient.
This process would require cognitive effort to make a decision based on
numerous clinical parameters. Sometimes providers may not have the cog-
nitive capacity to engage in System 2 thinking because of uncontrollable
external conditions. For example, System 2 thinking may be too effortful
for providers already exhausted or under a heavy cognitive load for other
reasons. In addition, providers may not prefer System 2 for decisions that
are already well practiced (i.e., habits acquired and cemented in place by
experience). Research shows that providers can improve effortful decision-
making, such as accurate diagnosis of heart disease, by employing “fast and
frugal” decision trees which follow an evidence-based algorithm (Green
and Mehr, 1997). AI solutions on the marketplace now offer such algorithms
and more.

The high prevalence and negative consequences of biases (explicit and
implicit) and errors in decision-making among US healthcare providers
are well-documented (Aronson et al., 2020; Johnson et al., 2004; Phelan
et al., 2014). Examples range from unintentional cognitive errors such as
administering the wrong medication (Anderson, 2019) to racial bias from
differences in emergency department pain management (Todd et al., 1996).
Medication errors, the most common medical errors, are the leading cause
of hospital morbidity and mortality (in the US and internationally) and
continue to increase in frequency (De Vries et al., 2008; Jha et al., 2013).
Indeed, the National Pharmacy Association quarterly medication safety up-
date report stated medication errors account for 66 percent of all errors
reported (National Pharmacy Association, 2021). As called for by Panagi-
oti et al. (2019), efforts should focus on understanding preventable patient
harm, a continual and serious problem across medical care settings. Ac-
cording to their meta-analysis, mitigation of major sources of preventable
patient harm are priority areas of future work. Healthcare AI solutions claim
to provide such mitigating solutions.
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AI-enabled healthcare decision-making tools represent a growing mar-
ket. Hundreds of vendors now offer predictive and prescriptive analytic
tools under the terms machine learning, AI, or cognitive machine. The
promise of all these “smart” solutions is to help providers within a health-
care organization make smarter and faster decisions: promising the speed
of System 1 and the reliability of System 2 thinking. Unfortunately, medical
errors and hospital mortality rates continue to remain prevalent, despite
the fast adoption of AI in healthcare. In retrospect, many AI practitioners
now realize the historical databases used to develop these algorithms tend
to automate and propagate the biases of the decision-makers who created
them. Of course, algorithms are not the only source of bias (e.g., trained
on biased data sets). Biases propagate by the people who develop AI algo-
rithms (e.g., implicit racism, sexism, ageism, or ableism) and indirectly to
products. Lastly, users present bias as well. Part of the issue why AI solu-
tions may not be as efficacious as expected is that the providers who use
them fall prey to automation complacency whereby they accept the recom-
mendations of the AI tool and stop investigating the conditions any further
(especially when the AI algorithm predicts everything is “normal”; (Para-
suraman and Manzey, 2010)). Therefore, much of AI assurance focuses on
uncovering algorithms that reinforce and perpetuate human biases.

6.2.3 Implicit and/or explicit: bias in AI practitioners and AI
models

With the benefits of AI also come the threats of implicit and explicit bias
whenever AI is used. Implicit bias is a psychological process in which a
person’s unconscious beliefs and attitudes affect their behaviors, percep-
tions, and judgments in ways unaware to themselves, and typically, unable
to control. Explicit bias refers to the attitudes and beliefs we have about a
person or group on a conscious level. Next, we introduce some common
types of implicit and explicit biases and how they may impact AI assurance.

Ableism is defined as a network of beliefs, processes, and practices that pro-
duce notions of a perfect human body within the human species (Camp-
bell, 2001). Algorithms can produce a bias towards enabling more perfect
human cognition and decision-making which in turn stigmatizes those
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with different abilities. Shew (2020) coined the term technoableism, which
is a particular strain of ableism in the context of imagination, technology,
and bodies. As Shew points out, AI solutions such as autonomous vehicles,
companion robots, and caretaker robots are marketed as ways to remedy
problems among individuals who are aging or have a disability. The author
argues that focusing on the individual’s problem ignores society’s responsi-
bility for creating better planning and infrastructure within communities
where older or disabled individuals can leave their homes without need
for AI-driven, in-home robots to help with loneliness and isolation. Shew
(2020) further discusses the problem with AI designers who create solutions
but are not themselves part of the disability community. As Shew states,
“These designers who are usually ignorant of the larger history of disability,
often reinforce ableism in their design, further stigmatizing and marginal-
izing disabled people through monitoring or tracking or decision-making
by proxy” (2020). The AI technology that developers create in an effort to
achieve top performance is rooted in ableism via predictive models based
on having groups designated as superior and inferior (Council of Europe
Directorate General Human Rights and Rule of Law, 2019; Krupiy, 2020).

Affinity bias is the unconscious tendency to gravitate toward people who
look like us, have the same beliefs, and come from the same background.
Moreover, due to affinity bias, we may avoid or even dislike people who are
different from us. In AI, machine learning models developed by white males
that consume data not representative of the population can show an affinity
towards the white and male. At least one study provided evidence that affin-
ity bias is present in human-robot interactions. Specifically, avatar appear-
ance impacted the preferences of humans asked to sort resumes of gender
and skin-tone varying avatars (Trainer et al., 2020). In addition, research
shows there is an own-race bias in face recognition models where deep
learning networks demonstrated a strong tendency to focus on selected fa-
cial regions for a particular race (Nagpal et al., 2019). Indeed, a wealth of
recent literature outlines examples of racism and sexism in AI. Some note-
worthy examples are Tay, the anti-Semitic Twitter chatbot launched by Mi-
crosoft (Beran, 2018), incorrect and racially-biased recidivism prediction AI
(Angwin et al., 2016), and the commercial face recognition software which
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was efficient in identifying lighter-skinned males but not when detecting
darker-skinned females (Lohr, 2018). Although with the chatbot example,
the racism was likely implicit on the side of the developers, some raise con-
cerns that developers make explicitly race- and gender-biased decisions to
maximize profit (Buolamwini and Gebru, 2018; Hong and Williams, 2019;
Noble, 2018).

Ageism bias is prejudice or discrimination on the grounds of a person’s age.
Own-age bias was present in AI algorithms according to the analysis of Nag-
pal and colleagues (2019) across multiple deep learning networks. This bias
is documented in other evaluations of big data approaches as well. In a re-
cent review of academic literature, instances of both implicit and explicit
ageism existed in algorithms, intelligent systems, and big data (Rosales and
Fernández-Ardèvol, 2019). Specifically, the authors note that when it comes
to age prediction and smartphone data analysis, the older population is of-
ten not included in big data approaches. In the words of the authors “older
people are invisibilized by, for instance, not controlling the capacity of the
sample to represent the studied population.” Age-biased samples (samples
based on social media and smartphone users) produce age-biased tools.
Often, algorithms only manage to distinguish between younger cohorts, as
age predictions tend to work better for younger cohorts (Culotta et al., 2016;
Liao et al., 2014; Nguyen et al., 2013; Peersman et al., 2011).

Attribution bias is a type of unconscious cognitive bias that refers to the
systematic errors of making more favorable assessments of the behaviors
of those in your “in group” while applying stereotypes and judging peo-
ple more harshly when they are in your “out group” (Nalty, 2016). Novel
research suggests that attribution bias can be present when humans an-
thropomorphize robots and assign them a social categorization (Haring et
al., 2018; Kuchenbrandt et al., 2013). In particular, form function attribution
bias research shows that just as with their person-to-person interactions,
humans use cognitive shortcuts based on their visual perception of a robot,
instead of objectively evaluating its functionalities during an interaction
(Haring et al., 2018).

Confirmation bias is one of the most common threats to AI assurance. It is
a cognitive bias commonly found in humans and is the tendency to attend
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to similarities (Gilovich et al., 2002). Confirmation bias is often discussed as
an overarching category of other similar biases in AI and can be described
as a phenomena where one seeks evidence that is consistent with their cur-
rent hypotheses and interprets evidence only when supporting their point
of view. A common example of this bias in AI is the increase in ads for cer-
tain products that a customer has already purchased (Chou et al., 2017).
If confirmation bias is ignored, it can lead to insights that are not well
grounded in users’ experiences and therefore it can stifle innovation (But-
ler and Roberto, 2018). Useful strategies proposed by researchers to combat
confirmation bias include, but are not limited to, considering how the op-
posite of your belief might be true and forcing yourself to record discordant
data (Darwin’s two notebooks strategy) (Garvin, 2003; Lord et al., 1984).

Conformity Bias, or the human’s tendency to act in a way that allows them
to fit in, is also found in AI research. A survey of IT professionals who self-
reported the likelihood that cognitive biases impacted their development of
AI systems, showed that conformity bias was the most influential, accord-
ing to respondents (Cazes et al., 2021). Interestingly, not only developers of
AI products but also AI algorithm users are impacted by conformity bias. In
a study examining provider decision making in AI-supported second opin-
ion, settings showed that physicians preferred to conform to the decision
of previous doctors in comparison to the AI algorithm decisions (Cabitza,
2019). An interesting and innovative type of conformity bias is a construct
by Cheshire (2017) called “loopthink”. The author posits that the old confor-
mity bias driven “groupthink” (i.e., a phenomenon that is characterized by
the act of making decisions as a group in a way that conforms to norms and
discourages individual responsibility) will translate into loopthink when AI
algorithms make decisions. He outlines two types of loopthink: weak loop-
think, the “intrinsic inability of a sophisticated computer to redirect execu-
tive data flow as a result of its fixed internal hardwiring, uneditable sectors
of its operating system, or unalterable lines of its programming code.” In
other words the computer is responding in a way that resembles a stub-
born individual who is refusing to listen; and also strong loopthink, “an
artificial intelligence’s suppression, as a result of internalization of the eth-
ical framework of its collective, of internal data processing pathways that,
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if considered, could redirect executive output”. An example of strong loop-
think is a self-driving car computer which may swerve towards a child on
the road instead of towards a billboard of three children as it is programmed
to minimize the death toll in the event of unavoidable harm. This scenario
errs from the images of three children on a billboard compared to one ac-
tual child on the road.

6.3 Fundamentals: yearning to make sense of the world
through models and inference

Since all models are wrong the scientist cannot obtain a “correct” one by
excessive elaboration. On the contrary following William of Occam he
should seek an economical description of natural phenomena. Just as
the ability to devise simple but evocative models is the signature of the
great scientist so overelaboration and overparameterization is often the
mark of mediocrity (Box, 1976).
— George Box

Well before machine learning, or theoretical statistics, or even before
Newton and Leibniz developed their calculus, modeling existed. Modeling
may be as old as thought itself (Frigg and Hartmann, 2020; Hodges, 2020).
The introductory paragraphs of this section provide a glimpse into the re-
lationship among contemporary modeling techniques and serve as a scene
setter for practitioners as well as readers interested in AI.

Modeling is an immense domain encompassing algorithms and numer-
ical methods. Modeling is also a way of thinking, a philosophy, by ap-
proaching a complex reality and simplifying it through assumptions and
limitations to communicate a larger idea. The Princeton psychologist, Tania
Lombrozo, was interviewed (March 2021) on why models matter and how
our brain makes sense of questions. In discussing what drives the effects we
see in a complex world, Lombrozo summarized models in a useful way: they
relate our observations (high variability) to a more generalized underlying
structure and predict how things may go in the future (Vedantam, 2021).

AI is a particular discipline that relies on modeling and makes use of
techniques designed to mimic human responses to situations and deci-
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Table 6.1 Machine Learning — Three general categories of machine learning.
Machine Learning Category Description

Supervised Learning algorithms learn underlying correlations and rules from data
observations labeled with ground truth to predict future, un-
seen events

Unsupervised Learning algorithms find underlying patterns in the data to provide in-
sights for other modeling, such as supervised learning

Reinforcement Learning algorithms learn behaviors based on reward and are used in
learning games like chess and developing autonomous vehi-
cles

sions. They may be as simple as a rules-based system or as involved as
an ensemble of complex algorithms. A hierarchy exists within the field: AI
is a superset that contains the discipline of machine learning while deep
learning is a subset specialization within machine learning (Mokli et al.,
2019).

Machine learning captured the hearts and minds of the public after data
science became “the sexiest career of the 21st century” (Davenport and
Patil, 2012). Machine learning relies on statistical and mathematical tech-
niques to “learn” a phenomenon based on data. There are hundreds of
algorithms used in machine learning, but the breadth of the work is often
captured by three categories (Alpaydin, 2010; Hastie et al., 2001; Murphy,
2012). These are summarized in Table 6.1.

Mokli et al. provide a summary of the more common machine learn-
ing algorithms and models labeled according to their category of learning
method. The first type of machine learning listed is linear regression. A rep-
resentative example of this common type of (supervised) machine learning
is illustrated in Fig. 6.1.

This example shows the simplest type of linear regression in two dimen-
sions. The dots represent the actual data sample. The solid line running
through the sample is the algorithmic-based prediction of the underlying
system modeled by regression. The model (solid line) enables prediction of
future, unseen observations within the range of the x-axis (in this case, TV ).
Linear regression is not limited to two dimensions. When working in multi-
ple dimensions, hyper planes replace lines and exist within a hyperspace.



Chapter 6 • The role of inference in AI: Start S.M.A.L.L. 199

FIGURE 6.1 Example of Linear Regression — Among the more common machine learning
techniques is linear regression to learn the linear trend, shown by the solid line, among
the data, shown as dots (James et al., 2013).

Deep learning is a subset of machine learning and is a booming growth
space in academia and industry (Benjamens et al., 2020; Lundervold and
Lundervold, 2019). It boasts a specialized community of practitioners fo-
cused on neural network architectures which can contain tens or hundreds
of thousands of nodes connected in a graph structure. Each node has a
weighting learned by presenting the architecture with labeled training ex-
amples (Lundervold and Lundervold, 2019). Deep learning occurs when
algorithms propagate back and forth through the network comparing la-
beled information, like a handwritten number or an image of a dog, and
tuning the weights with high performance computing assets to produce
impressive results in areas like computer vision, speech recognition, and
natural language processing.

It is important to note that in machine learning and deep learning, the
machine only learns (and therefore, knows) what it is taught and results do
not extrapolate outside of what it is taught. Current solutions in this space
represent artificial narrow intelligence, not artificial general intelligence.
Additionally, deep learning only exceeds the power of the more general
machine learning approaches when data is abundant, as in millions of ob-
servations as opposed to tens or hundreds of thousands of data samples.
Having set the scene, the remainder of the section looks at the fundamental
of taking a mindful approach to modeling in AI.
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6.3.1 Mindful modeling approaches: a mark of thoughtful
work

Data science projects begin with questions and end in answers. Providing
relevant answers demands a thoughtful exploration of the question space,
especially while challenging assumptions and considering sources of po-
tential bias. Gendron and Killian (2020) provide the Q {d m} A Framework
describing four key functions of data science while communicating the rel-
ative importance of each function.

The Question and Answer functions are larger than data and model func-
tions to emphasize the importance of understanding the question before
moving into technical activities. Why? Because many practitioners focus on
a modeling technique (what model to build) without allowing it to emerge
from the nature of the question. The data and model functions are depicted
in lowercase and brackets {d m} to communicate their behind-the-scenes
nature, relative to the question and answer. Finally, the ordering of data
then model reminds practitioners that the model form follows the data used
(Gendron and Killian, 2020). Improvements to that original framework are
presented in Fig. 6.2.

The additional M (for Mindful Modeling) appears coequal with Question
and before data to focus on building and scrutinizing a mental model be-
fore incurring the expenses of collecting, preparing, and modeling data.1

Mindful modeling could fill an entire chapter. Page (2021) introduces his
concept called model thinking by highlighting the role that models, and
the thinking they generate, have benefited society through time. Page notes
the complexity of the modern world with its diversity in thought and global
interactivity combine in many and surprising ways, like the COVID-19 pan-
demic. Despite an abundance of data (or perhaps because of them) one way
to make sense of uncertainty is through models.

Models are formal structures represented in mathematics and diagrams
that helps us to understand the world. Mastery of models improves your

1
IBM’s Foundation Methodology for Data Science locates two action stages, “Business

understanding” and “Analytic approach”, before “Data requirements” (Rollins, 2015).
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FIGURE 6.2 The Q M {d m} A framework — Enhancements on the Gendron and Killian
2020 framework to incorporate mindful modeling as a coequal function prior to data col-
lection.

ability to reason, explain, design, communicate, act, predict, and ex-
plore (Page, 2021).

We continue the discussion of modeling by sharing this well-worn advice
from our professional experiences.

Start a project with small, understandable, and auditable models — then
add to them.

6.3.2 Start S.M.A.L.L. (Specific-Mindful-Attainable-Limited-
Lucid)

Starting small is not glib advice; rather, it is a sincere commentary based on
the state of modeling witnessed in our experiences. Technological advances
in algorithms, computational power, and cloud-based platform availabil-
ity encourage a process of going straight from big data to big complexity
(and possibly a big mess) when modeling and communicating results to a
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business. The mnemonic S.M.A.L.L provides guidance when launching a
modeling effort.

• Specific — working on one problem unearths other related problems.
Keep the initial modeling focused on a particular subregion of the mod-
eling space (conceptual modeling, Section 6.3.2.1)

• Mindful — captured in the discussion on mindful modeling (Section 6.3.1
and the Q M{d m} A framework. There are practical approaches to help
achieve this state of mind (conceptual modeling, Section 6.3.2.1; group
model building, Section 6.3.2.2)

• Attainable — improve time spent modeling by assessing the attainabil-
ity of a conceptual model. Techniques include testable implications of
causal structures (causal modeling, Section 6.3.2.3)

• Limited — real-world problems are messy and complex. Continue to
scope down the problem in the initial stages to allow for technical audits
through the modeling approach (conceptual modeling, Section 6.3.2.1)

• Lucid — explainability has become a critical aspect of modeling to ad-
dress unintended bias in AI systems. Establish clear thoughts on where
human interaction is (and is not) desired in the modeling process (causal
modeling, Section 6.3.2.3)

Each element of starting S.M.A.L.L. is presented as a subsection below.

6.3.2.1 Conceptual modeling
Conceptual models are used in a wide array of domains from education to
science. We propose a working definition:

A conceptual model explains a real world system in a single image
along with accompanying simplifications, limitations, and assump-
tions.

Consider the water cycle shown in Fig. 6.3. This conceptual model (water
cycle) possesses the key characteristics noted in the definition:

• Single image: like a good resume, limit the amount of material for a con-
ceptual model to a single page
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FIGURE 6.3 The water cycle: An example of a conceptual model to simplify the complex ac-
tions of atmospheric science into evaporation, condensation, precipitation, and collection
(Even, 2021).

• Simplifications: the rain cycle teaches essential atmospheric science
principles to children. How is this possible? By focusing on the critical
aspects necessary to capture the phenomenon of interest

• Limitations: communicating those aspects the model will not address2

• Assumptions: “a specific supposition of the operational environment
that is assumed to be true, in the absence of positive proof, essential
for the continuation of planning” (United States Department of Defense,
2021)

Each key characteristic of a conceptual model helps with a mindful mod-
eling approach encouraging diverse thinking about the question before col-
lecting data. The overall value of a conceptual model is to provide insight
and drive the direction of the computational modeling. That said, creating
conceptual models can be challenging for a number of reasons, including
differing experience bases among business and technical teams, learning
when and how to simplify a real-world problem for conceptual modeling,

2
One natural limiter may be found in the notion of documentation debt (Bender et al.,

2021), where the exercise of documentation encourages accountability of the model; size
does not imply diversity.
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and capturing a concept in a timely manner (Luna-Reyes et al., 2007). Out-
side of the field of data science, conceptual models that lend themselves
to quantitative measurement (e.g., health belief model), drive the modeling
work of many social science researchers. Social scientists recognize an im-
portant part of modeling is having a strong conceptual familiarity with the-
oretical and empirical literature in a particular research area (Kline, 2011).
Historical perspective from the field of systems dynamics can be helpful in
developing solutions to the challenges of conceptual modeling.

6.3.2.2 Group model building process
Systems dynamics is a methodology to generate models of complex systems
as a means of understanding interactions (Bala et al., 2017). The first com-
putational form of this modeling occurred in 1958 when Richard Bennet
developed SIMPLE (simulation of industrial management problems with
lots of equations), opening the door to working with complex systems that
might not otherwise be captured in straightforward differential equations
(System Dynamics Society, 2021). Over time, a technique called causal loop
diagramming emerged for gathering causal mechanisms underlying the
model. Causal loop diagrams serve as a type of conceptual model to show
the relationships among measurable elements and the interventions that
would increase or decrease their levels.

Conceptual modeling, to include causal loop diagramming, capture bet-
ter representations of the real world, so long as domain and technical ex-
pertise come together to generate the conceptual model. Luna-Reyes et al.
published an article with techniques for a team approach to this process
called group model building (2007). Their group model building approach
contains nine scripts to run the full process. Script 4 focuses on the concep-
tual model, and Fig. 6.4 provides a representative outcome of that script.

At its core, Script 4: concept model fosters interdisciplinary collaboration
of a workshop team with a common goal of creating a conceptual model:

1. Users and experts join in dialogue to conceptualize the mechanics of the
phenomenon of interest based on working knowledge

2. Modelers encode these initial results (causal loop diagrams) and run
output traces using those conceptual models
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FIGURE 6.4 Group model building results: A technique used in systems dynamics modeling
to gather domain experts and capture a conceptual model (panel a) that modelers use to
expedite prototyping (panel b) and assess the calculated outputs (panel c) against domain
knowledge and historical data (Luna-Reyes et al., 2007).

3. Users and experts review the output from their instincts and improve
the first model to capture missing relationships and eliminate undesired
qualities (potential bias)

The scripts have pedagogical purposes in mind. Script 4 contains a sum-
mary of the objectives, process, and assessment. Recognizing the chal-
lenges of concept modeling, the script also offers heuristics to aid in their
development (Luna-Reyes et al., 2007). Group model building supports
S.M.A.L.L. by gathering multiple perspectives on a problem prior to more
intense modeling work later in the process. Related to this is the idea of
causal modeling.

6.3.2.3 Causal modeling
Judea Pearl, a professor of Computer Science at the University of Califor-
nia, Los Angeles, has worked in the field of AI for over 40 years. He pio-
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FIGURE 6.5 Causal diagram: The essential object in causal modeling that captures a cause-
effect relationship, which are later assessed using tests of conditional independence
implied by the structure (Pearl and Mackenzie, 2018).

neered practical methods for including causation in AI. His seminal work
in Bayesian networks sought to express the mathematical correlations in a
model so that casual expressions would emerge; however, his work iden-
tified the limitations of Bayesian networks for causality. Those limitations
resulted in his invention of a do calculus based on causal diagrams. Fig. 6.5
provides an example of a causal diagram (Pearl and Mackenzie, 2018).

The value of this technique, even without the associated do calculus, is
to focus thinking on the drivers of an effect. As Pearl notes “think of causa-
tion as a form of listening; X is a cause of Y if Y listens to X and decides its
value in response to what it hears” (Pearl et al., 2016). Even in cases where
there is not an absolute cause and effect relationship, we have found utility
in discussing the notion of causality with clients by sketching out causal di-
agrams, beginning with a final effect and branching backwards to possible
causes. Surprising causal elements are often identified in the discussion.
This, in turn, focuses model developers on data collection needs, whether
from internal sources or by acquiring required data external to the organi-
zation.

6.3.3 Inference in modeling

“Statistics is the science of learning from experience” (Efron and Hastie,
2016) and inference is the process where that learning occurs. We observe
small pieces of the world and hypothesize generalizations from observed
behavior. Galileo’s observations and precise measurements of planets, pen-
dula, and falling objects paved the way for Newton’s unifying and universal
laws of motion, expressed in compact mathematical notation. Statistical
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inference is our prime tool for linking observed data to the mathematics
defining a more general and universal theory.

As Efron and Hastie (2016) point out, there is an algorithmic component
to inference that needs to be separated from the actual act of generalizing
from observation. If we think of observation and data as the raw materi-
als for building a theory, statistical algorithms are the tools we use to shape
and combine those materials with the goal of building an edifice or struc-
ture that can stand up to the highest levels of scrutiny. These algorithms
can be as simple as taking an average of a set of measurements or as com-
plicated as the process of building a neural net that can play chess or di-
agnose a disease. In both cases, they are tools for making a generalization
from a particular set of observations and measurements. Of course, a set
of measurements can be consistent with many different possible theories.
The Ptolemaic geocentric model of the solar system explained the motion
of the planets, so also does the heliocentric model of Copernicus as modi-
fied by Kepler and Newton. How do we know which theory to choose when
making an inference? This section examines statistical inference from both
the frequentist and probabilistic points of view and causal inference.3

6.3.3.1 Frequentist (Fisherian) inference
Modern frequentist inference, developed by Galton, Fisher, and Pearson,
produced the earliest tools for attacking problems related to empirical ob-
servation. For these scientists, the act of observing and measuring was
error-prone and algorithms were needed not just to calculate quantities de-
rived from the data (e.g., the average or standard deviation), but also the
accuracy of the prescribed algorithm. For example: to estimate the average
age of men in New York or London, a survey of a smaller sub-population
might be taken and the broader population estimate inferred from the sam-
ple estimate. Depending on how the sub-population was selected, there
may be more or less error in the sample.

3
The concepts presented in the treatment of this fundamental area are not intended to

provoke arguments about the relative merits of one method over another. The intention of
this subsection is to increase awareness of techniques that continue to emerge based on
the calls for causal inference from revered practitioners of AI.
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Nonetheless, the standard error (a quantity calculated and defined in
terms of the sample data) estimates the accuracy of the sample average. By
estimating the errors in our calculated quantities, we assess how well the
measured data support a given hypothesis or theory. Note that the same
data used to develop the statistic in question (here the average) are also
used to estimate the error in the statistic. Unfortunately, as many first-year
statistics students have learned, this approach does not always help with
distinguishing between similar theories that are supported by the data4

(i.e., have similar or overlapping uncertainties). Moreover, because the hy-
pothesis is seen as fixed and the data variable, the Fisherian approach can
lead to the practice of p-hacking, where an analyst cherry-picks the data
that best fits the desired hypothesis by performing an experiment multiple
times and explains away or ignores the rest of the data, often comprising
a significant fraction of the total collected data. An alternative approach to
statistical inference is provided by Bayesian reasoning, where the data are
seen as fixed and the goal is to find the hypothesis that best fits the data.
Chen notes many challenges in statistical predictive models (Chen et al.,
2021). This is the subject of the next subsection.

6.3.3.2 Probabilistic (Bayesian) inference: a gateway to causal inference
Bayesian methods have a colorful history. Controversy surrounded this
method since its development in the late 18th century, predating Fishe-
rian approaches. The methods have made continued contributions to the
field of AI and gained more favorable viewpoints in the late 20th century
(Mcgrayne, 2011). Readers interested in a more comprehensive treatment
of the dramatic history of these methods may consider reading McGrayne’s
book (see Further Reading at Section 6.6).

Bayes’ theorem (and more recently, Bayes–Price theorem) was developed
by the Reverend Thomas Bayes (c. 1701–1761) and published by his friend,
Richard Price, in 1763. At around the same time in Europe, Pierre-Simon

4
Undergraduates are taught a collection of statistical recipes, rather than an apprecia-

tion for modeling. Though statistical inference works in many circumstances, the inexpe-
rienced analyst can apply frequentist recipes in a manner that can lead to misunderstand-
ings or unintentional abuse of the statistics.
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LaPlace was developing the roots of Bayes’ theorem.5 What began as a
technique to explain probability in games of chance, the theorem would
become the way to interpret the inverse probability, the probability of a
stated hypothesis given (conditioned on) the observed data. As noted ear-
lier, Bayes’ theorem differs from Fisherian methods in that Bayesian meth-
ods treat the data as fixed and the parameter describing the probability
distribution of the hypothesis as a parameter and measures its uncertainty.
Frequentist (Fisherian) methods are most effective with normal distribu-
tions, because the residuals (error terms) are also normally distributed. This
is not true of most other distributions. It is worth noting that Bayesian and
frequentist estimates converge when data is abundant.

One other highlight of Bayesian methods is that their output includes
not only the posterior probability, but also a credible interval. These can
be much more intuitive to customers, because they indicate the chance
of a hypothesis occurring as a probability. This is quite different from the
difficult-to-describe confidence intervals resulting from frequentist meth-
ods. It is not the purpose of this subsection to argue that Bayesian methods
are better than Fisherian methods. Rather, the purpose has been to raise
awareness of an approach that is not often taught in core education. It
turns out that Bayesian networks are influential: Bayesian methods lie at
the heart of Bayesian networks, otherwise referred to as Bayes belief nets.
Judea Pearl developed these graph structures to study causality, which is
picked up in the next section.

6.3.3.3 Causal inference: tempting the trope that “correlation does not
imply causation”

The back cover of Pearl and Mackenzie’s The book of why: The new science
of cause and effect reads

“Correlation is not causation.” This mantra once led to a virtual prohi-
bition on causal talk. Today that taboo is dead. The causal revolution,
instigated by Judea Pearl and his colleagues, has cut through a century

5
Interestingly, LaPlace’s work constitutes the contemporary form of the theorem today,

but it is still attributed to Bayes (Bayes–Price).
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of confusion and established the study of cause and effect on a firm sci-
entific basis (Pearl and Mackenzie, 2018).

Readers familiar with Pearl’s work may recognize the underlying message

of the quotation above. Similarly, Woodward notes “causal inference is con-

cerned with a very specific kind of prediction problem: predicting the re-

sults of an action, manipulation, or intervention” (Woodward, 2005). The

literature reveals an opinion of modern scholars that the trope of “correla-

tion is not causation” has led to roadblocks in the progression of AI. This

subsection presents a quick overview of the underlying ideas of causal in-

ference as they relate to AI and AI assurance. Consider Fig. 6.6. The ladder of

causation (Pearl and Mackenzie, 2018) is a summary (a conceptual model)

of the seminal work of Pearl starting in the 1980s that developed out of his

efforts to model causality with Bayesian networks. The figure is whimsical,

yes, yet poignant in its message. The caption as found in the source reads:

The Ladder of Causation, with representative organisms at each level.
Most animals as well as present-day learning machines are on the first
rung, learning from association. Tool users, such as early humans, are
on the second rung, if they act by planning and not merely by imitation.
We can also use experiments to learn the effects of interventions, and
presumeably this is how babies acquire much of their causal knowledge.
On the top rung, counterfactual learners can imagine worlds that do
not exist and infer reasons for observed phenomena (Pearl and Macken-
zie, 2018).

The first rung of the ladder depicts machine learning (a subset of AI)

and focuses on the activities seeing and observing. It answers the questions

“what if I see. . . ?” and “how are the variables related?” This is correlation.

For instance, wind speed and the movement of leaves may have strong cor-

relation in a data set, but will not provide any information on whether the

moving leaves caused the wind or if the wind caused the leaves to move. In

a business setting, many challenges demand explanation at a higher level

of causation, such as the second rung of the ladder, intervention.
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FIGURE 6.6 The ladder of causation: A conceptual model showing the relationships among
increasing levels of causal modeling punctuated with generalized questions each level
addresses (Pearl and Mackenzie, 2018).

At the second level, the focus of the activity shifts to doing or interven-
ing and addressing the questions “what if I do. . . ?” and “what would Y be
if I do X?” Business decision-makers and leaders are often interested in the
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drivers of an end state. They are aware of the effects, and without using the
word cause, they are looking for drivers (causes), where they can intervene
by taking actions. Predictive and prescriptive analytics are not mere games.
Consider the plight of a hardware store owner who must predict the volume
of snowblowers that will sell and (most importantly) place a snowblower
order in the spring. Ultimately, that store owner is compelled to take action
(intervene) by making a decision and committing to an order size. What will
cause the expected volume to increase or decrease compared to last win-
ter? Similarly, a healthcare provider may benefit from a tool that aids with
the cognitive strain brought on by the effortful System 2 thinking related to
determining which one of her patients is at risk for sepsis (an infection of
the blood stream resulting in a cluster of symptoms, such as drop in a blood
pressure, increase in heart rate, and fever).

The idea of causal inference remains a sleeping giant within the AI com-
munity. Schölkopf et al. support this in their article calling for more causal
work, noting that if more work is not done to implement causation it could
dampen progress in AI (2021). Meanwhile, Gelman and Vehtari (2021) iden-
tify causal inference as one of the eight biggest statistical ideas of the last 50
years. This is borne of the trend beginning in the 1980’s with Pearl’s work in
AI developing Bayesian networks, leading to the need for a mathematical
treatment of causality. By the first decade of 21st century, one finds Pearl’s
seminal works published on causality. Adding to the body of knowledge are
a number of articles (Fernández-Loría and Provost, 2021; Hünermund and
Bareinboim, 2019; Shrier and Platt, 2008) and the Journal of causal inference
(Imai et al., 2021). In addition, one finds work on causal inference within
professional conferences, such as the European causal inference meeting
and the American causal inference conference, the web-based platform for
knowledge exchange (causalscience.org, 2021), and a python library called
“DoWhy,” which is an open-source library developed by Microsoft research
for end-to-end causal inference (Sharma and Kiciman, 2020). Doctoral can-
didates working in causal inference have matriculated to post doctoral work
and are making these techniques more available.

Moreover, social science researchers pioneered the statistical technique
called structural equation modeling (SEM) out of a need to model hypoth-
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esized relationships among observed (manifest) and unobserved (latent)
variables (e.g., race and intent to engage in social action). As part of this im-
portant latent variable work, social scientists also learned how to apply in-
variance testing as a way to assure that prediction models work across vari-
ous categories of data (e.g., minority populations versus majority) (Prosperi
et al., 2020). In addition, path diagrams (visual representations of the hy-
pothesized associations and dependencies) are the observed versions of
latent variable SEM models and are critical when studying causality. It is
through those path models (such as SEM) that the AI community can visu-
alize causal inference. This bodes well for the future. It is our opinion that
although industry executives will continue to appreciate prediction, they
prefer to learn about “levers” they can act upon. In total, these develop-
ments will continue to tempt the trope that correlation is not causation.

6.4 Bolstering AI assurance: reducing biases with inferential
methods

All politics is local.
— US Rep. Thomas “Tip” O’Neill, Former Speaker of the US House of
Representatives (1977–1987)

AI has much to offer humanity. Yet, it can suffer from unintended biases
and result in unethical outcomes if left unchecked. A contributing factor
to this technological tension is the differing adoption rates between the
technology itself and its governance. It is not uncommon for “prevention
initiatives” to lag attention on “crisis management.” This is often seen in
politics, environmental challenges, and even how we choose to care for our-
selves; will it be a visit to the gym or the cardiologist? Within the realm of AI,
a balancing force is found in AI assurance.

Similar to politics, one could argue that all AI is local, meaning that de-
spite well-adopted techniques, an appropriate use of AI requires an appre-
ciation of the problem context, technique, audience, and intended use. This
section contemplates AI assurance being mindful of the fundamentals from
earlier in this chapter: bias, modeling, and inference. A working scenario is
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used to frame the thought process, but we begin with a brief exploration of
AI assurance.

6.4.1 What is AI assurance?

There is no standardized meaning for AI assurance. Batarseh et al.6 recog-
nize this gap in practice, where practitioners must rely on existing industrial
techniques, such as verification, validation, and testing to compensate for
the lack of specificity. They propose a definition of AI assurance:

A process that is applied at all stages of the AI engineering life cycle en-
suring that any intelligent system is producing outcomes that are valid,
verified, data-driven, trustworthy and explainable to a layman, ethical
in the context of its deployment, unbiased in its learning, and fair to its
users (Batarseh et al., 2021).

They also propose five considerations when putting AI assurance methods
into practice, which are summarized in Table 6.2.

6.4.1.1 Working scenario: mitigating bias in healthcare through AI
assurance

The COVID-19 pandemic illuminated the fact that racism in healthcare
leads to health disparities. Healthcare experts often use patient race as the
predictor variable in their models to study health disparities; however, the
biological theory of race was debunked over 30 years ago. The biological
determinists who argued about the genetic inferiority of non-White races
have failed to provide evidence to support this assumption. In contrast,
evidence continues to mount that health is determined by social factors,
such as racism, not by race (Gould et al., 1996). Risks caused by the cur-
rent discourse between healthcare leaders and providers about the actual
predictors of poor patient outcomes (i.e., it is social determinants of health
brought on by institutional racism, and not a person’s race) can be miti-

6
Batarseh and Freeman are Virginia Tech faculty members of the Commonwealth cyber

initiative, which notes “it is imperative that trust and assurance mechanisms are baked
into the development and deployment process. AI systems must be deemed reliable, ex-
plainable, unbiased/fair, and privacy-preserving” (Commonwealth Cyber Initiative, 2021).
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Table 6.2 AI Assurance — Five considerations for defining and implementing assurance
methods (Batarseh et al., 2021).
Consideration Description
(1) Data quality with outcomes in mind, verify data elements are free from is-

sues that could hurt assurance in production
(2) Specificity focus assurance methods to the intended use of the model and

data
(3) Addressing invisible issues include assurance methods proactively in AI development pro-

cedures, rather than attend to crisis management when visible
issues emerge

(4) Automated assurance implement a form of human-NOT-in-the-loop to mitigate the
risk of human interference in evaluating for bias

(5) The user involve the user community in “expert-relevant (non-
engineering) domains such as healthcare, education, eco-
nomics, and other areas” to get better insights to subjective
explainability matters

gated by AI assurance. Indeed, we argue that the five considerations of AI
assurance as outlined in Table 6.2 can counter bias. Section 6.4.2 walks
through a mindful approach to applying AI assurance design to the working
scenario.

6.4.2 Contemporary AI: mindful modeling before data
engineering helps reduce bias

Mindful modeling based on one’s sense of the operational environment not
only helps to extract away complexities, but also provides a reference to
compare early modeling work. As models continue to focus on more com-
plex issues, it will become more difficult to defend the output as unbiased
and of the highest integrity. From where will the complexity emerge? Con-
sider where AI has yielded its more popular contributions since the last AI
winter:

• computer vision: despite the challenges of “seeing” a cat or a dog within
an image, it is a deterministic problem supported by physical realities

• speech recognition and natural language processing: despite the many
languages, dialects, and individual stylings, it possesses an underlying
(quasi-deterministic) structure
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• natural sciences: despite many stochastic processes, it enjoys theories
and accepted truths, such as gravitational pull, pressure differential of
air masses, and many other physics-based realities

The problem sets characterizing accomplishments since the last AI winter
are deterministic and structural in nature; they are rational problem sets.
Missing from the list above is human behavior. As Daniel Kahneman notes,
it makes very little sense to think about people in terms of rationality stat-
ing, “I never use the word irrational” (University of New South Wales, 2021).
In that conversation Kahneman went further by saying that the meaning
of rationality is a technical construct of decision theory, but impractical for
human minds and decision-making.

There are few (and sometimes no) deterministic anchors from which
we can predict human behavior. Volatile global stock market indices are
a testament to predictions that cannot be made. Thankfully, a great many
problem sets lack life-threatening impacts from poor predictions, but some
problem sets do fall in the category of life-threatening and others can be
life changing (sometimes for the worse). Applications run through machine
learning and AI systems for mortgages, schools, employment, and housing
can have life-changing consequences.

In this section, we contemplate the public health crises resulting, in
part, from unknown (and undesired) bias inherent in health care systems
and practitioners. Combining the broader knowledge about S.M.A.L.L. ap-
proaches (Section 6.3.2) with the working constructs for AI assurance (Sec-
tion 6.4.1) provides the start of practical applications for the working sce-
nario. Table 6.3 presents principled guardrail questions detailed below.

6.4.2.1 Question 1: what is the basis of ground truth for teaching the
machine?

Consideration: mindful of data quality (1) and the user (5) [numbers refer-
ence elements in Table 6.2]

Strategy: causal modeling (in the spirit of Attainable) [Section 6.3.2]
Causal inference makes use of causal diagrams also known as directed

acyclic graphs (DAG) to show the relationship from a cause to an effect.
These relationships are elicited from domain experts. An interesting as-
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Table 6.3 Principled and Practical AI Assurance — General questions for AI assurance
design.
Question Consideration S.M.A.L.L. Strategy

[Section 6.3.2]
1) What is the basis of ground
truth for teaching the machine?

data quality (1) and user (5) Employ causal modeling
in the spirit of Attainable

2) Who determines when predic-
tive analytics are used in decision-
making?

specificity (2) and automated
assurance (4)

Employ conceptual modeling
. . . in the spirit of Specific
Employ causal modeling
. . . in the spirit of Lucid

3) When is a problem cognitively
complex enough to obscure bias
present in decision making?

invisible issues (3) and user (5) Employ conceptual modeling
. . . in the spirit of Limited
with group model building
. . . in the spirit of Mindful

Table 6.4 The three types of DAG elements:
All causal inference diagrams are composed of
these three elements.
Name Notation Structure

Chain X → Y → Z

X

Y

Z

Fork Y ← X → Z

X

Y Z

Collider X → Z ← Y

X Y

Z

pect of DAGs is their ability to capture a type of conceptual model, while
also generating testable implications (Pearl et al., 2016). Table 6.4 depicts a
sketch of the three types of causal diagram DAG elements along with their
notation and structure.

Each of the elements in the table include conditional independence that
would appear in data if the causal influence diagram reflects the real world.
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Moreover, they are testable with data. Any elements that do not pass the

testable implication must be re-examined for structural appropriateness.

Eliciting the structure before modeling the data is a form of “mindful mod-

eling.” This aspect of causal inference is a key benefit of the technique for AI

assurance. It can elicit structure which supports conceptual modeling, and

it sheds light on hypotheses that may be conducted in light of frequentist

inference.

6.4.2.2 Question 2: who determines when predictive analytics are used
in decision-making?

Consideration: mindful of specificity (2) and automated assurance (4)

[numbers reference elements in Table 6.2]

Strategy: employ conceptual modeling (in the spirit of Specific) and causal

modeling (in the spirit of Lucid) [Section 6.3.2]

Non-observable traits of the AI model (structure, latent variables, and

indiscernible mathematical formulations) are challenges (Hyttinen et al.,

2015; Zhao and Hastie, 2021); however, the use of Bayesian methods can

offer benefits.

“Simpson’s Paradox refers to a phenomena whereby the association be-

tween a pair of variables (X,Y ) reverses sign upon conditioning of a third

variable, Z, regardless of the value taken Z.” The paradox is observing in-

verse correlations when comparing the output from an entire population

versus sub-segments of the population (Pearl, 2014). This has caused much

confusion in studies and in real-life trials for decades. Fig. 6.7 shows one

example of Simpson’s paradox.

The figure shows the two-way relationship of cholesterol levels based

on exercise. Without controlling for other factors (such as age), the visual-

ization presents a startling finding: cholesterol levels increase with higher

levels of exercise! If that seems counter intuitive, then you are not alone.

Pearl notes, “To resolve this problem, we once again turn to the story be-

hind the data” (2014). The factor Age is causal to both the treatment (more

exercise as people age) and the outcome (higher cholesterol as people age).
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FIGURE 6.7 Simpson’s paradox: A two-dimensional data relationship from a medical
study showing how the population correlation (positive) is reversed when looking at sub-
populations controlled by age (negative) (Pearl et al., 2016).

6.4.2.3 Question 3: when is a problem cognitively complex enough to
obscure bias present in decision-making?

Consideration: mindful of invisible issues (3) and the user (5) [numbers
reference elements in Table 6.2]

Strategy: Employ conceptual modeling (in the spirit of Limited) with group
model building (in the spirit of Mindful) [Section 6.3.2]

Capturing a group’s view of reality in a conceptual model allows it to
be communicated then validated. All this occurs before creating the com-
putational model. One potential benefit is that a conceptual model could
help identify potential biases in thinking that might be obscured by, and
not visible in, the data or the modeling approach. Meanwhile, group model
building (Section 6.4) provides ways to elicit group ideas in a structured
approach and provide domain expert inputs on prior beliefs (in the use
of probabilistic inference) and causal diagrams (in the use of causal infer-
ence).

6.4.3 Considering the level of system predictability when
designing AI assurance

In closing this contemplation of applied AI assurance, it is worthwhile con-
sidering if there are circumstances where AI proposed for a problem re-
quires modeling beyond the deterministic solution space common in many
AI approaches. Where is it prudent to be satisfied with unbiased under-
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standing rather than predictability? FAANG companies7 exemplify this by
making recommendations on movies, books, and entertainment, rather
than predictions. Barnes et al. reflect on the nature of predictability based
on their work with atmospheric science, a field that yearns for better and
longer term predictions, while realizing a foolhardy prediction of the un-
predictable can come at the price of human life.

Their work focuses on using AI to understand if a problem set could ben-
efit (is predictable) from AI (Barnes et al., 2020). This perspective challenges
the wisdom set forth by William Shakespeare’s character Brutus from the
play Julius Caesar who replied, “No, Cassius, for the eye sees not itself but
by reflection, by some other things” (Shakespeare et al., 1974). Perhaps, A-
“eye” can see itself?

Barnes et al. (2020) use neural networks to find climactic conditions that
are indicators for increased predictability: comparing neural network in-
sights to understood theory of natural science and physics. AI is a collection
of techniques that learn complex and well-hidden patterns within infor-
mation. Generalizing this approach in atmospherics highlights there are
degrees of AI-solvable problems, ranging from deterministic to stochastic
to intractable and from empirical to experimental to theoretical.

Understanding the limitations of today’s predictive approaches allows
developers to also understand the associated impact to traditional vali-
dation techniques for less-predictable problems. Traditionally, the role of
model governance relies on validation techniques, such as back-testing
(assessing model performance with out-of-sample data) and operational
monitoring (detecting model drift over time). The discipline of model vali-
dation is captured in the literature throughout the decades (Anderson and
Woessner, 1992; Landry et al., 1983; McLean et al., 2012; Sargent, 2011) and
is an established technique to support AI assurance; however, validation
techniques may suffer from inherent or unidentified bias because of the
human role in validation design. The techniques above rely on a) backtest-
ing against historical outcomes, that could themselves carry with them a

7
FAANG is an acronym representing the stocks of American technology companies:

Facebook, Amazon, Apple, Netflix, and Alphabet (Google).
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FIGURE 6.8 Model validation as elements: Model validation is a complex system of related
paradigms of validation, each relevant to the pair of elements considered (Sargent, 2011).

human bias; and b) monitoring against human designed key performance
indicators, that may also contain unintentional bias.

Sargent’s work on validation techniques provides a useful survey of the
validation literature and practical model validation methods that are ex-
tensible to AI assurance. Fig. 6.8 provides a simplified presentation of the
modeling process. It differentiates among various types of model valida-
tion, rather than treating the topic as a unary process.

The figure depicts a total of three broad paradigms (the outer ring) of
validation relating the problem with conceptual and computational mani-
festations of modeling. Two paradigms and three inferential techniques are
curated in Table 6.5 as a summary.

6.5 Rest assured: mindful approaches in modeling may help
avoid another AI winter

I don’t think that any of the human faculties is something inherently in-
accessible to computers. I would say that some aspects of humanity are
less accessible and creativity of the kind that we appreciate is probably
one that is going to be something that’s going to take more time to reach.
But maybe even more difficult for computers, but also quite important,
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Table 6.5 Traditional model validation: The connection of inferential techniques with
operational and conceptual model validation.
Paradigm Relationship Definition Inferential

Connection
Operational
validation

relating the
computerized
model to the
problem

“determining that the model’s output be-
havior has sufficient accuracy for the
model’s intended purpose over the domain
of the model’s intended applicability” (Sar-
gent, 2011)

frequentist
inferential
techniques

Conceptual
model validation

relating the
conceptual model
to the problem

“determining that the theories and as-
sumptions underlying the conceptual
model are correct and that the model
representation of the problem entity is
‘reasonable’ for the intended purpose of
the model” (Sargent, 2011)

probabilistic
and causal
inferential
techniques

will be to understand not just human emotions, but also something a
little bit more abstract, which is our sense of what’s right and what’s
wrong.
— Yoshua Bengio

AI has and will contribute much knowledge and capability to society. One
question is whether another AI winter will set in (Kinsella, 2017) or if prac-
titioners will adapt to avoid this? The noted researcher Yoshua Bengio is
public in his call for the increased use of inferential techniques, specifically
causal inference, to provide a missing element to current AI approaches. As
children we learn right from wrong and effect resulting from cause. These
are the building blocks of generalized intelligence. This chapter notes the
low-hanging fruit that catapulted this prolonged period of success in AI
are disappearing. Structured and physical problem sets, such as computer
vision, speech recognition, and natural sciences will not be a satisfying end-
point, merely a way point to the problems surrounding human behavior.
Kahneman shared his thoughts to avoid viewing people as rational or ir-
rational, they are human with all the foibles of a system that continues to
learn and adapt.

Prosperous societies are based on some type of governance. AI, in its pre-
sumed trajectory to be more human-like, will be bound by the same guiding
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principles if it is to help society. AI assurance is an emerging field of interest
spurred by concerns about the ethical use of AI and desires to develop ex-
plainable, unbiased models. As the body of work unfolds for AI assurance,
the rich collection of practices from validation and testing can serve as an
intermediate foundation for growth. Validation and testing is of human de-
sign, and therefore subject to biases. We proposed mindful modeling, a
philosophy intertwined with questioning, to avoid premature reliance of
data and consider human input to the causal structure of the problem set.
An approach called Start S.M.A.L.L. provides practical steps relying on the
foundation of psychology and inference to give practitioners a place to be-
gin mindful modeling and target the weaknesses resulting from human bias
in the validation design with insights from causal inference to increase as-
surance in future intelligent systems.

6.6 Further reading
This chapter scratched the surface on large bodies of literature about fun-
damental subjects of import: bias and causality. The remainder of this book
will shed further light on bias within an AI context. Readers interested in
fathoming the depths of bias from a psychological context may be inter-
ested in these titles:

• The signal and the noise: Why so many predictions fail—but some don’t
by Nate Silver (2012)

• Noise: A flaw in human judgment by Daniel Kahneman, Olivier Sibony,
and Cass R. Sunstein (2021)

• Thinking, fast and slow by Daniel Kahneman (2011)

Recommended reading on the topic of causality and probabilistic modeling
include:

• The book of why: The new science of cause and effect by Judea Pearl (2018)
• The theory that would not die: How Bayes’ rule cracked the Enigma code,

hunted down Russian submarines, and emerged triumphant from two
centuries of controversy by Sharon Bertsch Mcgrayne (2011)

• Think Bayes: Bayesian statistics in Python by Allen Downey (2021)
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An outlier is an event or observation that is defined as an unusual activity, in-
trusion, or a suspicious data point that lies at an irregular distance from a pop-
ulation. The definition of an outlier event, however, is subjective and depends on
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the application and the domain (agriculture, healthcare, wireless network, etc.).
It is important to detect outlier events as carefully as possible to avoid infras-
tructure failures, because anomalous events can cause minor to severe damage
to infrastructure. For instance, an attack on a cyber-physical system, such as
a microgrid may initiate voltage or frequency instability, thereby damaging a
smart inverter, which involves very expensive repairing. Unusual activities in
microgrids can be mechanical faults, behavior changes in the system, human
or instrument errors or a malicious attack. Accordingly, and due to its variabil-
ity, outlier detection (OD) is an ever-growing research field. In this chapter, we
discuss the progress of OD methods using AI techniques. For that, the funda-
mental concepts of each OD model are introduced via multiple categories. Broad
range of OD methods are categorized into six major categories: statistical-based,
distance-based, density-based, clustering-based, learning-based, and ensemble
methods. For every category, we discuss recent state-of-the-art approaches, their
application areas, and performances. After that, a brief discussion regarding the
advantages, disadvantages, and challenges of each technique is provided with
recommendations on future research directions. This survey aims to guide the
reader to better understand recent progress of OD methods for the assurance
of AI.
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Highlights

• A comprehensive review of outlier detection algorithms from the perspective of

Artificial Intelligence (AI)

• Multiple outlier detection categories are introduced and relevant studies are

reviewed

• Advantages, disadvantages, research gaps, and suggestions are addressed for each

outlier detection category

• AI assurance is defined and discussed in relation with outlier’s detection and analysis

7.1 Introduction and motivation
An outlier or anomaly can be defined as abnormality, deviant, or discordant
data point from the remaining dataset in data science literature. Accord-
ing to (Hawkins, 1980, pp. 1), “an outlier is an observation which deviates
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so much from the other observations as to arouse suspicions that it was
generated by a different mechanism.” During the development of AI-based
applications, data are being created by several generational processes or
observations collected from one or multiple entities. Outlier points gen-
erate when one or a collection of entities which behave in an unusual
manner. Therefore it is very important to understand the behavior of out-
liers to diagnose a system’s health and predict potential system failures.
Some of the most popular OD applications are intrusion detection meth-
ods (Alrawashdeh and Purdy, 2016), credit card fraud detection (Porwal and
Mukund, 2018), medical diagnosis (Gebremeskel et al., 2016), sensor events
in critical infrastructure, precision agriculture, earth science, and law en-
forcement (Bordogna et al., 2007). One of the recently successful example
applications of OD is credit card fraud identification, where an AI algorithm
is used to find if sensitive information, such as customer identification or
a card number is fraudulent or stolen. In such contexts, unusual buying
patterns are observed, especially large transactions or irregular buying ac-
tivities.

In networking and the Internet of things (IoT) domain, sensors are
frequently used to detect environmental and geographical information;
changes in underlying patterns, if they occur suddenly, might indicate im-
portant events. Event detection in sensor networks is one of the most com-
pelling applications in cyber-physical system. Another OD example is from
medical diagnosis, where data are collected from numerous medical de-
vices, including MRI (magnetic resonance imaging) scans, PET (positron
emission tomography) scans, and ECG (electrocardiogram) time-series,
where unusual patterns could indicate an illness.

In data mining literature, normal data are also known as “inliners” (Ag-
garwal, 2017). Often in real-world applications, such as fraud or intrusion
detection system, outliers are sequential and not single datapoints within a
sequence. For instance, network intrusion is an event in a sequence that is
intentionally caused by an individual. Properly identifying the anomalous
event helps to handle those sequences.

In most conventional cases, OD algorithms have two types of outcomes:
binary labels and outlier scores. Outlier scores impose the level or degree
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FIGURE 7.1 Anomalies and noise in data. Image source: (Aggarwal, 2016).

of “outlierness” of each data point. Scores naturally rank outlier points and
provide various information about the algorithm. However, they don’t rep-
resent a concise summary with small group sizes. Binary labeling is used
to represent if a datapoint is a strong outlier or an inliner. Algorithms can
directly provide binary labeling or other means of labeling, such as out-
lier scores, which then can be converted to binary labels for learning pur-
poses. For that, a threshold is selected based on the statistical distribution
of the dataset. Binary labels provide less information regarding the degree
of outlierness, however in most applications, it is the desired outcomes for
decision-making process.

For an outlier, defining how much deviation is sufficient from a normal
datapoint is a subjective judgment. Datasets from real applications might
contain embedded noise, and analysts might not be interested in keeping
such noise. Therefore investigating significant deviation is a prime decision
to make for OD algorithms. To comprehend this problem clearly, Fig. 7.1(a)
and 7.1(b) illustrate two-dimensional feature spaces. It is evident that clus-
ters are identical in both figures. However, considering a single datapoint
“A” in Fig. 7.1(a) seems different from the rest of the datapoints. Therefore
“A” in Fig. 7.1(a) is clearly an outlier. However, point “A” in Fig. 7.1(b) is sur-
rounded by noise and it’s quite difficult to say if it is noise or an outlier.
When designing algorithms, normal and outlier boundary conditions need
to be precise and specific to application requirements.
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FIGURE 7.2 A typical data spectrum with noise and outliers.

In unsupervised learning models, noise is defined as weak anomalies
that don’t hold criteria of being an outlier. For instance, datapoints close
to the boundary are mostly considered noise (as presented in Fig. 7.2). Of-
ten the separation criteria of these datapoints is subjective and depends on
the interest of application-specific demands. Real datapoints that are gen-
erated from noisy environments are difficult to detect using scores. That
is because noise represents deviated datapoints, therefore requires domain
experts to select the threshold between noise and outliers to satisfying ap-
plication requirements.

Success in OD depends on data modeling, where every application has
its own unique data management requirements. Evidently, the OD tech-
nique needs to process the attribution in the data and be sensitive enough
to understand the underlying data distribution model. By properly exam-
ining the data model, contextual outliers can be achieved. Aggarwal et al.
(2011) proposed a concept of linkage outlier by analyzing social networks.
Here, nodes that don’t show any connection with each other are likely to
be outliers, therefore data distribution models play an important role for
designing OD models.

OD is a creative process; many researchers are trying to answer the ques-
tion of how to identify outliers. Research communities are trying to bring
forward many innovative and novel algorithms for OD (Aggarwal, 2017;
Hadi et al., 2009). While identifying and removing outliers from the dataset,
researchers need to be very observant, because sometimes outliers carry
important hidden information about data. It is crucial to understand data
types applying OD methods; for instance, data can be univariate or mul-
tivariate and need different approach to begin with. In statistical analy-
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sis, careful observation regarding feature selection needs to be considered,
because we usually want the feature to represent the data distribution
model for both non-parametric and parametric analysis. Moreover, during
OD, one must make analytic arguments and intuitions before making any
conclusions. Besides, real world applications require context-aware and
purpose-based detection, because the outcome of the result should ben-
efit the requirements of outlier analysis in any given domain. Some recent
state-of-the-art application areas are as follows:

Fraud and intrusion detection: Intrusion detection is performed to check
if a computer network has any unauthorized access by observing unusual
patterns (Singh et al., 2010). Additionally, to make a network secure and
safe, detection of outlier instances is extremely important.

Database and sensor network monitoring: Sensor networks require con-
tinuous monitoring for effective wireless operations. Detecting outliers in
sensor network (Abid et al., 2017; Feng et al., 2017), body sensor networks
(Zhang et al., 2016), and target tracking environments (Shahid et al., 2015)
ensures flawless operations with proper routing in the network.

IoT and critical infrastructure operations: IoT devices utilize wireless sen-
sors to collect various information on architecture, including smart grid,
power distribution system, water supply system, and healthcare diagnostic
system. It’s very crucial to know correct and effective data are being col-
lected from IoT devices. If the data are being polluted with outliers because
of a sensor fault or a cyber-attack, that should be identified for securing
the critical infrastructure. Additionally, OD algorithms need to be trained
against attack concealment. Critical infrastructures are the backbone of so-
ciety; effective and efficient OD models are crucial for optimal operations,
preventive maintenance, and the overall safety and security of our nation.

Data streams monitoring: Zheng et al. (2016); Tamboli and Shukla (2016);
Shukla et al. (2015); Tran et al. (2016); Gupta et al. (2014); and Cateni (2008)
showed OD for data streams and time series datasets. Detecting outliers in
data streams is important, because any abnormality may hinder fast com-
putational and estimation processes of applications.
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Medical diagnosis: Modern healthcare and diagnosis analysis are mostly
dependent on electronic devices. These devises observe unusual pat-
terns while reading different measures from patients. Properly separating
anomalous readings help doctors to predict underlying conditions, and
thereby to apply proper diagnosis.

Fake news detection: Fake news can be considered as an outlier if com-
pared with foundational datasets and real sources (Shu et al., 2017).

Surveillance and security: Security is an important aspect in computer
administrative network. Cybersecurity is a field where researchers ensure
methods for safe access and proper authentication. An exciting and practi-
cal research in cybersecurity is surveillance video OD (Xiao et al., 2015).

Data logging and data quality: Logging and processing data for commer-
cial purposes can go wrong because of unwanted concealment processes,
which if not detected, might result in irrecoverable loss. Automated data
mining models are applied in searching for abnormalities while processing
large volume of logs (Ghanbari et al., 2014). Proper anomaly identifica-
tion algorithms need to be applied to enhance data quality (D’Urso, 2016;
Chenaoua et al., 2014).

The rest of the chapter is organized as follows: In Section 7.2, we catego-
rize OD algorithms into six subgroups, where each subgroup has a detailed
discussion, advantages, disadvantages, research gaps and suggestions. In
Section 7.3, we include multiple OD tools. In Section 7.4, we enlist several
benchmarking datasets for outlier analysis, and in Section 7.5, we discuss
AI assurance and its relevance to outlier analysis. Finally, in Section 7.6, we
conclude with open research gaps and OD challenges.

7.2 Outlier detection methods
OD methods can be classified into many categories (Ranshous et al., 2015;
Braei and Wagner, 2020; Lai et al., 2020), however, in this chapter we intro-
duce six major categories: Statistical, Density, Clustering, Distance, Learn-
ing, and Ensemble-based OD methods. For each group, we provide short
overview about their gradual development over the last few decades.
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7.2.1 Statistical and probabilistic based methods

Statistical and probabilistic-based OD methods originated from early nine-
teenth century (Edgeworth, 1887). Before inventing high performance de-
vices these methods were applied for simple data visualization, although
performance and efficiency were being neglected. Nevertheless, the funda-
mental mathematics are always useful and eventually these methods are
applied to most regular OD applications.

Almost all the OD algorithms apply numerical scores to every object
and in the final step they assign extreme values by observing the scores.
Binary classification is one way of sorting the extreme value points. Statis-
tical and probabilistic OD algorithms can be either supervised, unsuper-
vised or semi-supervised. The model is built based on data distribution. For
statistical-based OD algorithms, stochastic distribution is a widely adopted
technique to detect outliers. Therefore the degree of outlierness depends on
the model built using data distribution. Statistical and probabilistic-based
methods can be further divided into two broad categories: parametric and
non-parametric distribution models. Parametric methods assume a dis-
tribution model from the dataset, and then use knowledge from the data
to approximate model parameters. Non-parametric methods don’t assume
any underlying distribution model (Eskin, 2000).

7.2.1.1 Parametric distribution models
Parametric distribution models have prior knowledge of the data distribu-
tion, these models can be divided into two subcategories: Gaussian mixer
and regression models.

Gaussian mixture models: Gaussian model is a popular statistical ap-
proach in OD, it initially adopts maximum likelihood estimation (MLE) in
training stage to compute variance and mean of the Gaussian distribution.
During the test phase, several statistical measures are applied (mean vari-
ance test, box plot test) to validate the outcomes.

Yang et al. (2009b) proposed an unsupervised Gaussian mixture model
(GMM) based on an explainer that globally optimizes to detect outliers.
In this method, first it fit the GMM for a dataset by utilizing the expecta-
tion maximization (EM) algorithm based on global optima. Outlier factor
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for this method is calculated as the sum of proportional weighted mixture,
the weights represent affiliations to remaining datapoints. Mathematically,
outlier factor can be expressed as xk:

Fk = zk(th) =
n∑

j=1

skjπj (th) (7.1)

where, skjπj (th) = Point Xk’s relationship with other point Xj .

skj = Relationship strength

th = Iteration (Final)

πj = Degree of importance of point j

Higher outlier factor indicates greater degree of outlierness. This method
focuses on global properties rather than local ones that we discuss later in
density-based method section (Breunig et al., 2000; Papadimitriou et al.,
2003; Tang et al., 2002). Yang et al. (2009b) claimed, for a given dataset,
fitting the GMM at each data point outlier can be detected, even if the
dataset contains noise, which was a major challenge in clustering-based
techniques. Therefore this technique is useful in real-world applications,
where environmental noise or intentional adversarial noise is embedded. It
is evident that the algorithm has higher capacity to detect unusual objects,
however, it incurs greater complexity: for single iteration model complex-
ity is O(n3) and for N iteration model complexity is O(Nn3). Future studies
shall improve the algorithm and reduce its computational complexity along
with increasing its scalability.

Tang et al. (2015) proposed an improved and robust statistical model;
they applied GMM with projections preserving locally. They applied the
model to disaggregate energy utilization by combining both outcome of
subspace learning (SL) and GMM. In this method, the LPP short for local-
ity preserving projection of SL is exploited to reveal the inherent diverse
structure, while at the same time keeping the neighborhood composition
intact. Saha et al. (2009) proposed a principality component analysis (PCA)
technique that points research gaps in local outlier factor (Breunig et al.,
2000) and connective-based outlier factor (Tang et al., 2002) that fails to
achieve multi-Gaussian and multiple state OD. The method shows im-
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proved performance, however, the authors barely discussed anything about
their model’s computational complexity.

Regression models: Regression OD models, depending on the context, are
either linear or non-linear. They are a direct approach to detect outliers.
Generally, the training stage involves fitting the given datapoints into a con-
structed regression model. The regression models are evaluated at the test
stage. Outliers are labeled if the difference between actual output and pre-
dicted outcome of the regression model is too high. For the last few years,
OD using regression analysis applied several standard techniques as Maha-
lanobis distance, mixture models, robust least squares, and Bayesian alter-
nate vibrational methods (Zhang, 2013). Satman (2013) in contrast to other
algorithms, proposed a different one, one that has a covariant matrix that is
non-interactive. It has less computational complexity, which makes it cost
effective as it can detect multiple outliers quickly. For future research di-
rections, and as regression models often portrayed as minuet preference,
variance and bias of the intercept approximator can be minimized to im-
prove the result.

Another regression model proposed by Park and Jeon (2015) detects out-
liers in sensor network. The method observes the values from the model
outcome and create an independent variable using a weighted sum ap-
proach. Since the model only applied on a single sensor environment,
measuring outliers accurately from multiple sensor environment can be
an interesting topic (as a future direction). Dalatu et al. (2017) studied a
comparison between linear and non-linear model, where their accuracy
and misclassification were examined with receiver operating characteristic
(ROC) curves. This case study provided necessary information for OD for
two popular kinds of regression models. Non-linear models showed more
accuracy (accuracy 93%) compared to linear regression models (accuracy
63%), therefore it’s mostly a better option to select non-linear models over
linear regression models.

7.2.1.2 Non-parametric distribution models
Non-parametric distribution models don’t assume any underlying data dis-
tribution (Eskin, 2000) for given datasets. Kernel density estimation (KDE)
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models are a popular non-parametric approach; they are unsupervised
technique to detect outliers that utilizes kernel functions (Latecki et al.,
2007). The KDE model compares each objects’ density with neighbors’ den-
sities, where the idea is similar as some of the prevalent density-based tech-
niques (Papadimitriou et al., 2003; Breunig et al., 2000). Although, it has
improved performance, the curse of dimensionality reduces its applicabil-
ity. Gao et al. (2011) offered a superior solution to overcome the problem.
They applied kernel-based technique that has lower run time compared to
(Latecki et al., 2007; Breunig et al., 2000), also presented better scalability
and performance for large datasets. This method solves another limitation
of the local outlier factor (Breunig et al., 2000): sensitivity on parameter k,
where it measures the weights of local neighborhoods by utilizing weighted
neighborhood density estimations.

A good real-world application by Samparthi and Verma (2010) also ap-
plied KDE to measure infected nodes in a sensor network. Boedihardjo et al.
(2013), in another study, implement the KDE method in time series dataset,
although it was a challenge using KDE for data streams. They proposed an
accurate estimation of probability density function (PDF) by using adap-
tive KDE. The computational cost associated with the method is O(n2), and
showed better estimation results compared to original KDE. The method is
suitable for strict environment, therefore further research may improve the
method for adopting multivariate data. Uddin et al. (2015) applied the KDE
method in power grid environment. Although, the KDE methods are bet-
ter at targeting outliers, they are computationally expensive. Later, Zheng
et al. (2016) applied KDE in a multimedia network for outlier detection on
multivariate dataset. In another study, Smrithy et al. (2016) introduced a
non-parametric method for outlier detection in big data. Later, an adaptive
kernel density-based approach, a nonlinear method, based on Gaussian
Kernel, is proposed by Zhang et al. (2018). Later, Qin et al. (2019) proposed a
unique OD approach that perfectly applies KDE to effectively identify local
outliers from continuous datasets. This method facilitates to detect outliers
from high data stream, irrespective of data complexity and unpredictable
data update, which was a challenge earlier. They derived an approach to
successfully identify top-N outliers based on KDE on continuous data. Af-
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terwards, Ting et al. (2020) modified the KDE approach to identify similarity
between two distribution named isolation distribution kernel. Compared
to other kernel-based algorithm, the proposed method outperforms most
point anomaly detection. Although, KDE-based approach performs better
compared to other non-parametric models, they suffer from high dimen-
sionality in the feature space. Additionally, in general, they have high com-
putational cost too.

7.2.1.3 Miscellaneous statistical models
Among many proposed OD algorithms, most straightforward techniques
in statistical method are trimmed mean, boxplot, Dixon test, histogram,
and extreme studentized deviate (ESD) test (Goldstein and Dengel, 2012;
Walfish, 2006). The Dixon test works well with small size dataset, as no
assumption is required about data normalcy. The trimmed mean is not
a good approach among all others for OD, however, ESD test is a better
choice. Pincus (1995) introduced several optimization tests for OD that
could depend on parameters such as number and expected space of out-
liers. A histogram-based OD technique, HBOS (histogram-based outlier) is
proposed by Goldstein and Dengel (2012), which can create model of uni-
variate feature space by utilizing dynamic and static histogram bin width.
Here, each data point is scored as degree of outlierness. The algorithm
showed improved performance, especially faster computational speed over
traditional OD approaches (Jin et al., 2006; Tang et al., 2002; Breunig et al.,
2000). Nevertheless, the method faces difficulties finding local outliers with
its density approximation technique.

Hido et al. (2011) introduced a novel statistical methodology by apply-
ing guided density ratio approximation to detect outliers. The main idea
of the algorithm is to select density ratio between training set and test set.
A natural cross validation method was applied to optimize the value of
parameters: regularization and kernel width. To achieve better cross vali-
dation performance, unconstrained least square method was applied. This
method has an advantage over non-parametric kernel density estimation,
because hard density estimation isn’t required here. The method, in terms
of accuracy, shows improved performance in most cases. Improving density
ratio estimation of this method is an important research direction.
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Robust local outlier detection (RLOD), another method that adopts sta-
tistical measures to detect outliers is proposed by Du et al. (2015). This
pipeline assumes the fact that OD is sensitive to parameter tunning (Geb-
hardt et al., 2013) and most OD methods are focused to detect global out-
liers. The whole pipeline can be divided into three stages. At the first stage,
it applies three standard deviation measures to find density peaks of the
dataset. In the 2nd stage, remaining data points are labeled to the closest
higher density neighbors by assigning them in matching clusters. In the 3rd

and final stage, it applies density reachability and Chebyshev’s inequality
to locate local outliers for each collection. Campello et al. (2015) showed
that RLOD can both detect local and global outliers; they experimentally
showed that RLOD outperforms some former OD algorithms (Breunig et
al., 2000; Zhang, 2013) in terms of detection rate and execution time. RLOD
performance can be improved more by adopting parallel and distributed
computing. Later in another study, Li et al. (2020) proposed an effective
copula-based OD.

7.2.1.4 Advantages of statistical and probabilistic based methods
The fundamental mathematics behind statistical OD algorithms make
them easy to use. Due to their compact form, the models exhibit improved
performance in terms of detection rates and run times for a particular prob-
abilistic technique. For quantitative ordinal and real-valued data distribu-
tion, the models usually fit well, although results could be more improved
if ordinal data can be preprocessed. Despite some targeted issues, such as
high dimensional feature space, the models are convenient to deploy.

7.2.1.5 Disadvantages of statistical and probabilistic based methods
The parametric models assume underlying density distribution, which re-
sults in poor performance and often might bring unreliable outcomes
in real-world applications, such as managing data streams from a com-
plex network. Statistical-based approach is applicable mostly for univariate
datasets; therefore they don’t perform well for multivariate feature spaces.
If the models are applied to multivariate feature space, high computational
cost incurs, which make them a poor choice for multivariate data stream.
Additionally, the histogram cannot capture the interaction between fea-
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tures, which makes it a poor choice for high-dimensional data as well.
Therefore statistical methods that can investigate simultaneous feature
space can be promising research. To deal with the curse of high dimen-
sionality, specific statistical methods can be adopted, however, it results in
longer processing time and a misleading data distribution.

7.2.1.6 Research gaps and suggestions
Several common research gaps in statistical-based approach are poor accu-
racy, difficulties with high-dimensional datasets, and operational expense.
These gaps need to be addressed in the future to make the models more re-
liable. These methods, however, can be more effective if the applied model
is aware of the context. Time series data generated from critical infras-
tructures, such as smart grid and water distribution system, may contain
anomalous samples because of maintenance problems or intentional at-
tacks, however, their pattern is unknown to a learning model. In this sce-
nario, parametric methods fail to learn the underlying distribution, as it
constructs the model based on predefined data distribution. Therefore for
this case non-parametric methods are a better choice, as they don’t need to
know the underlying distribution of a given dataset. Also, parametric meth-
ods are not a better choice for large data stream, where outlier points are
dispersed evenly. Inaccurate labeling of outliers might occur if the thresh-
old is defined based on standard deviation to separate them. Using para-
metric methods for OD is a difficult task while applying GMM to manage
data stream and high-dimensional feature space. Therefore algorithms that
can easily manage data stream along with high-dimensional feature space
can make the model more scalable. High dimensionality also creates prob-
lem for regression models. To overcome this issue, targeted regression anal-
ysis can be adopted instead of ordinary regression analysis.

Non-parametric models, especially KDE are a better choice in most ap-
plications, however, they get computationally expensive in noisy environ-
ments. In contrast with parametric methods, KDE is scalable, although
computationally expensive for multivariate data. The histogram-based ap-
proach is a good fit for univariate data distribution, however, its inability
to investigate the interaction among features makes it a poor choice for
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FIGURE 7.3 Density-based outlier detection (Aggarwal, 2016).

multivariate data. Despite statistical methods inability to adopt some re-
cent application areas, they are still a good choice for targeted domain and
data streams. PCA methods by Saha et al. (2009) and Tang et al. (2015)
are effective approaches for OD. Goldstein and Dengel (2012) proposed
a histogram-based outlier (HBOS); it shows improved performance when
compared to other clustering-based models, such as local outlier factor,
local correlation integral, and influenced outlier in terms of calculation
speed, therefore is a good choice for real-time data (Breunig et al., 2000; Pa-
padimitriou et al., 2003; Jin et al., 2006). OD models scalable to large dataset
proposed by Du et al. (2015) and Hido et al. (2011) also proved robust in an-
alyzing outliers.

7.2.2 Density-based methods

Density-based OD is one of the most popular and prevalent techniques.
The main principal is that an outlier point can be found in a sparse region,
whereas normal points can be found in denser region. Fig. 7.3 presents
a two-dimensional dataset, where labeled point “A” and “B” are consider-
ably separated from the rest of the densely populated clusters, therefore are
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outlier points in this dataset. The core idea for detecting outlier points “A”
and “B” is that these points remain in sparse populations, whereas the nor-
mal points are in higher denser populations. Density-based methods seek
for differences between densities of a point with their local neighborhood.
Usually, density-based methods are computationally expensive compared
to distance-based methods. Despite this problem, density-based methods
are widely popular because of their simplicity and efficiency to detect out-
liers. Some baseline algorithms utilizing these methods are presented in
Breunig et al. (2000); Jin et al. (2006). Zhang et al. (2009b); Tang and He
(2017) presented algorithms that are developed and modified version of
those baseline one’s.

Local outlier factor (LOF): LOF is a popular method proposed by Breunig
et al. (2000), which is the base algorithm that represents density-based clus-
tering method for detecting outliers. K-nearest neighbor (KNN) technique
is used in this process for each point in a KNN set. LOF measures local
reachability density (lrd) to differentiate each point with its neighborhood.
Mathematically, lrd can be defined as

lrd (p) = 1∑
o∈kNN(p) reach−distk(p←o)

|kNN(p)|
(7.2)

LOF score: LOFk (p) = 1

|kNN (p)|
∑

o∈kNN(p)

lrdk (o)

lrdk (p)
(7.3)

where, lrdk (p) = lrd of point p

lrdk (o) = lrd of point o

The main idea of the LOF is to determine the degree of outlierness of an ob-
servation, while comparing its cluster with local neighbors. The LOF score
gets higher for an observation if its lrd value is less than the estimated
nearest neighbor. Logging lrd value and computing LOF score using KNN
approach costs O (k) for each data point. It is wise to use a valid index, be-
cause a sequential search of a size n dataset can cost n2 if a proper indexing
is not applied.

Schubert et al. (2014) addressed this shortcoming and introduced a sim-
plifiedLOF method, which makes the density estimation simpler. The sim-
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plifiedLOF method adopts KNN distance instead of LOF’s reachability dis-
tance.

dens (p) = 1

k − dist (p)
(7.4)

The simplifiedLOF is more computationally complex than LOF, but im-
proved in performance.

Connective-based outlier factor (COF): Tang et al. (2002) realized an im-
proved method, COF, over methods proposed by Breunig et al. (2000); Schu-
bert et al. (2014). The COF is almost similar to the LOF, although density
estimation calculation is different. The COF applies chain distance to cal-
culate local densities of neighbors, but Euclidean distance is generally ap-
plied to LOF. Because of applying chaining distance for density estimation,
this process assumes predefined population distribution, which is a major
drawback, because it often results in wrong density estimation. The authors
applied a new term- “isolativity” instead of “low-density” to locate outliers.
Isolativity is a unique measure that represents the degree of connectedness
of an observation with the remaining points. At point p, the COF value can
be expressed mathematically, while applying the KNN approach is

COFk(p) =
∣∣Nk(p)

∣∣ac − distNk(p) (p)∑
o∈Nk(p) ac − distNk(p) (p)

(7.5)

where ac−distNk(p) (p) = Average chain distance between point p and Nk(p).
In the neighborhood, COF modifies density estimation of the Simpli-

fiedLOF to verify the connectedness using a method called minimum span-
ning tree (MST). The computational cost is O(k2) that occurs for calculating
MST from KNN set. Except in circumstances, where datasets are character-
ized by connective data patterns, COF takes similar time as LOF for detect-
ing outliers.

Local outlier probabilities (LoOP): The LOF algorithm uses scores for each
datapoint of KNN. However, threshold selection for labeling datapoints was
a growing question. Therefore Kriegel et al. (2009b) proposed LoOP that
generates score with statistical probabilistic approach. In this method, den-
sity is estimated using distance distribution. LOF scores are presented as
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statistical probabilities. They compare the advantages of assigning proba-
bilities of a datapoint over outlier score in LOF. Mathematically LoOP can
be expressed as

LoOPs(O) = max

{
0, erf (

PLOFλ,S(O)

nPLOF.
√2

)

}
(7.6)

where, PLOFλ,S(O) = LOF probability wrt importance of λ, r

nPLOF = aggregated value

Normal points that are in denser population will have LoOP value almost
zero, whereas LoOP value towards 1 indicated loosely connected points
or outliers in the dataset. Just as simplifiedLOF (Schubert et al., 2014),
the LoOP also has same computational complexity for each point: O(k). A
significant difference for calculating local densities compared to previous
density-based methods is that it assumes and applies half-Gaussian distri-
bution for density estimations.

Local correlation integral called (LOCI): Papadimitriou et al. (2003) pro-
posed a method called LOCI that correctly handles multi-granularity issue,
where LOF (Breunig et al., 2000) and COF (Tang et al., 2002) both were un-
able to solve the problem. They defined an outlier metric-MDEF, short for
multi granularity deviation factor. According to the method, outliers are
points that are away from the neighbor of MDEF by at least three standard
deviations. Not only does this method find both remote cluster and con-
cealed outliers, but also deals with feature space local density variation. The
MDEF can be defined mathematically on a point pi within a radius r:

MDEF(pi, r,α) = 1 − n(pi,αr)

n̂(pi, r, α)
(7.7)

where, n(pi,αr) = αr neighborhood objects number

n̂(pi, r, α) = All the objects p’s average at r-neighborhood of pi

To get faster result from MDEF, the right side fraction needs to be mea-
sured after getting the value of numerator and denominator. So far, all the
OD algorithm we have discussed are based on KNN algorithm; detection
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of number of k is crucial to find outliers properly. The LOCI algorithm is
better, because it applies a maximization process to find out optimal k-
value. It is because for estimating local densities LOCI applies half Gaussian
distribution that mimics LoOP (Kriegel et al., 2009b). Instead of measur-
ing distances for density estimation, they aggregate the local neighborhood
records. Also, LoOP is different, because it of its unique neighbor compar-
ison. Although LOCI shows good results, it has longer run time. Papadim-
itriou et al. (2003) developed a different approach to increase the speed by
introducing quad tree with several constraints between two neighbors.

Relative density factor (RDF): Ren et al. (2004b) proposed a new technique
for effective OD by pruning datapoints located in deep cluster. This algo-
rithm takes advantage of large datasets and provides scalability. RDF adopts
a data model to identify anomalies, called P-tree. Higher RDF values indi-
cate greater outlier behavior of datapoints in the population. RDF can be
mathematically expressed on point p and radius r as

RDF(p, r) = DFnbr(P, r)

DF(P, r)
(7.8)

where, DFnbr (P, r) and DF(P, r) are both density factor

Influenced outlier (INFLO): INFLO is another technique based on LOF
(Breunig et al., 2000) and proposed by Jin et al. (2006). The method de-
tects outliers by assuming symmetric relationship between neighbors. One
shortcoming of LOF (Breunig et al., 2000) is that it fails to correctly de-
fine scores for datapoints at cluster border, where the clusters are related
closely. INFLO solves this problem by distinguishing different neighbor-
hood of context and reference set. The scores are calculated by both reverse
nearest neighbor and KNN. INFLO adopts both reverse nearest neighbors
and nearest neighbors techniques to achieve accurate neighborhood distri-
bution. Here outliers are observations that have higher INFLO values.

High contrast subspace (HiCS): Almost all the previous algorithms de-
scribed (LOF, COF, LOCI, and INFLO) suffer when calculating distances of
large dimensional feature spaces. However, a method proposed by Keller et
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al. (2012) for large dimensional dataset can successfully sort and rank out-
liers and their score: high contrast subspace method (HiCS).

Global-local outlier score from hierarchies (GLOSH): Campello et al.
(2015) proposed a method that includes beyond local outliers and extends
the investigation to detect global outliers. This method applies statistical
interpretation to find both local and global outliers. Although GLOSH isn’t
a generic algorithm, often it provides better results. The baseline algorithm
is KNN; therefore it has some common setbacks, which can be solved by
further improving density estimation.

Dynamic-window outlier factor (DWOF): Momtaz et al. (2013) proposed a
unique algorithm that detects top n number of outliers by assigning outlier
score called DWOF. This method deviates from its ancestor algorithms in
density-based methods. However, it closely complements Fan et al. (2009)
proposed resolution-based outlier factor (ROF). ROF performs better in
terms of accuracy and sensitivity to hyperparameters.

Algorithms for high-dimensional data: With the increment in data vol-
ume and complex networks, its highly required to design sophisticated and
efficient algorithms. Keeping that in mind, Wu et al. (2014) implemented
an algorithm that can handle high-dimensional data. The algorithm intro-
duces a new technique, called RS-forest, which is faster and more accurate.
It includes one class semi-supervised machine learning (ML) model. Later,
Bai et al. (2016) proposed a similar technique as Wu et al. (2014), which
can discover outliers in parallel. LOF (Breunig et al., 2000) is the base al-
gorithm, but a new computing method is introduced, called distributed
computing for density estimation. This algorithm works in two steps: at
first it partitions using grid-based technique, and then distributed comput-
ing identifies the outliers. Unfortunately, this algorithm doesn’t scale well;
earlier Lozano and Acuna (2005) fixed this issue by suggesting a technique
called PLOFA (parallel LOF algorithm), which improves scalability for big
data.

Other density-based algorithms: Tang and He (2017) proposed a method
to estimate density using kernel density estimation for measuring local
anomalies; a scoring process is introduced, called relative density-based
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outlier score. The model applies KDE that pays more attention on shared
neighbor and reverse neighbors, rather than KNN to compute density dis-
tribution. Distance measure is the same as UDLO (Cao et al., 2014a), which
is Euclidean distance. However, they need to compare different distance
measures to observe the changes before applying this method to real ap-
plications. Iglesias Vázquez et al. (2018) introduced a detection algorithm
for data that have low density population, called sparse data observation
(SDO). The SDO is a hungry learning algorithm that tries to learn quickly
and reduces computation time for each object compared to previous al-
gorithm in density-based methods that we have discussed so far. Ning et
al. (2018) proposed relative density-based OD method, which is a similar
method to Tang and He (2017); it’s a new technique to compute neighbor-
hood density distribution. Su et al. (2019) implemented local OD algorithm
on scattered dataset, instead of using the term LOF, they used local devia-
tion coefficient (LDC), because the LDC focuses on distribution of object
and neighbors. The algorithm removes normal points in a safe way and
keeps the outlier points as reminder; the process is called RCMLQ (rough
clustering based on multi-level queries. Since, it prunes the normal objects,
it is useful for local OD in large dataset. It showed better efficiency and ac-
curacy over previous local OD algorithms.

7.2.2.1 Advantages of density-based methods
Density-based OD algorithms apply non-parametric method to measure
density, therefore they don’t assume any predefined distribution model to
manage the dataset. LOF (Breunig et al., 2000), LoOP, INFLO (Jin et al.,
2006), and DWOF (Papadimitriou et al., 2003) are some of the baseline algo-
rithms that serve as the fundamental model. Density-based algorithms can
both identify local and global outliers, which make them useful for real-
world application and often outperform other statistical-based algorithms
(Wang et al., 1997; Akoglu et al., 2014; Hido et al., 2011). Additionally, the
fundamental concept is to estimate neighborhood density that provides
more flexibility to investigate crucial outliers, which can be easily mea-
sured by several other modern OD algorithms. Density-based algorithms
also facilitate excluding outliers from nearby denser neighbors. They hardly
require any primary knowledge, such as probability distribution, which
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makes the algorithm easy for hyperparameter tuning. In fact, only single
hyperparameter tuning brings good results. The algorithms are also useful
and efficient when it comes to detecting local outliers (Su et al., 2019).

7.2.2.2 Disadvantages of density-based methods
Although some of the density-based algorithm showed good performance,
they are computationally expensive and complicated when compared to
many statistical-based methods, including ones presented by Kriegel et al.
(2009a). Also, these methods are sensitive to the shape of the neighbors;
when cautiously tuning the size hyperparameter, they become computa-
tionally expensive, including increased runtime. It is also evident from the
applications that neighbors varying density creates complicated models
and generally generates poor result. Few density-based methods, such as
MDEF and INFLO, because of their complex density estimation process,
cannot handle datasets resourcefully, such as defining outleirness of an
object. Also, density-based models face challenge when it comes to man-
aging high-dimensional time series data. However recent algorithms seem
to overcome the problems by introducing pruning (Ren et al., 2004b) and
elimination (Su et al., 2019) techniques, among others.

7.2.2.3 Research gaps and suggestions
In general, since density-based OD’s are non-parametric methods, sam-
ple size is considered small for high-dimensional feature space. This chal-
lenge can be resolved by resampling the objects to enhance the process.
As density-based algorithms are based on k-nearest neighbors, therefore
proper selection of hyperparameter k is important to evaluate these algo-
rithms. Generally, computational expense using KNN is O(n2). However,
LOCI has greater complexity because of adding an extension, radius r;
therefore computational cost becomes O(n3). So, LOCI, when applied to
big data, gets very sluggish to compute OD. Goldstein and Uchida (2016)
compared LOF and COF. They concluded that applying spherical density
estimation using LOF creates a poor-quality process for OD. However, COF
applies connectivity feature to estimate density pattern to solve the issue.
INFLO, when applied to closely related clusters with varying densities, per-
forms better by generating enhanced outlier scores.
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7.2.3 Clustering-based methods

Clustering-based OD differentiates between clusters and outlier points. A
simple description would be: each datapoint in a given dataset that belongs
to a cluster is either an outlier or a normal point. The goal for clustering is to
separate the points from denser and sparse population; generally, a sparse
region contains most of the outliers. Therefore most clustering algorithms
get outliers as a side product of their analysis. While detecting outliers using
clustering-based approach, a score is provided that represents the degree of
outlierness of a sample. Outlier score can be calculated using the distance
between a datapoint and nearest cluster centroid. Because of different clus-
ter shape, Mahalanobis is a good distance measure that scale well for the
clusters. Mathematically, Mahalanobis distance from datapoint X to cluster
distribution with centroid μ and covariance matrix � is

MB(X,μ,�)2 = (X − μ)�−1(X − μ)T (7.9)

Here, X = dataset,

� = covariance matrix,

μ = attribute wise means of d dimensional row vector

After scoring each datapoint with the Mahalanobis distance, binary labels
can be assigned by selecting extreme comparison. Mahalanobis distance
can be visualized as the Euclidean distance between a sample and a cluster
centroid. This distance measure indicates data locality characteristics by
providing statistical normalization.

Fig. 7.4 illustrates the effects of identifying outliers, while considering
data locality. Here, Euclidean distance measure will consider point “A,” an
outlier over point “B,” because of the normal distance measure. However,
Mahalanobis distance, considering data locality, provides point “B” as more
anomalous than point “A,” which makes sense visually (Fig. 7.4). Therefore
defining a proper number of clusters and a suitable distance measure re-
sults in successful outcome of the OD algorithm.

Detecting outlier using clustering-based approach is dependent on
properly defining cluster structure of normal instance (Al-Zoubi, 2009),
which comes from the effectiveness of the algorithm. These algorithms
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FIGURE 7.4 Clustering-based OD method (Aggarwal, 2016).

are unsupervised since they don’t need any previous knowledge of fea-
ture distribution. Many OD techniques are introduces based on clustering
algorithms; Zhang (2013) categorized several of them. Clustering-based ap-
proach is a broad category and can be grouped into several subgroups as
following:

Clustering methods based on partitioning: These clustering methods are
based on distance-based technique, where cluster numbers are selected
initially or provided randomly. Algorithms belong to this subgroup are pre-
sented by MacQueen (1967); Ng and Han (1994); Kaufman and Rousseeuw
(2009).

Clustering methods based on density: In contrast to partitioning-based
clustering approach, defining initial number of clusters for these models
isn’t required. However, they can model the cluster into denser and non-
denser groups given the radius of a cluster. Algorithms belonging to this
subgroup are studied by Hinneburg and Keim (1998), including density-
based spatial clustering of applications with noise (DBSCAN) by Ester et
al. (1996).
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Clustering methods based on hierarchy: In this subgroup, the algorithms
partition the cluster into different levels structured like a tree. Algorithms
belonging to this subgroup are presented by Karypis et al. (1999); Guha et
al. (2001); Zahn (1971).

Clustering methods based on grids: Algorithms belonging to this subgroup
are presented by Zhang et al. (2005); Sheikholeslami et al. (2000); Wang et
al. (1997).

Clustering methods based on high dimensional features: Algorithms be-
longing to this subgroup are presented by Agrawal et al. (1998); Aggarwal
et al. (2004). Besides that, Cao et al. (2006) proposed a two-stage algorithm
called DenStream. They applied density-based approach for both offline
and online OD. The first stage summarizes the given time series dataset,
then the second phase organizes clusters from the summarized data. The
DenStream creates a microculture to separate outliers and normal data
points. A micro cluster is a real outlier if its weight is less than the predefined
threshold and being pruned by the model afterwards. The authors per-
formed a comparison between DenStream and CluStream (Aggarwal et al.,
2003) to present their models’ effectiveness. DenStream shows improved
performance, because it avoids using memory space and utilizes taking
snapshots on a disk. However, the model faces difficulties when adjusting
dynamic parameters in time series datasets and locating arbitrary cluster
shapes with multiple levels of granularity. Solving these issues can be a good
future study. Later, Chen and Tu (2007) proposed an algorithm like the Den-
Stream, regarding offline and online OD, called D-Stream; the only differ-
ence is that D-Stream is a grid-based OD algorithm. Outliers, compared to
previous algorithm, can be found easily by exploiting the definition of noise
in terms of dense, sparse, and sporadic grid. A density threshold is selected
to which the sporadic grids are compared, if less than the threshold the
datapoints are considered outliers. Also, the algorithm performs better in
terms of clustering and runtime compared to CluStream. In another study,
Assent et al. (2012) implemented an algorithm called AnyOut for computing
outliers from data stream anytime. The AnyOut algorithm builds a precise
tree topology, ClusTree, to identify outliers at any time, whether the data are
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constant or varying. ClusTree is a special feature of the model; it plays a part
in creating the clusters.

A clustering-based approach using k-means was proposed by Elahi et al.
(2008); it detects outliers by splitting data streams into chunks. Although
the model doesn’t perform well for grouped outliers. They experimentally
presented following: comparison with some existing approach (Angiulli
and Fassetti, 2007b; Pokrajac et al., 2007) demonstrates that the model has
improved performance for investigating outliers from data streams. The au-
thors suggested that combining distance-based methods with their cluster-
ing model will yield better results. However, the model merely discovers the
outliers, but doesn’t assign any outlier scores. MacQueen (1967) presented
a pipeline to investigate outliers in varying data streams by utilizing similar
approach as k-means. The model assigns weights for each feature based on
their significance. The weighted features are significant, during algorithm
processing they restrain noise effect. Comparing the algorithm with LOF
(Breunig et al., 2000), it showed better detection rate, including low time
dissipation and low false positive rates. However, the algorithm doesn’t de-
fine the degree of outlierness; therefore it might be a good future study to
extend the pipeline and make it scalable over different data types. Later in
another study, Morady et al. (2013) tried to implement cluster-based al-
gorithm for big data, applying k-means algorithm to build an advanced
pipeline; it was deemed successful.

Bhosale (2014) combined both partitioning and distance-based ap-
proach to build an unsupervised model for data streams. They used par-
titioning clustering scheme (Ng and Han, 1994), which provides weights
to the clusters according to their adaptivity and relevance by utilizing
weighted k-means clustering. The concept of the model can evolve and
adapt incrementally. The authors mentioned that it has higher OD rates
than Elahi et al. (2008), and they suggested to include both categorical and
mixed data as part of a future study. Another interesting method proposed
by Moshtaghi et al. (2014) showed a clustering algorithm that can identify
outlier beyond the cluster boundary. To observe the primary change is data
stream distribution, the model continuously updates mean and covariance
matrices. In another study by Moshtaghi et al. (2015), they proposed an-
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other framework on top of their previous one (Moshtaghi et al., 2014). The
authors applied elliptical fuzzy logic to model the streaming data, to iden-
tify outlier; fuzzy parameters are updated by same style as in Moshtaghi
et al. (2014). For evolving dataset, Salehi et al. (2014) implemented an ar-
chitecture based on ensemble learning. Ensemble methods create several
clustering models instead of modeling the data streams and updating it
from time to time. Evaluating all the clustering models, few are selected
to measure the degree of outlierness for each datapoint. An efficient algo-
rithm, based on clustering technique, was proposed by Chenaghlou et al.
(2017). It showed improved memory usages and lower run time by present-
ing the concept of an active cluster. For any given data, they are divided into
chunks, where active clusters are analyzed in each chuck of data; the un-
derlying data distribution also gets revised. Rizk et al. (2015) implemented
an algorithm that investigates outliers in both small and large clusters. In
another study, Chenaghlou et al. (2017) modified the method to perform
detection in real time by Chenaghlou et al. (2018). Additionally, the model
can detect cluster evolution sequentially. An effective algorithm, a clus-
ter text OD algorithm, is proposed by Yin and Wang (2016). If the chance
of recognizing a cluster is low, it’s highly probable to be an outlier. The
model presents a technique (GSDPMM: Gibbs sampling of Dirichlet pro-
cess multinomial mixture) to find if a document that held in a cluster is
an outlier. Relating GSDPMM with incremental clustering can be a worthy
research direction, as GSDPMM has a potential in incremental cluster-
ing. Later, Sehwag et al. (2021) proposed a unique framework, called self
supervised detection (SSD), based on unlabeled distributions. They ex-
perimentally showed that their method, when it comes to unlabeled data,
outperforms some of the traditional OD algorithms, and even performs bet-
ter than supervised detectors.

7.2.3.1 Advantages of clustering-based methods
Clustering-based methods are unsupervised, therefore if underlying distri-
bution knowledge is not necessary, then these models are a suitable choice.
After the models learn about the clusters, they can test additional data-
points for detecting outliers. Again, the unsupervised nature is suitable for
incremental model as underlying distributions aren’t required. They are
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robust algorithms and can manage versatile data types. For example, the
hierarchical clustering methods for OD are good choices for different data
types; they produce nested multiple partitions, which is helpful for users to
select partitions belonging to a certain level.

7.2.3.2 Disadvantages of clustering based methods
A major drawback of clustering-based algorithm is that the outliers aren’t
assigned a score, but binary labeling, where score represents degree of out-
lierness for a sample. Scoring is necessary, because it helps to back track
model actions; therefore the actions of a model become final and cannot
be undone. Declaring the best number of clusters initially is a difficult job,
and most of the clustering algorithm often face difficulties with it. Also, if
the cluster shape is arbitrary, the algorithms face problems understanding
exact clusters from a given dataset. Therefore to perform well, the shapes of
several clusters need to be defined initially, although it is a daunting task to
provide the shape and distribution of multiple clusters. Partitioning-based
methods are very sensitive to initialization of parameters, such as density-
based methods. Nevertheless, they are inadequate to describe clusters and
in most cases are not suitable for very large dimensional datasets. Addition-
ally hierarchical-based clustering methods showed expensive simulations
in methods proposed by Karypis et al. (1999) and Zahn (1971), which makes
them a poor choice for large datasets.

7.2.3.3 Research gaps and suggestions
It is important to note that, when designing any cluster-based models sev-
eral questions need to be answered. In relation to an object defined as
outlier: does it belong to a cluster, or is it located outside of the cluster
boundary? If the distance between the object and the cluster centroid is dis-
tance, can it be labeled as outlier? If an object fits in a sparse or insignificant
cluster, how can the labeling be performed within the cluster? Although
clustering-based models have several drawbacks, they are good choices for
most cases. Data stream is an interesting area for many researchers to apply
cluster-based algorithms. For hierarchical- and partitioning-based cluster-
ing methods, speeding up the calculation process for large dataset and re-
ducing CUP usage could be a suitable research direction. Detecting outliers
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from lower density populations or within a low density cluster can make the
algorithms robust.

7.2.4 Distance-based methods

Distance-based OD methods are popular in many application domains,
the foundational technique behind this method is nearest neighbor model.
A straightforward example of this method would be to apply KNN to a
dataset, and based on distance of a data point, it’s either reported as an
outlier or non-outlier. By closely relating to density-based assumptions,
distance-based methods have underlying assumptions that outlier points
KNN distances are large compared to normal data points. In contrast, with
clustering-based approach, they are more granular in their analytical pro-
cedure. Therefore these models are more effective in separating strong and
weak outliers from malicious datasets. Again, referring to Fig. 7.1, it is ev-
ident that clustering-based methods face difficulties detecting outliers in
noisy data. According to the definition of clustering-based outlier defini-
tion, outlier point “A” and nearest centroid of a cluster will be similar for
both Figs. 7.1(a) and 7.1(b). On the contrary, distance-based methods con-
sider distances from point “A,” and noisy data are handled accordingly in
terms of distance estimation. However, cluster-based methods can be mod-
ified to address the issue of noisy samples, in that case, these two methods
have the same organization, as they are closely related. The distance-based
algorithms provide scores to each datapoint incurring operational com-
plexity proportional to O(n2). If binary labeling is expected as the outcome
of the model, pruning techniques can be used to speed up the model sub-
stantially.

7.2.4.1 K-nearest neighbor models
KNN is one of the fundamental algorithms for distance-based OD ap-
proaches. Initially, nearest neighbor methods detect global outliers, and
then assign them outlier scores. In KNN classification, distance informa-
tion is investigated form a point to its neighbor, whether it’s close or not.
The fundamental idea is to utilize distance estimation to identify outliers.
Knorr and Ng (1998) proposed a novel approach based on a non-parametric
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technique that showed significant improvement over state-of-the-art OD
algorithm at the time, especially for large dataset. Their approach differs
from some of the previous method proposed by Yang et al. (2009b) and Sat-
man (2013), where a user doesn’t know about the underlying distribution
of the dataset. Their computational complexity is O

(
kN2

)
, where N is the

number of the datasets and k is the dimensionality. In Knorr and Ng (1998),
nested loop and indexed-based algorithm were applied to design OD mod-
els. Afterwards, Ramaswamy et al. (2000) proposed an improved technique
that addressed the shortcomings of OD model by Knorr and Ng (1998), ad-
dressed computational cost, ranking method, and distance. They adopted
the kth nearest neighbor that helps to ignore assigning distance parameter
for the OD model. In another study, Knorr et al. (2000) expanded OD model
proposed by Knorr and Ng (1998), modified nearest neighbor estimation by
applying X-tree, KD-tree, R-tree, and indexing structure. For each example,
the index structure is queried for nearest k points. Finally, top n number
of outlier candidates are selected. However, the model falls apart when ap-
plied to large dataset of index structure.

Angiulli et al. (2006) proposed a technique that detects top-n number
outliers from an unlabeled dataset. After that, the model predicts if a par-
ticular point is either an outlier or not. Top outliers get the highest weights;
this is done by observing if a sample’s calculated weight is higher than the
top-n highest weights. Their approach incurs an O(n2) computational com-
plexity. Later, Ghoting et al. (2008) developed an algorithm to address draw-
backs of OD methods by Knorr and Ng (1998) and Ramaswamy et al. (2000),
where they tried to improve the run time for high-dimensional feature
space. They named the model recursive binning and re-projection (RBRP).
In 2009, Zhang et al. (2009b) took a different path and projected an algo-
rithm called local distance-based outlier factor (LDOF), which manages
local outliers. Their study presented significant improvement compared to
LOF (Breunig et al., 2000) in terms of range of neighbor size. This algo-
rithm is similar in performance to KNN OD methods, such as COF (Tang et
al., 2002). However, sensitivity on parameter value is insignificant. Later in
2013, a new model, called rank-based detection algorithm (RBDA), was pro-
posed by Huang et al. (2013) to rank neighbors. It understands the meaning
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and nature of high-dimensional dataset by providing a feasible solution.
The key assumption of the model is this: objects will be similar and close
to each other, thereby sharing similar neighborhood if they are generated
from the same apparatus. Instead of taking object distance information
from neighbors, the model considers individual objects ranks which are
close to the degree of proximity of the object. Another method, proposed
by Bhattacharya et al. (2015), applies reverse nearest neighbor and nearest
neighbor as an extended study of RBDA.

Dang et al. (2015) applied an OD algorithm using KNN in large traffic data
in big cities. The model they proposed detects outliers by exploiting the
information among neighborhoods in which outliers are far from neigh-
bors. This pipeline shows improved accuracy (95.5%), which is better than
some statistical methods, such as GMM (80.9%) and KDE (95%). Despite
improved accuracy, it has trouble keeping a single distance-based measure.
Wang et al. (2015) used a least spanning tree to increase searching mecha-
nism of neighbors of KNN algorithm. In another paper, Radovanović et al.
(2015) proposed a reverse nearest technique to manage high-dimensional
feature space. They presented the pipeline that can both manage low- and
high-dimensional datasets. In terms of OD rates, this method works bet-
ter than the original KNN method presented in Ramaswamy et al. (2000).
Their method shows good performance on high-dimensional datasets. In
contrast to OD model proposed by Ramaswamy et al. (2000), Jinlong et al.
(2015) modified a technique to get the neighborhood information using a
natural neighbor concept. In another study, Ha et al. (2015) implemented
a heuristic technique to achieve k value by employing random iterative
sampling. Recent study on OD in local KDE is investigated by Tang and
He (2017). Several types of neighborhood information were examined by
them, including k nearest, shared nearest, and reverse nearest neighbor.
The KNN-based approaches are easy to implement despite their sensitiv-
ity to parameter selection and less superior performance.

7.2.4.2 Pruning techniques
Pruning technique is popular tool in ML models. A method, utilizing prun-
ing technique method and randomization rule, based on nested loop, is
presented by Bay and Schwabacher (2003). They modified the nested loop
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technique, which was earlier known as quadratic O(n2) in performance
and transformed into almost linear for most of the datasets. However, vari-
ous assumptions in this pipeline resulted in poor performance. In another
study, Angiulli and Fassetti (2007a) presented a generic pipeline, where
outliers are detected by pushing data in an index. While developing the
algorithm, they focused on minimizing input and output cost as well as
CPU cost, because these costs were a major challenge in previous research
(Knorr and Ng, 1998; Knorr et al., 2000; Ren et al., 2004a), where they
achieved both demands simultaneously. Ren et al. (2004a) implemented
a model to improvise the model proposed by Ramaswamy et al. (2000);
they added pruning and labeling techniques to present a vertical distance-
based OD algorithm. The method is implemented on both with and without
pruning method, while adopting P-tree. Applying P-tree technique to other
density-based OD can be a good future work. Later, another technique was
developed to improvise OD model proposed by Ren et al. (2004a) for speed-
ing up the detection process by Vu and Gopalkrishnan (2009), where similar
pruning techniques are applied.

7.2.4.3 Time series data
Time series continuous data naturally create problems, such as uncertainty
(Shukla et al., 2015), multidimensionality, notion of time, and concept drift,
while applying them to an OD model. Usually, time series data are seg-
mented by a time window. Two popular time series window methods are:
a) sliding window (Angiulli and Fassetti, 2010), where two sliding endpoints
are used to mark a window, and b) landmark window, where time points
are identified to analyze from-to timeframes. A novel pipeline, proposed by
Angiulli and Fassetti (2010), utilizes distance-based approach, where three
different algorithms were developed for OD in time series data. They named
the pipeline STORM (stream outlier miner). STORM utilizes two modules:
data structure and stream manager, where the later collects continuous
data streams, and the former is applied by the stream manager. However,
sorting cost of window is a shortcoming of the algorithm, and colossal
memory creates a burden, as it cannot fit properly into memory. Later, Lai
et al. (2021a) performed OD time series benchmarked dataset and defined
new context aware OD.
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In another study, Yang et al. (2009a) developed several methods: Extra-
N, Exact-N, Abstract-C, and Abstract-M to detect outliers based on neigh-
borhood pattern information in the sliding window. This approach makes
proper use of incremental OD by utilizing neighbor pattern in the slid-
ing window of the dataset, which was not studied in earlier algorithms,
such as DBSCAN (Zhang, 2013). This algorithm shows improved perfor-
mance, linear memory utilization per object in a sliding window along
with lower computational cost. Abstract-C applies a distance-based ap-
proach, whereas Extra-N, Exact-N, and Abstract-M utilize density-based
cluster methods.

In another study, Angiulli and Fassetti (2007a), several issues were dis-
cussed in event detection, which were tackled by Kontaki et al. (2011), along
with sliding window issues on time series data (Yang et al., 2009a). Angiulli
and Fassetti (2007a) applied step function for processing the OD, wherein
two algorithms parallelly utilize the sliding window. The primary focus in
Kontaki et al. (2011) was to make the method flexible, lower storage usages,
and enhance model efficiency. To support these ideas, three algorithms
were proposed: COD, ACOD, and MCOD, short for continuous, advanced
continuous and micro-cluster-based advanced OD, respectively. COD has
two versions that support multiple values of k and a fixed radius R, where k
and R are the parameters for OD algorithm. On the other hand, both multi-
ple radius and k values are supported by ACOD. MCOD needs less distance
calculation done for OD by minimizing query range. COD, compared to
STORM and Abstract-C algorithm, reduces the number of objects in each
window and requires less memory space. Another method was developed
to process large data volume proposed by Cao et al. (2014b); it optimizes
the range queries by not storing the objects in same window of same index
structure. It is experimentally proven by the authors that MCOD is the most
successful performing OD among COD, ACOD, and MCOD.

7.2.4.4 Advantages of distance-based methods
These methods don’t rely on underlying distribution of data to detect out-
liers, thereby are straightforward algorithms. They also perform better com-
pared to statistical-based methods and scale well for high-dimensional
dataset because of their robust architecture.
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7.2.4.5 Disadvantages of distance-based methods
Although distance-based methods perform better on high-dimensional
feature spaces than statistical-based methods, the increasing dimensions
issue reduces their performance. This is because different objects have
distinctive attribution in the given dataset, which make it difficult for the
model to measure distance among such objects. Also, if KNN is applied for
computing distance-based OD, then the model becomes computationally
expensive and unscalable. For data streams, distance-based methods face
difficulties in both data distribution in local neighborhood and investiga-
tion of KNN in the time series data.

7.2.4.6 Research gaps and suggestions
Distance-based algorithm are effective mathematical tools to seek anoma-
lies in a dataset. One major challenge is to scale for high-dimensional
dataset (Aggarwal and Yu, 2001). Very large feature spaces and object’s ran-
dom attributions force models to underperform. Not only increasing fea-
ture space reduces the ability of the model to describe by distance mea-
sures, but also makes it difficult to comprehend the indexing approach to
assigning neighbors. Additionally, multivariate data make the model less
scalable when calculating distance measures. The models can be modified
further by both improving execution time and memory usages. Another
challenge is the quadratic complexity of the models, where researchers de-
veloped many techniques, including pruning and randomization (Bay and
Schwabacher, 2003) and compact data structure (Bhaduri et al., 2011; van
Hieu and Meesad, 2016). Distance-based methods are unable to detect lo-
cal outliers, therefore often global information is calculated instead. To
achieve desired scores from KNN algorithms, datasets need to be appro-
priate and properly processed. Selecting appropriate parameters, including
proper k value, dictates performance of the model, and optimizing value of
k and other parameters isn’t easy always.

7.2.5 Ensemble methods

Recently, many domains, such as healthcare and technology, apply meta-
algorithms for data mining problems, such as classification or clustering
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to improve the solution. Such meta-algorithms create a series of multi-
ple learning techniques: combinedly acts as a robust algorithm known as
ensemble. Ensemble methods are mostly used in ML for their superior
solutions compared to other traditional methods. These approaches are
relatively new, and applied mostly on clustering and classification prob-
lems. The main idea behind this method is to train a dataset with multiple
weak learners, while each learning outcome gets improved by a subsequent
learner, therefore reducing the loss function. This working architecture lets
the model be independent of dataset localizations. Although, detecting out-
liers using ensemble is not straightforward, many algorithms are proposed
in recent years: bagging, boosting, bagged outlier representation ensem-
ble (BORE), extreme gradient boosting OD (XGBOD), and isolation Forest
(Lazarevic and Kumar, 2005; Rayana and Akoglu, 2016; Micenková et al.,
2015; Zhao and Hryniewicki, 2019b; Liu et al., 2008). Bagging and boosting
algorithms solve classification problems; for sequential methods XGBOD is
applied; for hybrid and parallel models, BORE and isolation forest are ap-
plied.

One of the first ever ensemble method is known as bagging, refined
recently by Lazarevic and Kumar (2005); it shows improved performance
over large dimensional dataset by utilizing feature bagging techniques. This
technique splits and creates random subsets of features and combines the
outcome of multiple detection algorithms applied separately onto the sub-
sets of features. Each algorithm is randomly assigned a small subset of
feature to provide an outlier score; these scores are labeled to all the dat-
apoints. They experimentally showed that bagging has improved perfor-
mance, because it focuses on the outcome of multiple algorithms, where
each algorithm targets a small portion of a feature.

In another study, an ensemble method is presented for outliers’ detec-
tion by Aggarwal (2013), which was later discussed by many others (Kirner
et al., 2017; Campos et al., 2018). Others proposed bagging (Lazarevic and
Kumar, 2005) and boosting (Campos et al., 2018) from a classification con-
text for ensemble analysis; also, alternative clustering (Müller et al., 2010)
and multi view (Bickel and Scheffer, 2004) methods were proposed from a
clustering context. Some critical questions were answered, such as how to
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categorize if ensemble methods are independent or sequential, and how
to categorize if ensemble methods are model- or data-centered? Ensem-
ble algorithms are generally classified based on component independence.
For instance, the components in boosting algorithms are not independent
of each other, because results in each stage depend on prior executions,
whereas bagging is the opposite, which makes their components indepen-
dent of each other. Also, if the methods are model-centered, then the com-
ponents of ensemble analysis are independent.

Later, several succeeding works have performed using ensembles for
OD, including Nguyen et al. (2010), Kriegel et al. (2011), and Schubert
et al. (2012), which face various challenges. One of the issues is to score
comparison provided by mixture models and various functions for out-
liers and combine them to get a general outlier score. In another study,
Schubert et al. (2012), based on outlier scores, compared the outlier rank-
ing by observing similarity events. Their approach is a greedy technique
that achieved good performance through differentiating actions. In another
study, Nguyen et al. (2010) addressed problems with high-dimensional
dataset and combined non-compatible OD method to form a unified ap-
proach. They implemented various scoring technique, each time to de-
termine the degree of outlierness of a sample instead of using same ap-
proach repeatedly. Because of their heterogeneous approach, they called
their method heterogeneous detector ensemble (HeDES), which represents
combination of functions and heterogeneity affair. The HeDES, in contrast
to methods proposed by Lazarevic and Kumar (2005), assign score types
and scores for different outliers. The method shows improvement on real-
world dataset. However, modification on the algorithm to handle large di-
mensional dataset can be a good research experiment.

Later in another study, Zimek et al. (2013) applied an arbitrary subsam-
pling approach to calculate local density of nearest neighbors. When sub-
sampling techniques are used on a dataset, usually training objects can be
obtained without replacement, therefore they enhance OD performance.
Also, subsampling technique with other OD can give good results as well.
Zimek et al. (2014a), later investigated an ensemble learning approach for
OD; the pipeline brings a perturbation technique to account for different
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diversities in different outlier detectors as well as adopting a method that
considers outlier rankings combinedly and distinctively.

As we suggested earlier, Pasillas-Díaz and Ratté (2016) did apply both
feature bagging and subsampling technique together. Each technique is
assigned to a different task: feature bagging extracts various information
during each iteration, whereas subsampling technique scores different sets
of data. However, getting variance of objects by using feature bagging was
a drawback and the result depends on the size of the subsample. Except
for these shortcomings, the method has improved in performance. An-
other method that dynamically combines the score values, an unsupervised
framework, is proposed by Zhao and Hryniewicki (2019a); they developed a
way to combine and select outlier scores, even if the ground truth is absent.
Zhao et al. (2018) proposed a similar approach as Zhao and Hryniewicki
(2019a), and implemented four variations of it.

7.2.5.1 Advantages of ensemble methods
The ensemble analysis is better for investigating outliers because of their
much better prediction models. Bagging and boosting are two popular and
efficient algorithms. They are robust and less dependent on a particular
dataset in data mining processes. Ensemble methods are suitable for adopt-
ing high-dimensional datasets, which used to be a burden for traditional
OD algorithms.

7.2.5.2 Disadvantages of ensemble methods
Mathematically, ensemble analysis isn’t that much robust as other data
mining techniques, it is because they are not properly developed yet. This
results in poor feature evaluation along with difficulties in selecting contex-
tual meta-detectors. Various algorithms are combinedly working, and since
the sample space is smaller, researchers face challenges managing real data
in some cases using these methods.

7.2.5.3 Research gaps and suggestions
Although ensemble analysis has shown robust results, there are still is-
sues that need to be fixed. They show good performance when streaming
data has noise in it, because individual classifiers face difficulties when it
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comes to the quality of data and processing time. However, combinedly,
those classifiers yield good outcome. Zimek et al. (2014b) addressed multi-
ple challenges along with data quality and processing time, which has been
brought under consideration by developing models, such as Nguyen et al.
(2010), Aggarwal and Sathe (2015), Liu et al. (2008), and Kriegel et al. (2011),
to improve ensemble analysis for detecting outliers. Also, several research
gaps have been addressed by Zimek et al. (2014b), although ranking out-
liers from different detectors and diversifying principal proposals remains
an open research challenge. Several techniques (Zimek et al., 2014b; Rayana
and Akoglu, 2016) don’t require detector selection process, therefore these
methods, in absence of detector selection process, hardly help in speeding
up identifying unknown outliers.

7.2.6 Learning-based methods

Learning-based methods are applied to different sub-discipline in ML. In
this section, we discuss four categories: Subspace, Active, Graph-based and
Deep Learning (DL).

7.2.6.1 Subspace learning models
OD models that have been discussed so far, usually identifies outliers from
all the space and dimension. However, outliers often represent different
attributes in the local neighborhood on declining dimensional subspace.
To address this issue, Zimek et al. (2013) presented that appropriate selec-
tion of a subset carries significant attribute information. On the contrary,
residual attributes have less importance or sometime has no importance
at all, and they delay the OD process. Subspace learning in OD is popu-
lar for high-dimensional areas. The fundamental focus is to identify dis-
similar dimension subsets and meaningful outliers form a given data. We
can further categorize these studies into two subcategories: relevant sub-
space methods (Huang et al., 2013; Muller et al., 2008) and sparse sub-
space methods (Zhang et al., 2009a; Dutta et al., 2016). The sparse sub-
space learning techniques project high-dimensional datasets onto sparse
and low-dimensional subspace. The outliers are the ones located in sparse
subspace, because they are characterized as lower density. Projecting high-
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dimensional space onto sparse subspace is time consuming, therefore a
big challenge. Aggarwal and Yu (2005) addressed this issue and proposed
a method for effective subspace exploration, where an evolutionary al-
gorithm gathers the subspaces. Here, initial population dictates the algo-
rithms performance evaluation.

Later, Zhang et al. (2009a) proposed a method that focuses on spares
subspace technique’s path. The method applies the idea of lattice to de-
note subspace relationship; sparse subspace is related to lower density co-
efficient. Applying the idea of lattice makes the model perform poorly and
complex in architecture. A new way to get sparse space is implemented
by Dutta et al. (2016), here sparse encoding is used to transform objects
to multiple linear space. Relevant subspaces are used by outlier detectors
to find local information as they are essential features in this case. A rele-
vant subspace method is proposed by Huang et al. (2013), called subspace
OD (SOD). The method examines correlation of every object with its shared
nearest neighbor; instead of taking distance from objects to its neighbors,
the model considers ranks of each object that is close to the proximity of
the object. Here, primarily the variance of the features is focused by SOD.
Another method, in contrast to SOD, signifies the relationship between fea-
tures is proposed by Müller et al. (2011).

In another but similar study, Kriegel et al. (2009c) presented OD method
that achieve relevant subspace, where distances are computed by Maha-
lanobis technique through gamma distribution. Principal component anal-
ysis is used in this context. In contrast to Müller et al. (2011), the key differ-
ence is the requirement of large local dataset to recognize the abnormality
trend. This impacts the scalability and flexibility of the method in a grad-
ual manner. To tackle flexibility problem, a similar method is proposed
by Keller et al. (2012) that identifies subspaces and ranks the outliers. The
Monte Carlo method, a sampling technique, is implemented, called high
contrast subspace (HiCS), where LOF scores are combined based on HiCS
values. In another study by van Stein et al. (2016), after achieving HiCS in-
stead of using LOF scores, LoOP scores are used to calculate the degree of
outlierness.
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Nevertheless, though the subspace learning methods are highly efficient,
for OD, in several cases, they are computationally expensive. Searching for
subspaces in high-dimensional space is a daunting task, which makes the
pipeline more complex.

7.2.6.2 Active learning models
Active learning methods are semi-supervised learners through input
sources or by interacting with users to get the desired outputs (Das et al.,
2016). For instance, for large dataset that require labeling, doing so manu-
ally is an exhaustive process. Since the method queries the user iteratively,
this supervised approach is called active learning. When an active learn-
ing algorithm is trained, it can find smaller portions of the dataset that
contain the labels. This helps the algorithm to re-train and boost for im-
provements. Also, by querying labels for instances from the user iteratively,
it provides better suggestions. Recently, researchers have been focusing on
this approach for OD in different domains (Zhang et al., 2009a; Dutta et
al., 2016; Yiyong et al., 2007; Muller et al., 2008). Aggarwal and Yu (2005)
applied active learning to unveil the reason for flagging the outliers and
the reason behind high computational demand for estimating density for
OD methods. The sampling process that was applied is called ensemble ac-
tive learning. Later, Görnitz et al. (2014) applied an active learning method
for OD; they alternatively repeated the learning process and updated the
model to improve prediction results. After training on improved and unla-
beled examples, the active learning method is applied.

In another study, input from a human analyst is provided to get better
result using active learning (Dutta et al., 2016; Yiyong et al., 2007). Although
they selected good portion of instances for the querying process, they didn’t
provide any explanation or clear insight or interpretation for the model de-
sign procedure. However, later they attempted to address the issues; a mod-
ified active learning approach is proposed by Das et al. (2019). They called
the method glocalized anomaly detection (GLAD). Their primary focus is
to adopt ensemble outlier detectors so that they can solve active learning
problems. The end users have the control to global outlier detector; GLOD
attains the local weights of data instance by learning automatically. Here,
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label feedback helps to implement this process. Also, proper tuning of en-
semble detectors helps to identify maximum number of accurate outliers.
This pipeline is also known as human-in-the-loop, where label feedback is
achieved by a human analyst in each iteration round. In another study, Zha
et al. (2020) proposed a deep reinforcement learning-based OD algorithm,
which detects outliers by achieving balance between long- and short-term
rewarding processes.

Even though active learning serves a great purpose in OD community,
there is still scope for improvement. Receiving inputs from human analyst
is a daunting task; an AI assurance method is required to minimize the ef-
fect of false positive labeling, while designing the model. Active learning
methods are better at identifying outliers. However, more interpretation
techniques should be adopted to explain the results.

7.2.6.3 Graph-based learning models
Graphs are known as data structure that can adapt various algorithm, es-
pecially neural network, to perform learning task, such as clustering, clas-
sification, and regression. Applications of graph data are getting popular
for OD in various sectors. Initially, these algorithms transform each vector
node into a real vector. Then the outcome is a vector representation of each
node, where information gets preserved in the graph. After achieving a real
vector, one can apply it to a neural network.

Many algorithms have proposed especially OD in graph data; a broad re-
view of graph-based OD approaches are presented by Akoglu et al. (2014)
and Ma et al. (2021). The authors have presented state-of-the-art tech-
niques and several research challenges. They also discussed the importance
of using graph-based OD, where graph-based approach shows the inter-
dependency state of the data, robust, and insightful distribution. A very
first graph-based detection framework, called “Outrank,” is proposed by
Moonesinghe and Tan (2008). They established entirely undirected graphs
using the original dataset and a technique is applied to the predefined
graph, called Markov random walk. Markov random walk stationary dis-
tribution values are used to score all samples. Later, a novel approach is
presented by Wang et al. (2018a), where objects’ local information together
with combined representation of the graph is adopted. They addressed the
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issue of false positive rates in OD, where graph-based method ignores lo-
cal information of an object around each node. Therefore local informa-
tion of each object’s surrounding of each node is collected, which helps to
construct the graph. Thereafter, outlier scores are provided by randomly
“walking through” the graph. This method adopts multiple neighborhood
graphs, where outlier scores are generated by walking through predefined
graph. The authors conclude that their model showed good improvement.
The graph-based OD methods are relatively new and promising technique,
having great potentials for OD in many domains.

7.2.6.4 Deep learning models
Deep Learning (DL) methods are a member of the ML family that are mainly
applied for representation and patterns learning by incorporating artificial
neural networks (ANN). Application of DL can be supervised, unsuper-
vised or semi-supervised. These methods are getting popular because of
their high accuracy on detecting outliers in critical infrastructure, health-
care, and defense (amongst many other domains). A survey in DL presented
by Chalapathy and Chawla (2019) reviewed multiple DL-based OD tech-
niques and their evaluation. These models are effective for large dimen-
sional dataset and can understand hierarchical information on features.
Additionally, they are better for separating the boundary conditions be-
tween normal and abnormal behavior in time series dataset. Supervised DL
models explore outliers by training and classifying the relationship between
features and labels. For example, supervised models, such as multiclass
classifier, are used to detect fraudulent transaction in healthcare (Chalapa-
thy and Chawla, 2019). Although, supervised models provide great results,
unsupervised and semi-supervised models are mostly utilized. This is be-
cause, supervised models require labeling for each sample, so it’s a daunt-
ing task to label each sample. Therefore unsupervised and semi-supervised
models are a better selection in real-world application with big datasets.

Semi-supervised DL methods for OD is the most appealing approach,
given it provides flexibility regarding labeling requirements. The models
use normal instances as references to identify outliers. Deep autoencoder,
a semi-supervised deep neural learning model that can be applied to a
dataset to find outliers. If enough training sets with normal events can be
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provided, the autoencoder can understand the inter-dependency of fea-
tures. It generates a reconstruction error for all input features by encoding
and decoding them, where the abnormal instances have higher reconstruc-
tion error.

Unsupervised DL OD techniques focus on essential features to find out-
liers form dataset. They label the dataset, which is initially not labeled.
The autoencoder is a popular unsupervised DL OD technique (Chen et
al., 2017). In recent research (Zhou and Paffenroth, 2017; Chalapathy et
al., 2017), unsupervised DL OD algorithm shows great effectiveness. Un-
supervised models can be divided into two subcategories, such as model
architecture embracing hybrid models (Erfani et al., 2016) and autoen-
coders (Andrews et al., 2016). The autoencoder-related models measures
the degree of outlierness by observing reconstruction error of each feature
space through adopting the value of residual vector. Hendrycks et al. (2018)
implemented an approach for improving the OD technique called outlier
exposure. They identified a classification model by performing iteration to
understand the heuristics; it helps to distinguish between distributed sam-
ples and outliers.

A universal framework that utilizes DL technique to log online OD and
analysis, called Deeplog, was presented by Du et al. (2017). To model the
system log, Deeplog applies long short-term memory architecture. The al-
gorithm learns and encodes the whole logging process. In contrast to other
methods where outliers are detected in each session, Deeplog learns out-
liers for every log entered. In high-performance computing system, Borgh-
esi et al. (2018) developed OD technique using autoencoder (Neural Net-
work). A set of autoencoders are trained with the supercomputer nodes to
learn the normal behavior, afterwards those autoencoders can identify ab-
normal behaviors.

Based on training mechanism, deep leaning OD methods can engage
either one class neural network or deep hybrid models (Chalapathy and
Chawla, 2019). Adopting deep neural networks, deep hybrid models mainly
emphasize on extracting feature from the autoencoder after learning the
hidden representation from the autoencoders. Most OD algorithms use
them as inputs, such as one class SVM. Because of the shortage of labeled
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datasets for OD, hybrid approaches have notable limitations, despite their

performance maximization for OD. Therefore features that are rich and dif-

ferentiable are applicable for deep hybrid models. To address and solve this

problem, Ruff et al. (2018) introduced deep one class classification, and

Chalapathy et al. (2018) introduced one class neural network.

7.2.6.5 Advantages of learning-based methods
In graph-based approach, interdependency of datapoints gets revealed by

exhibiting an intuitive representation for OD. DL methods, however, are

good for investigating the hierarchical discrimination between features in

each dataset. Also, they have improved performance on large dimensional

time series data. For time series data, they have effective ways to set bound-

aries between normal and outlier data.

7.2.6.6 Disadvantages of learning-based methods
Learning-based model, especially subspace learning is computationally ex-

pensive. Generally, not all traditional DL methods are good on increasingly

large amount of feature spaces, therefore detection of outliers could be-

come more challenging.

7.2.6.7 Research gaps and suggestions
Not all methods in neural network can effectively differentiate the bound-

ary between normal and outlier points, which is a vital task for data mining.

Moreover, further research is required for recurrent neural networks, long

short-term memory, deep believe network for OD. Kwon et al. (2019) and

Chalapathy and Chawla (2019) are surveys on deep neural network OD that

present further insights.

7.3 Tools for outlier detection

There are many of the shelf libraries and tools available to apply OD re-

search and development. Among many tools, we include the most popular

ones that are frequently used by the research community:
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a) Scikit-learn (Python): Scikit learn is a well-known tool for AI research.
This tool has some popular algorithms, including isolation forest (Liu
et al., 2008) and local outlier factor (Breunig et al., 2000) etc.

b) Python outlier detection (PyOD) (Python): PyOD is another popular
tool for OD in multivariate data. This library is widely used in academic
research and some commercial purposes; it includes ensemble meth-
ods and several DL techniques (Ramakrishnan et al., 2019; Kalaycı and
Ercan, 2018).

c) ELKI (Java): ELKI, which stands for environment for developing KDD-
applications supported by index-structures, is a Java-based open-
source platform for developing KDD applications and other data min-
ing OD algorithms. The source code is written in Java, it provides bench-
marking and simple fairness assessment test for the algorithms (Achtert
et al., 2010).

d) Python streaming anomaly detection (PySAD) (Python): PySAD is an
open-source Python-based library for streaming data to identify out-
liers. It contains a collection of algorithms, including more than 15 on-
line detector algorithm and two PyOD detectors setting for data (Yilmaz
and Kozat, 2020).

e) Scalable unsupervised OD (SUOD) (Python): SUOD works on top of
PyOD; it’s an unsupervised learning OD acceleration framework for
large-scale dataset training and predictions (Zhao et al., 2020).

f) Rapid miner (Java): Rapid miner (Kalaycı and Ercan, 2018) is a Java-
based OD extension. It adopts unsupervised approach, including COF
(Tang et al., 2002), LOF (Breunig et al., 2000), LOCI (Papadimitriou et
al., 2003), LoOP (Kriegel et al., 2009b).

g) MATLAB®: MATLAB is a user-friendly commercial software that sup-
ports many OD algorithms.

h) Time-series outlier detection system (TODS) (Python): It’s a python
based full-stack environment for detecting outliers in multivariate data
streams (Lai et al., 2020).

i) Skyline (Python): Skyline detects anomalies in near real-time.
j) Telemanom (Python): Telemanom adopts long short-term memory ar-

chitecture for multivariate time series data to detect outliers.
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k) DeepADoTS (Python): A collection of DL benchmarking pipelines for

OD for time series data.

l) Numerical anomaly benchmark (NAB) (Python): For real-time and

streaming data; NAB is used to evaluate multiple algorithms for bench-

marking purpose.

m) Datastream.io (Python): Datastream.io is an open-source tool for de-

tecting outliers in real time data.

7.4 Datasets for outlier detection

In data mining problems, two types of data are used to train any OD models,

including real data and synthetic data. Real data are expensive to gener-

ate and distribute because of their security and commercial aspect. In this

chapter, we enlist multiple real datasets to begin modeling OD problems.

Some of the most popular OD datasets are as following:

a) University of California Irvine (UCI) repository: The UCI repository

(https://archive.ics.uci.edu/ml) provides more than hundreds of data-

sets; many researchers use these datasets for evaluating their algorithm.

However, this server mostly contains dataset for classification algo-

rithms.

b) ELKI dataset: (http://elki-project.github.io/datasets/outlier): ELKI has

numerous

available datasets that can be used for different type of OD algorithm

and for assessing model parameters.

c) Outlier detection datasets (ODDS) (http://odds.cs.stonybrook.edu/

#table1): ODDS contain various types of datasets and they constitute

a good source for training-testing OD algorithms. Some of the popu-

lar datasets from this server are time series multivariate and univariate

datasets, high-dimensional data, and time series graph data.

d) Anomaly detection meta-analysis benchmarks (http://ir.library.

oregonstate.edu/concern/datasets/47429f155): Oregon State Univer-

sity has enriched datasets for evaluating various OD algorithm.

https://archive.ics.uci.edu/ml
http://elki-project.github.io/datasets/outlier
http://odds.cs.stonybrook.edu/#table1
http://odds.cs.stonybrook.edu/#table1
http://ir.library.oregonstate.edu/concern/datasets/47429f155
http://ir.library.oregonstate.edu/concern/datasets/47429f155
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e) Harvard database: (dataverse.harvard.edu/dataset): This server con-
tains datasets that can be used for benchmarking unsupervised algo-
rithm. It also contains several datasets for supervised OD models.

f) Skoltech anomaly benchmark (SKAB) (http://github.com/waico/skab):
This repository contains approximately 34 datasets; authorities plan to
add more than 300 datasets in the near future for collective anomalies
and point anomalies.

All the above-mentioned sources provide many collective datasets to begin
with OD studies. However, most of the real-world datasets are not available
publicly, because of security and privacy concerns. For instance, data from
critical infrastructure, such as electricity transmission, water distribution,
and healthcare aren’t available publicly. Therefore synthetic data are an al-
ternative and next best option for creating specific domain-related models.
For example, BATADAL (http://batadal.net/data.html) presents a synthetic
data by creating virtual supervisory control and data acquisition system
(SCADA) on top of a water distribution system network (Daneels and Salter,
1999). Since most real SCADA data aren’t publicly available, this synthetic
dataset is a good choice for researchers. In data mining problems, various
evaluation techniques are implemented for the OD algorithms to measure
“goodness.” These evaluation techniques focus on OD rates and run times
of the algorithm. Mostly adopted evaluation measurements are Precision,
R-Precision, Area Under the Curve (AUC), Average Precision, Receiver Op-
erating Characteristics (ROC), Correlation Coefficient, and Rank Power (RP)
(Domingues et al., 2018).

7.5 AI assurance and outlier detection
In this chapter, we discuss several working algorithms for OD in data min-
ing problems for AI assurance. According to (Batarseh et al., 2021), AI assur-
ance can be defined as:

“A process that is applied at all stages of the AI engineering lifecycle en-
suring that any intelligent system is producing outcomes that are valid,
verified, data-driven, trustworthy and explainable to a layman, ethical in
the context of its deployment, unbiased in its learning, and fair to its users.”

http://github.com/waico/skab
http://batadal.net/data.html
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Additionally, in their review paper, the authors added ten metric scoring
schemes to present a systematic comparison among existing AI assurance
approaches. To verify an AI model, six assurance goals need to be verified
for an AI system: fairness, trustworthiness, ethics, safety, security, and ex-
plainability. The authors address the complexity of recent AI algorithms and
the necessity of investigating algorithm variance, bias, clarity, and aware-
ness to measure these AI assurance goals. In general, AI assurance goals can
be achieved by either model specific or model agnostic approach. Model
specific approaches target specific AI algorithms for quantifying or validat-
ing assurance goals, whereas model agnostic approaches are generic and
have universal frameworks that can verify all AI algorithms for assurance
goals. Despite the challenges, AI assurance is necessary. OD is at the heart
of assurance, as it improves the overall quality of the data.

Data quality needs to be assured as well. If the underlying data is invalid,
then AI algorithms will have undesirable outcomes. OD algorithms mea-
sure two important aspects of data assurance: safety and security. This is
because, analyzing a dataset for outlier not only means investigating ab-
normal samples, but also represents faults or intrusions in the system by
adversaries. For instance, ANN autoencoders detect outliers using a recon-
struction error, where the errors are generated during encoding and decod-
ing process of a dataset. Higher reconstruction errors are an indication of an
object being an outlier or an attack on the system. Therefore reconstruction
errors, in this context, can be considered as safety and security measure.
Other data assurance goals can be achieved depending on the context of
application domain and AI algorithm used.

Assurance goals, especially fairness and ethics, can be achieved by re-
moving bias in the dataset. However big data generated by real-world
source almost always have bias (Verma et al., 2021). Some of the most com-
mon data biases are activity bias, selection bias, bias due to system drift,
omitted variable bias, and societal bias. For identifying the reason behind
any bias, one should investigate how the data are generated. Most common
practice of data bias identification is to perform Exploratory Data Analysis
(EDA) (Tukey, 2020). In a recent study, Amini et al. (2019) presented a de-
biasing technique during post processing after training with AI algorithm.
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Their method adopts DL-based model to understand the latent data distri-
bution during training stage in an unsupervised manner, thereby making
the approach robust for debiasing. In another study, Bolukbasi et al. (2016)
showed a debiasing technique to mitigate gender bias. For model assur-
ance, in a recent study, Shekhar et al. (2020) applied a novel framework
based on deep-autoencoder for fairness called fairness-aware OD (FairOD).
They focused on formalizing the definition of fair OD algorithm with de-
sirable properties. Data bias can yield unfair, unethical, and untrustwor-
thy decisions by AI algorithms, therefore bias needs to be identified before
training the AI model. Data bias can be also detected using OD algorithms.

7.6 Conclusions
This chapter reviews the state-of-the-art in approaches for outlier analysis.
We group OD methods into several categories: Distance, Statistical, Density,
Clustering, Learning and Ensemble-based methods. For each category, we
present relevant algorithms, their significant importance, and drawbacks.

For distance-based methods, especially ones that use KNN based mod-
els, are sensitive to the parameter selection process, including the value of
k. Therefore an appropriate k parameter selection is important for the mod-
els that rank neighbors for OD. Clustering-based methods generally are not
explicitly suitable as they were not designed to facilitate OD. However en-
semble methods that combine results from a collection of dissimilar detec-
tors provide much improved outcomes. Ensemble methods have lower ex-
ecution time, but high-quality OD results. Regarding model evaluation, ef-
fectively assessing an OD algorithm is still an open research challenge. Also,
in many cases, it’s a daunting task to evaluate a model when a ground truth
is absent and outliers aren’t that frequent. Deep neural network-based OD
models are gradually becoming popular because of their effective measures
and quality results. ANN-based autoencoders can detect outliers, even if
sensor network data are compromised and concealed by an adversarial at-
tack. Nonetheless, DL-based models are advanced and difficult to design.
Moreover, enough investigations are required to unlock the full potential of
DL-based models for detecting outliers in real-world applications. Lastly,
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an important notion to note, OD models need to be assured, because AI
algorithms ought to be safe and secure from unwanted outliers.
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Abstract

Developing and implementing AI-based solutions help state and federal gov-
ernment agencies, research institutions, and commercial companies enhance
decision-making processes, automate chain operations, and reduce the con-
sumption of natural and human resources. At the same time, most AI ap-
proaches used in practice can only be represented as “black boxes” and suffer
from the lack of transparency. This can eventually lead to unexpected outcomes
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and undermine trust in such systems. Therefore it is crucial not only to de-
velop effective and robust AI systems, but to make sure their internal processes
are explainable and fair. Our goal in this chapter is to introduce the topic of
designing assurance methods for AI systems with high-impact decisions using
the example of the technology sector of the US economy. We explain how these
fields would benefit from revealing cause-effect relationships between key met-
rics in the dataset by providing the causal experiment on technology economics
dataset. Several causal inference approaches and AI assurance techniques are
reviewed and the transformation of the data into a graph-structured dataset is
demonstrated.

Keywords

Causality, network data, public policy, AI assurance

Highlights

• Fundamentals of the causal inference theory

• Review of the concept of AI assurance and its connection to causality

• Assurance-focused causal experiment on the internet speed dataset

• Methods of graph-based data representation and analysis

8.1 Introduction and motivation

Artificial Intelligence (AI) has experienced a tremendous growth trend dur-
ing the last decade due to availability of multivariate large-scale datasets
and advancements in high-performance computations with multi-core
GPUs. AI methods, such as classic machine learning algorithms, deep neu-
ral networks, and reinforcement learning, demonstrated impressive results
in solving prediction and classification tasks in many domains, including
transportation, healthcare, and finance (Boire, 2018). However, utilization
of such methods is heavily underexplored in policy making. The institu-
tions and agencies participating in legislature activities would clearly bene-
fit from using cutting-edge AI models to make the lawmaking process more
effective and better able to address goals of government and state level of-
ficials (Zuidewijk et al., 2021).
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At the same time, the lawmaking process itself is complex in nature, in-

volves multiple steps, and can also vary from state to state or even at higher

granularity. Moreover, the decisions taken by officials in the form of issued

policies determine the path of development of the country and its inhab-

itants. We have seen many examples of how passed laws influenced the

lives of millions of people, such as the Coronavirus Act (Coronavirus Pre-

paredness and Response Supplemental Appropriations Act, 2020). The law

facilitated the production and distribution of COVID-19 tests and vaccines

and allocated $22 billion in funding, which led to a faster vaccination across

the United States, and therefore building collective immunity against the

disease. Since AI-based legislation systems are to be built on such sensitive

and influential information, it is very important to assure their trustwor-

thiness, transparency, and fairness towards the residents. If it is possible to

explain how AI methods work and why they generate such results, we could

maintain public trust in them and would eventually fully integrate such sys-

tems into policy making cycles.

One of the ways to leverage AI assurance in this scenario is to consider

causal inference methods applied to the metrics of interest. For instance,

can we infer that a cause-effect relationship exists between the proposed

COVID-19 vaccine distribution law and the number of current positive

cases? Another example is whether the regulations issued by the U.S. De-

partment of Transportation lead to reduced driving times on target roads.

Such dependencies between different factors are typically not captured by

classic machine learning algorithms, and more sophisticated methods are

required. In addition, it would be helpful to also consider dependencies

between input data vectors based on some other contextual information.

For example, the laws approved and passed in separate states might influ-

ence each other to some degree if the states are geographically close to each

other, situated in the same region of the U.S., or governed by the same po-

litical force. The aspects mentioned above should be carefully considered

while creating an AI assurance model for policy making (Perry and Uuk,

2019).
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In the next section of this chapter, we introduce the concept of causal

inference and provide a detailed overview of some of the methods with an

accompanying knowledge graph.

8.2 Causal inference

Machine Learning (ML) and Deep Learning (DL) algorithms are heavily

used as core elements of AI systems since they bring a power of detect-

ing input/output data relationships and predicting the outcome for future

inputs. However, a significant limitation of ML models is their inability to

account for mutual correlation or association between inputs and outputs,

leaving aside more complex dependencies. Thus cause-effect relationships

cannot be captured by a feed-forward neural network, and applying this

approach directly to some problems can lead to false inferences. Let us

take one example: a user notices that their screen freezes every time they

open Google Chrome on a personal computer. The user may assume that

the problem is caused by launching the browser, whereas the underlying

reason might be that there are too many active background OS processes

that utilize most of available RAM, so that the system cannot easily han-

dle such a “RAM-hungry” web browser as Chrome. If our neural network

is trained on the results of user experience surveys to predict whether the

system would freeze, it would produce wrong predictions for users whose

RAM is not overloaded with running OS processes.

The example provided above clearly proves the famous statement: “cor-

relation does not imply causation” (Aldrich, 1995). Indeed, there is an ob-

vious correlation between crashing an OS and launching a web browser,

although one does not cause another. In other settings, such as healthcare

or national security, such incorrect inferences may lead to dramatic con-

sequences involving safety and lives of people, as mentioned by Hamid

(2016), so it is necessary to understand causal relationships before apply-

ing common AI solutions. In Section 8.2.1, we introduce the concepts of

causality and causal inference and their mathematical foundations.
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8.2.1 An introduction to causal inference

Causal inference is a relatively new field of study within AI context, but
showed to be very promising in recent years. Although first inference en-
gines were introduced as a main block of expert systems in 1970–1980s
(Hayes-Roth et al., 1983), they were not truly intelligent; they relied on
predefined logical rules and were not capable of performing data-driven
knowledge inference.

Let us start with explaining the difference in terms used in this area.
Causality is an existing relationship between the effect and what it was
caused by (object, state, or process). Causation means the act of caus-
ing a particular event/state/process (Honderich, 1988). Although these two
terms are often used interchangeably, causation can be viewed as a pro-
cess of initiation of causality. For instance, the rain caused city dwellers to
take out and open their umbrellas, which shows the relationship of causal-
ity between these events. The causation occurred right after the rain started,
making people use their umbrellas. Causal Inference is a field of study that
attempts to reveal causal relationships between nodes via making causal
assumptions (Pearl, 2009).

Causal inference methods were heavily involved in addressing chal-
lenges in healthcare (Moser et al., 2020); therefore they inherited some
terminology from the latter. In addition to standard machine learning con-
cepts of input data X, known as covariate features of a patient, and out-
put data Y , known as outcome, we also introduce T—treatment—the ac-
tion taken on a patient (or, in medical terms, a treatment that was given
to them). The relationships between X, T , and Y are usually presented
as a directed acyclic graph (DAG). In general, DAG represents complex
causal structures, can be very cumbersome, and includes multiple nodes
of each type, but for the sake of simplicity, let us consider the following sce-
nario: how a certain medication affects the patient’s blood pressure level
(Szolovits and Sontag, 2019). Here, X is the information about the patient
known beforehand, T is a medication, which can be either T 0 (control treat-
ment) or T 1 (actual medication), and Y is the patient’s blood pressure after
being treated. The corresponding causal graph is shown in Fig. 8.1.
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FIGURE 8.1 Causal DAG example.

For each individual, we want to understand if the hypertension treat-
ment actually works. For this we need to compare the effects of each treat-
ment on a patient, which can be done via calculating conditional average
treatment effect as per Neyman-Rubin causal model (Sekhon, 2008):

CAT E (xi) = EY1∼p(Y1|xi) [xi] − EY0∼p(Y0|xi) [xi] , (8.1)

where EY1∼p(Y1|xi) [xi], and EY0∼p(Y0|xi) [xi] is the expectation of the outcome
had the individual xi had and had not been treated, respectively. xi is a set
of features of the patient.

The average treatment effect for the entire population can be calculated
as the expectation over CATE values for all instances:

AT E = Ex∼p(x)[CAT E(xi)] (8.2)

However, it is often impossible to measure the outcome of both treatments
applied to the same individual due to many reasons, including safety and
ethics, which is known as the fundamental problem of causal inference
(Holland, 1986). Hospitals make educated decisions on what treatment to
deliver to each patient, and providing several treatments simultaneously
can not only ruin the reputation of the doctor or hospital and healthcare
system in general, but lead to malicious effects on patient’s health and
violate certain regulations. Therefore causal inference based on counter-
factuals is only dealing with the data obtained from control and treatment
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groups (Szolovits and Sontag, 2019):

AT E = Ex∼p(x) [E[Y1 | x,T = 1] − E[Y0 | x,T = 0]], (8.3)

where Y1 and Y0 are the responses of patients being provided T1 and T0, re-
spectively.

As explained by Szolovits and Sontag (2019), this approach requires sev-
eral strong assumptions to be held:

• Ignorability: there are no unobserved confounding variables. The mathe-
matical form of this assumption shows that the outcome is independent
of treatment given input data:

(Y0, Y1)⊥T | x (8.4)

• Common support: there is always a stochasticity in treatment decisions:

p(T = t | X = x) > 0 ∀t, x (8.5)

For example, we have a subpopulation of individuals with red hair. These
should include patients from both control and treatment groups to sat-
isfy this assumption.

• Stable unit treatment value assumption (SUTVA): the response (out-
come) for a particular individual to a provided treatment is independent
of treatments of other units.

Once the conditions mentioned above are satisfied, we can attempt to ap-
ply ML in a standard way to draw the relationships between inputs and out-
puts. It should be mentioned that these assumptions do not perfectly hold
in the real world, and inferring CATE values is still a probabilistic process.
In Section 8.2.2, we overview state-of-the-art causal inference approaches
that address these limitations.

8.2.2 Overview of causal inference methods

In Section 8.2.1, we described the conditions that need to hold to apply ML
methods for causal inference. One of the first approaches for estimating
average treatment effect (ATE) is called covariance adjustment (Szolovits
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and Sontag, 2019). In this method, a parametric model is being fitted on
training data:

f (x, t) ≈ E[Yt | T = t, x], (8.6)

where f (x, t) is the function for approximation of the expectation E[Yt |
T = t, x], and t equals 0 or 1 in binary setting.

Once the model is trained, we can calculate ATE estimation via finding
the average difference between function values for each patient with treat-
ment values 1 and 0 accordingly:

̂AT E = 1

n

n∑
i=1

f (xi,1) − f (xi,0) (8.7)

In the simplest case, there is a linear dependency between outcome and
covariates/treatment described by the following equation:

Yt (x) = αx + βt + γ, (8.8)

where α, β, γ are trainable parameters.
Although this linear regression model is comparatively easy to train, it

may oversimplify true causal relationships and eventually lead to incorrect
assumptions. It is very important to ensure that the model has sufficient
representative power to infer correct outcomes. Another reason for mak-
ing incorrect assumptions—which is very common in practice—is violation
of common support. In many domains and for many reasons it may not
be feasible to draw data from the randomized control trial type of experi-
ment, where the patients are assigned treatment randomly. Therefore there
is an approach to estimate ATE, while mitigating the selection bias, which
is called propensity score matching (Szolovits and Sontag, 2019). It requires
the following steps:

1. Estimate propensity scores for each individual, i.e., define the groups of
similar patients in terms of provided treatment: p (T = t | x).

2. Match propensity scores: there are several methods, but the most popu-
lar one is based on nearest neighbor search.
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3. Evaluate the matching technique, and apply a different one if the results
are unsatisfactory.

4. Calculate ATE for each stratum with the formula mentioned in Sec-
tion 8.2.1 (group of individuals with close propensity scores) and take
average or weighted average of them to estimate ATE for the entire pop-
ulation.

If the assumption of ignorability holds, i.e., data collection being indepen-
dent of missing data, this method can balance initial bias in treatment as-
signment prior to estimating ATE.

The precursor of causal inference methods was the developed model
called Bayesian network. It represented conditional dependencies of vari-
ables in a form of DAG. Even though Bayesian DAG cannot be used directly
to identify causal effect, it gave rise to further developments in causality.
One of relatively early causal inference methods, Bayesian additive regres-
sion trees (BART), uses decision tree algorithm as a building block, where
the path is determined by conditions on X and T, and the value of Y is found
at the end point of each path (Hill, 2011). Aggregate outcome from sepa-
rate single trees is deemed a final result. This method predicted ATE more
accurately than linear regression and propensity score matching, but was
very sensitive to the amount of training data. Künzel et al. (2019) proposed
a more sophisticated method, in which the model consists of base learners:
BART and causal forests. This approach provides a richer representation,
thanks to estimating an outcome for a treated individual using control-
outcome estimator, and vice versa, which helps to account for imbalance
between treatment groups.

Better results can be achieved with deep learning. Johansson et al. (2016)
applied deep neural networks to counterfactual inference. Authors pre-
sented a modified version of this approach, called TARNet in Shalit et al.
(2017), where the network was augmented to the neural network with two
parallel blocks to estimate the effect under treatment and control, respec-
tively. Also, the treatment assignment bias is adjusted by adding IPM (in-
tegral probability metric) term, and the final objective function is a trade-
off between treatment imbalance and accuracy. The technique proposed
by Shalit et al. (2017) was utilized in other works, including (Schwab et
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FIGURE 8.2 Domain-specific part of literature review knowledge graph.

al., 2018), where TARNet was extended to the algorithm with the ability
to handle multiple different (non-binary) treatments and augment insuf-
ficient input data. Schwab et al. (2020) improved this work, where the joint
neural network considers “dosage,” or real-value treatment. The network
structure of the dataset was considered in Guo et al. (2020) where TARNet
was combined with GNN to predict ATE. Yao et al. (2018) also took into
account connections between instances (individuals) via implementation
of local similarity information along with treatment distribution balancing
and deep learning ATE estimator.

In multiple works, researchers extended ideas of counterfactual infer-
ence to more advanced cases. Hartford et al. (2017) introduced a two-stage
DNN-based model, which accounts for presence of hidden confounders via
using instrumental variables. Lim et al. (2018) developed a framework for
predicting an outcome of a chain of treatments. Kobrosly (2020) developed
a Python package to estimate a dose-response curve with the generalized
propensity score and targeted maximum likelihood estimation. Louizos et
al. (2017) built a causal effect variational autoencoder to combine advance-
ments of latent variables in machine learning and proxy variables utiliza-
tion in causality. Rakesh et al. (2018) extended this work to also consider
the pairwise spillover effect between covariates. Some of the works repre-
sent domain adaptations of causal inference methods, such as Bonner and
Vasile (2018), where recommendation policy optimization is done via in-
creasing the desired outcome with ITE modeling.

The graphical representation of this literature overview is demonstrated
in Fig. 8.2 and Fig. 8.3. All the works are placed into groups in accordance
with their relation to causal inference:
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FIGURE 8.3 Literature review knowledge graph (except domain-specific part).

• Independent and identically distributed (i.i.d.) data with binary treat-
ment

• i.i.d. data with non-binary treatment (advanced cases)
• Domain-specific

The graph reveals a “parent-child” dependency of papers based on imple-
mentation and modification of ideas of some works in others. Edges of the
connecting lines are also accompanied with short work description (in non-
bold italic). For the sake of readability, the graph is broken down into two
parts.

8.3 AI assurance using causal inference

In the previous section, we presented the fundamentals of causal inference
and introduced a review of some recent works in the area. This section fa-
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miliarizes the reader with the main ideas of AI assurance (Section 8.3.1),
and the authors attempt to connect these two areas of study by providing
an experiment on tech-econ policy dataset (Section 8.3.2).

8.3.1 AI assurance: goals and methods

As we mentioned earlier, assuring AI systems is becoming more necessary
due to the growing demand in such systems, as well as increasing require-
ments to their transparency. For many critical applications, such as health-
care or military operations, there are several key assurance pillars that AI
engineers should consider during building, training, and testing algorithms
(Batarseh et al., 2021).

First, the outcomes produced by an AI system should be trustworthy,
otherwise the fundamental idea of replacing certain human-centered op-
erations with automated intelligent systems would be undermined, which
would prevent their further development. Second, the decisions made by
the system should be fair and ethical with regards to its users, or to be
able to detect, avoid, or eliminate any sort of bias in its outputs. We also
want the AI system and its processes to be explainable to in turn ensure
trustworthiness, but also be secured from potential outside threats. In cer-
tain scenarios, some assurance goals are more important than others. For
instance, in military applications ethics gives way to safety, but in civil ap-
plications, such as automated hiring, fairness comes first.

Since the main components in the AI pipeline are the model itself and in-
put data/outcomes, they should be the main target of assurance methods.
Input data should be checked for completeness and importance for a par-
ticular task the AI system is created for. Other approaches aim at revealing
details of internal processes in the algorithm during the training phase. For
instance, deep neural network training mechanism is based on updating its
connection weights, and controlling the changes of weight values is one of
the ways of providing explainability. Moreover, the researchers can develop
assurance metrics for each of the categories, which can be integrated di-
rectly into the objective function. This method largely depends on what AI
approach is used and how the model is trained.
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In the following section we apply the basics of causal inference to the
assurance problem.

8.3.2 Methods for leveraging causality in assurance

In Section 8.2, we presented some causal inference methods. Although the
goal of most of these studies is to perform an accurate counterfactual infer-
ence, where developed algorithms are used for prediction, we can look at
causal inference for assurance purposes from a different angle.

As we mentioned earlier, there are 3 strong assumptions that need to be
made to find ATE based on counterfactuals. The common support property
can be utilized by itself to address the questions of fairness and ethics. This
property states that there should be no bias in treatment decisions, and if
this property holds, we can assert that the assurance issues of fairness and
ethics are addressed via ensuring diversity in deciding what treatments are
provided for various patients.

A more comprehensive way to conduct assurance analysis is to build a
causal graph and detect connections between features. Such analysis can
be useful both at the initial stage of developing an AI model and during its
utilization. In the first case, a causal graph can serve as a validation tool for
a less explainable AI model and make an educated decision of what fea-
tures to use as inputs and outputs for this model. This method is in a way
similar to imposing constraints on data/model based on real-world knowl-
edge, such as physics-guided architecture of neural networks, as proposed
by Daw et al. (2020). Section 8.3.3 describes an experiment performed to
leverage this idea.

In the second scenario, the information about causal relationships in the
dataset can be analyzed together with the model outputs to provide insights
on the meaning of the outcomes given input data. For instance, a parallel
metamodel can be run on the main model’s outputs to perform calculations
of metrics “on the fly” for dynamic analysis, such as mean squared errors
and average output values.

In Section 8.3.3, we demonstrate a causal experiment inspired by the first
approach, where the feature-focused causal model is created to define in-
puts and outputs for the future model.
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Table 8.1 Dataset summary statistics.
Feature name Number of non-empty records

State 400
Year 400
Funds 300
Population density 400
Internet users 250
Treatment 400

8.3.3 Application of causality in assurance: economy of
technology example

The goal of the experiment is to perform causal analysis to understand
how issued tech policies affect the target metric. DoWhy library (Sharma
and Kiciman, 2020) was used to drive causation in a technology policy
dataset (Anuga et al., 2021). The main sources of information were the Fed-
eral Communications Commission (FCC) (https://www.fcc.gov/) and U.S.
Census Bureau (https://www.census.gov/) websites, which include tech-
related laws passed in the U.S. on a state level in a particular year, technol-
ogy metrics (such as number of internet users and average internet speeds),
and characteristics of each state.

The aggregate numeric economy of technology dataset includes 341 fea-
tures divided into 2 broad categories: Environmental Descriptors and Tech-
nology Metrics. The former represents contextual information about each
state, such as population across different years, land/water areas, and funds
available. Technology Metrics include various indicators of prevalence of
internet and other technology across different age groups and devices. An-
other dataset includes law texts, together with state and year issued. In this
study we combined and wrangled those datasets to match our needs of
causal analysis. The statistics of the dataset can be found in Table 8.1.

After the dataset had been wrangled, we had the following variables:

• State: the name of the state
• Year: the year the law was passed
• Funds: the total amount of money spent on tech development (rendered

in millions)

https://www.fcc.gov/
https://www.census.gov/
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Table 8.2 Tech policy dataset.
State Year Funds Population_density Treatment Pre_users Post_users

1 Alabama 2013 24,296 95.370708 FALSE 3.03E+06 2.96E+06
2 Alabama 2014 24,577 95.602082 TRUE 2.87E+06 3.21E+06
3 Alabama 2015 24,546 95.810354 FALSE 2.96E+06 3.46E+06
4 Alabama 2016 26,474 96.031065 TRUE 3.21E+06 3.51E+06
5 Alaska 2013 11,288 1.291649 FALSE 5.51E+05 5.21E+05
6 Alaska 2014 11,397 1.290274 FALSE 5.26E+05 5.33E+05
7 Alaska 2015 13,767 1.292403 FALSE 5.21E+05 5.38E+05
8 Alaska 2016 10,602 1.299339 FALSE 5.33E+05 5.12E+05
9 Arizona 2013 27,668 58.39005 FALSE 4.32E+06 4.10E+06
10 Arizona 2014 28,905 59.249681 FALSE 4.03E+06 4.47E+06
11 Arizona 2015 31,182 60.123521 FALSE 4.10E+06 4.91E+06

• Population density
• Internet users: the overall number of internet users of ages 3 and above
• Treatment: a binary label indicating whether a tech law was issued (True)

or not (False)

In this case, (state, year) tuple is a unique record for our causal model.
We utilize Internet users variable as the outcome, Treatment as treatment
provided, and Funds and Population density as covariates. To consider the
dimension of time, we also added Pre users and Post users columns, which
contain the number of people using the internet in the preceding and fol-
lowing years accordingly. The rationale behind it is the assumption we
make regarding the causal structure: the number of users in the past causes
the initiation of the law (Treatment), which in turn causes the change in
number of users in the future. To handle gaps in Internet users column,
we implemented cubic interpolation to fill in gaps in 2013 and 2015 and
padding to do so in 2017 (the value similar to the one in 2016 just means
the absence of change in key metric from 2016 to 2017). The table excerpt
is shown in Table 8.2, where the total number of records is 300.

Next, we initialized the causal model with the structure demonstrated in
Fig. 8.4. In addition to our main nodes, we also accounted for potential un-
observed confounders (U) and instrumental variables (Z). Similarly to other
covariate features (Funds, Population_ density) U variable affects treatment
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FIGURE 8.4 Causal graph.

and outcome variables: Post_users, Pre_users, and Treatment. To consider a
sequence of events in time as mentioned earlier, we modeled the influence
of the number of users in the past (Pre_users) on Treatment, which in turn
affects Post_users. The Z variable directly affects only Treatment in this ex-
periment.

Then we identified the causal effect qualitatively based on provided de-
pendencies, where the assumption of little importance of unobserved con-
founders was made. The produced estimate has been utilized to obtain the
estimated average treatment effect. We chose the propensity score match-
ing method. DoWhy also supports the “refute estimate” method, allowing
researchers to compare the results with the placebo treatment. In this ex-
periment, treatment values (TRUE/FALSE) were replaced with random bi-
nary values to emulate causal effect after treatment random permutation.
The output is as follows:

Refute: Use a Placebo Treatment

Estimated Effect: 828406.606918239

New Effect: 2876.0043238992657

p value: 0.4749805528770472

As we can see from the numbers, the release of a tech policy leads to an
increase of the number of internet users by 828,406 on average compared to
2876 in the case of placebo treatment (can be viewed as “idle” legislation).
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Although the number is not an exact indicator of quantitative effect and
varies from one legislation to another, the model is consistent. Based on the
results, we can conclude that the number of internet users is a good choice
of an output for an AI learning algorithm, whereas other variables can be
utilized as inputs given time dimension constraints.

8.4 Network representations of data

For many applications it can be beneficial to see the dataset as a network
structure through revealing connections between entities. Preserving inter-
nal dependencies is one example of how to facilitate in-depth analysis of
the dataset and ensure higher transparency during data-related AI stages.
We provide an overview of the basic provisions of graph theory and re-
current graph neural networks (RGNN), and finally provide several graph
representations of U.S. states and corresponding technology laws from the
dataset used in Section 8.3.

8.4.1 An introduction to graph theory

In the following section, essential concepts of graph theory are embodied
within the concepts of graph neural networks (GNN), which are crucial for
building and training a ML algorithm that handles graph data most effec-
tively (Scarselli et al., 2009; Kipf and Welling, 2016; Defferrard et al., 2017;
Hamilton et al., 2017). The core input data structure for a GNN to work is the
graph. As alluded to earlier, graphs are formally defined as a set of vertices
V along with the set of edges E between these vertices. In standard fash-
ion, we define a graph as G = (V ,E), where |V | = N is the number of nodes
in the graph, and E = NE is the number of edges. We define A ∈ RNxN as
the adjacency matrix related to G (Kipf and Welling, 2016; Defferrard et al.,
2017). Fundamentally, graphs are just a way to encode data visually, where
properties of graphs represent real elements and concepts within the data.
Developing insight into how graphs are used as representations of complex
concepts is critical in their efficacy as encoding mechanisms or reasoning
over features derived from their structure (Hamilton et al., 2017).
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Vertices: In a graph, the objects that are connected are called vertices. These
can usually represent entities, which are typically defined as attributes with
their relationships and how they are connected to other objects. Given a set
of N vertices denoted as V , the ith single vertex we defined as vi (Hamilton
et al., 2017).

Edges: Vertices are connected to one another along edges that characterize
the relationships that exist between these vertices. In a strict sense, we de-
fined a single edge between two (not necessarily unique) vertices. Note that
a set of NE edges is denoted as E, and a single edge between the ith and
j th vertices is denoted as ei,j (Scarselli et al., 2009; Kipf and Welling, 2016;
Defferrard et al., 2017; Hamilton et al., 2017).

Features: In AI, phenomena under study are relegated to quantifiable at-
tributes known as features. Within graph theory for AI, we can utilize these
features to express the interactions more deeply between various vertices
and edges. In the example of a social network, people are connected to
other people, locations, or activities, where features for each person (ver-
tex) could quantify the attributes of a person (e.g., age, popularity, and
social media usage) (Gosnell and Broecheler, 2020; Robinson et al., 2015;
Needham and Hodler, 2019). Furthermore, features that express relation-
ships between vertices (i.e., edges) could include the quantification of the
strength of a relationship or affinity (e.g., familial, colleague, etc.). From a
feature standpoint, there can be many considerations per vertex and edge;
hence, we represent these as vectors expressed as vF

i and eF
i,j , respectively

(Scarselli et al., 2009; Kipf and Welling, 2016).

Neighborhoods: Neighborhoods are smaller portions of a graph made up
of nodes and vertices, defined formally as subgraphs, that can be treated
as quite distinct sets of vertices and edges. A neighborhood can be itera-
tively formed through a single vertex by inspecting all connected vertices
and edges connected to it. As a neighborhood grows from the ith vertex vi

it will be denoted as the set of neighbor indices ne[vi]. Note that specific
criteria can also be defined by specified criteria for the vertex and edge fea-
tures (Kipf and Welling, 2016; Defferrard et al., 2017; Hamilton et al., 2017;
Gosnell and Broecheler, 2020).
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States: States are encoded via the information within a given vertices’ neigh-
borhood, inclusive of the features and states of the neighborhood’s vertex
and edge. States are defined as “hidden feature vectors” (Scarselli et al.,
2009). In graph theory, these states are iteratively created through a process
of extracting features from the previous state’s iteration, where classifica-
tion, regression, or other computation are performed on these iteration
states (Kipf and Welling, 2016; Defferrard et al., 2017).

Embeddings: Embeddings are representations acquired through reduction
of large feature vectors (Scarselli et al., 2009). The associated vertices and
edges within low-dimensional embeddings make it possible to classify
them with linearly separable models. The quality of an embedding is mea-
sured through the similarity retained in the embedding. Furthermore, these
can be “learned” for different parts of the graph (e.g., vertices, edges, neigh-
borhoods, or graphs). Finally, embeddings are also known as represen-
tations, encodings, latent vectors, or high-level feature vectors (Kipf and
Welling, 2016; Defferrard et al., 2017; Hamilton et al., 2017).

8.4.2 Recurrent graph neural networks (RGNN)

In a standard neural network, successive layers of learned weights work
to extract features from an input. After being processed by sequential lay-
ers, the resultant high-level features can then be provided to a softmax
layer or single neuron for the purpose of classification, regression, etc. A
softmax function is often the final neural network activation function that
normalizes output of predicted output class probability functions, based
on Luce’s choice axiom (Luce, 1959). Luce’s choice axiom addresses “inde-
pendence from irrelevant alternatives” (IIA), where the selection of an item
over another in a pool of many items is not affected by the existence or
non-existence of other items in the pool (Goodfellow et al., 2016). In this
same way, the earliest GNN works aimed to extract high-level feature rep-
resentations from graphs by using successive feature extraction operations
(Scarselli et al., 2009), and then fed these high-level features to output func-
tions. The recursive application of a feature extractor, or encoding network,
is what provides the RGNN with its name (Kipf and Welling, 2016; Deffer-
rard et al., 2017; Hamilton et al., 2017).
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The forward pass: The RGNN forward pass occurs in two main steps. The
first step focuses on computing high-level hidden feature vectors for each
vertex in the input graph. This computation is performed by a transition
function, f . The second step is concerned with processing the hidden
feature vectors into useful outputs, using an output function g (Kipf and
Welling, 2016).

Transition: The transition process considers the neighborhood of each ver-
tex vi in a graph, and produces a hidden representation for each of these
neighborhoods. Since different vertices in the graph might have different
numbers of neighbors, the transition process employs a summation over
the neighbors, thus producing a consistently sized vector for each neigh-
borhood. This hidden representation is often referred to as the vertex’s state
(Scarselli et al., 2009), and it is calculated based on the following quantities
(Defferrard et al., 2017; Hamilton et al., 2017; Gosnell and Broecheler, 2020):

(1) vF
i : the features of the vertex vi , which the neighborhood is centered

around.
(2) eF

i,j : the features of the edges which join vi to its neighbor vertices vj .
Here only direct neighbors are considered, though in practice neigh-
bors further than one edge away may be used. Similarly, for directed
graphs, neighbors may or may not be considered based on edge direc-
tion (e.g., only outgoing or incoming edges considered as valid neigh-
bor connection).

(3) vF
j : the features of vi ’s neighbors.

(4) hk−1
j : the previous state of vi ’s neighbors. Recall that a state simply en-

codes the information represented in each neighborhood. Formally, the
transition function f is used in the recursive calculation of a vertex’s kth

state as per the following equation:

hk
i =

∑
j∈ne[vi ]

f
(
vF
i , eF

i,j , v
F
j , hk−1

j

)
,

where all h0
i are defined upon initialization

We can see that under this formulation, f is well-defined. It accepts four
feature vectors, which all have a defined length, regardless of which ver-
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tex in the graph is being considered, regardless of the iteration. This means
that the transition function can be applied recursively, until a stable state
is reached for all vertices in the input graph. If f is a contraction map, Ba-
nach’s fixed point theorem ensures that the values of hk

i will converge to sta-
ble values exponentially fast, regardless of the initialization of h0

i (Khamsi
and Kirk, 2001). The iterative passing of messages or states between neigh-
bors to generate an encoding of the graph is what gives this message pass-
ing operation its name. In the first iteration, any vertex’s state encodes the
features of the neighborhood within a single edge. In the second iteration,
any vertex’s state is an encoding of the features of the neighborhood within
two edges away, and so on. This is because the calculation of the kth state
relies on the (k − 1)th state. To fully elucidate this process, we step through
how the transition function is recursively applied. The purpose of repeated
applications of the transition function is thus to create discriminative em-
beddings, which can ultimately be used for downstream machine learning
tasks.

Output: The output function is responsible for taking the converged hidden
state of a graph G(V,E) and creating a useful and relevant output. Note that
the transition function f application to features of G(V,E) ensure all final
states h

kmax

i are encoded in some part of G(V,E). The region size depen-
dency centers around the halting condition (convergence, max time steps,
etc.), but often the repeated “message passing” ensures that each vertex’s
final hidden state has “seen” the entire graph (Scarselli et al., 2009; Kipf and
Welling, 2016). These rich encodings typically have lower dimensionality
than the graph’s input features and can be fed to fully connected layers for
the purpose of the ML technique. The output function g, akin to f (the tran-
sition function), is implemented by a feedforward neural network (Scarselli
et al., 2009), though other means of returning a single value have been
used, including mean operations, dummy super nodes, and attention sums
(Zhou et al., 2018; Kipf and Welling, 2016; Defferrard et al., 2017; Hamil-
ton et al., 2017). A loss function makes this possible, defined as the error
taken from the predicted output and a labeled ground truth (Hamilton et
al., 2017). Both f and g can then be trained via backpropagation of errors
(Scarselli et al., 2009) for cases that are relevant.
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FIGURE 8.5 Graph of Categories and States in the economy of technology dataset.

8.4.3 Economy of technology dataset as a network

The dataset provides unique structural properties when described as a

graph. We shall illustrate three different graph views of the dataset we uti-

lized in Section 8.3. We shall illustrate graphs of states with respect to title,

category, and topics. Fig. 8.5 illustrates a non-directed graph of Categories

and States. Fig. 8.6 presents a graph of states and topics in the data.
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FIGURE 8.6 Graph representation of states and topics in the economy of technology
dataset.

Observe that in Fig. 8.5 and Fig. 8.6 the density of connection is far more
pronounced than in Fig. 8.7. The graph metric that describes how many
edges a vertex has is called centrality, which helps to determine what ver-
tices could be the most important. Also notice some of the vertices only
have one edge, which also represents less important vertices. From the
standpoint of our dataset, for Fig. 8.5 and Fig. 8.6 that describe topics and
categories per state, a graph representation can provide insight into what
legal categories and topics are most relevant per state. Note that in for-
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FIGURE 8.7 Graph of U.S. states and titles. Each U.S. state is centered around the related
topics that are connected to it. Each cluster represents the U.S. States’ respective topics,
where lines between clusters identify the relationships that exist.

mulating a GNN to support any type of correlation, anomaly detection, or
prediction, such understanding of how to engineer features is critical in for-
mulating an approach toward any type of AI.

8.5 Conclusion
In this chapter, the authors attempted to familiarize the reader with the
concepts of causality and its role in AI assurance, and how to build and
handle network datasets. We discussed in detail the significance of assur-
ing AI systems applied to the lawmaking process and covered theoretical
foundations of causal inference. These concepts were connected through
demonstration and explanation of the outcomes of a causal experiment
with the economy of technology dataset. We also introduced graph the-
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ory, presented examples of structuring the dataset as a network, and elu-
cidated the benefits of such representation. We provided examples of how
graph expressions of a sample dataset can provide unique structural in-
sights into the dataset. We hope our work inspired the reader to view their
AI-applicable and assurance problems from a new angle and supplied them
with helpful background and toolset.
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Data collection, wrangling, and
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Graphical abstract

Abstract

Data collection, wrangling, and pre-processing are critical steps within any
AI/ML model development lifecycle. These steps precede every model building
activity culminating in feature engineering for model formation. This chapter
emphasizes the design, development, and implementation of raw data transfor-
mation into features in support of AI/ML model development. Integration and
preparation of data sets from various sources, such as files, databases, big data
storage, sensors or social networks is a key task when you want to build an ap-
propriate analytic model using machine learning or deep learning techniques.
Critical to the model building endeavor is the need to have high-quality data

AI Assurance. https://doi.org/10.1016/B978-0-32-391919-7.00022-6
Copyright © 2023 Elsevier Inc. All rights reserved.

321

https://doi.org/10.1016/B978-0-32-391919-7.00022-6


322 AI Assurance

that, unfortunately, has shown to take up 50 to 80 percent of the time for an
AI/ML development project. This chapter presents ways to reduce this processing
time using data-driven operations “DataOps” (i.e., DevOps for data processing
and workflows) pipelines for AI/ML.

Keywords

Data management, data assurance, data science

Highlights

• Understanding the utility of data wrangling, munging, and pre-processing

• Descriptions of data characteristics

• Extract-transform-load (ETL) and extract-load-transform (ELT) processes

• Cleansing strategies that support machine learning and Artificial Intelligence

9.1 Introduction and motivation
Machine Learning (ML) and Artificial Intelligence (AI) algorithms require
complete data. In most cases, incomplete data, i.e., missing, or malformed
values within a dataset, introduce bias into the predictions that can lead
to incorrect or fallacious results. Hence, preparation and treatment of data
to reduce or eliminate bias is a critical step in the formation and deploy-
ment of reliable and consistent ML and AI. This chapter will present aspects
of collection, wrangling, and munging (CWM) of incomplete and impure
data to remediate these challenges. CWM focuses on treating raw inopera-
ble data into a state where ML and AI algorithms can consume them. This
involves removing ambiguities and impurities within the data through con-
sistent iterative processes.

A first step toward this is performing exploratory data analysis (EDA).
EDA precedes most machine learning (ML) and Artificial Intelligence (AI)
development, training, testing, validation, and deployment lifecycles to
support an evaluation of what is in the data to drive the needed CWM pro-
cesses. Depending on the use case being developed, most ML pipelines
involve a substantial amount of CWM to get the data ready for further steps
in the development lifecycle (NVIDIA, 2019).
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A large portion of CWM involves addressing missing and malformed data
that may arise from missing observations or errors in collection sensors.
There are two core techniques for handling missing data: imputation and
omission (Hunt, 2017; Luengo et al., 2012). Imputation involves filling in
missing data elements, and omission involves removing rows or columns
of data that may be malformed or not relevant. Standard imputation tech-
niques (Hunt, 2017) involve four approaches that include replacing data
with the following: zeros, the mean, the median, or the mode with respect to
observations. Deeper classification of these states, inclusive of techniques
to address them, can be asserted through examining conditions by which
data is missing at random (MAR), missing completely at random (MCAR),
or missing not at random (MNAR) (van Buuren, 2021). More sophisticated
methods involve model-based imputations that predict values based on fit-
ted inference models (Badr, 2019). Treatment of data using any of the above
or other techniques should necessarily be documented within the specific
data pre- and post-processing (generation) workflows.

Data collection is a major bottleneck in machine learning and an ac-
tive research topic in multiple communities. Fig. 9.1 depicts the various
divisions related to data collection. There are largely two reasons data col-
lection has recently become a critical issue. First, as machine learning is
becoming more widely used, we are seeing new applications that do not
necessarily have enough labeled data. Second, unlike traditional machine
learning, deep learning (DL) techniques automatically generate features,
which saves feature engineering costs, but in return may require larger
amounts of labeled data. Interestingly, recent research in data collection
comes not only from the machine learning, natural language, and com-
puter vision communities, but also from the data management community
due to the importance of handling large amounts of data (Roh et al., 2021).

As ML is used in new applications, it is usually the case that there is not
enough training data. Traditional applications, such as machine transla-
tion or object detection, enjoy massive amounts of training data that have
been accumulated for decades. On the other hand, more recent applica-
tions have little or no training data. Whenever there is a new product or
a new defect to detect, there is little or no training data to start with. The
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FIGURE 9.1 Data collection depiction for machine learning (Roh et al., 2021).

naive approach of manual labeling may not be feasible, because it is ex-
pensive and requires domain expertise. This problem applies to any novel
application that benefits from machine learning (Roh et al., 2021).

Moreover, as DL becomes popular, there is even more need for training
data. In traditional ML, feature engineering is one of the most challenging
steps, where the user needs to understand the application and provide fea-
tures used for training models. DL, on the other hand, can automatically
generate features, which saves us of feature engineering, which is a sig-
nificant part of data preparation. However, in return, deep learning may
require larger amounts of training data to perform well (Bach et al., 2017).

As machine learning needs to be performed on large amounts of training
data, data management issues, including how to acquire large datasets, how
to perform data labeling at scale, and how to improve the quality of large
amounts of existing data become more relevant. Hence, to fully understand
the research landscape of data collection, one needs to understand the liter-
ature from both the machine learning and data management communities
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(Bach et al., 2017). Data collection workflows can be employed to facili-
tate data acquisition and collection, where these processes are detailed and
provide good foundational representations that can be modified in practice
(Roh et al., 2021).

As a result, there is a pressing need of accurate and scalable data col-
lection techniques in the era of big data, which is the motivation of this
chapter. There are largely three methods for data collection. First, if the
goal is to share and search new datasets, then data acquisition techniques
can be used to discover, augment, or generate datasets. Second, once the
datasets are available, various data labeling techniques can be used to label
the individual examples. Finally, instead of labeling new datasets, it may
be better to improve existing data or train on top of trained models. These
three methods are not necessarily distinct and can be used together. For ex-
ample, one could search and label more datasets, while improving existing
ones. In the next section, we discuss relevant data characteristics that de-
scribe data types/formats along with a framework on how to organize data.

9.2 Relevant data characteristics
In general data fall in to four categories that can affect how it is managed:
observational, experimental, simulated, or derived/compiled. Prior to de-
veloping an AI or ML capability, it is important to work through a series of
data management-related steps to help focus the needs for building an op-
timal capability. It is important to write down a detailed description of how
data will be generated or obtained. The situations about when, where, and
how much data will be produced drives how the algorithm will consume
the data. Also, it is critical to include information on the software that will
be used and how the data will be processed.

The lists below capture the possible data formats and types along with
some format choices. This list is not exhaustive, but represents some of the
data types that can be collected and subsequently used for developing an
AI / ML capability.

Formats likely to be accessible in the future are

• Non-proprietary
• Open, with documented standards
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• In common usage by the research community
• Using standard character encodings (i.e., ASCII, UTF-8)
• Uncompressed (space permitting) examples of preferred format choices:
• Image: JPEG, JPG-2000, PNG, TIFF
• Text: plain text (TXT), HTML, XML, PDF/A
• Audio: AIFF, WAVE
• Containers: TAR, GZIP, ZIP
• Databases: prefer XML or CSV to native binary formats (DMPTool)

Data that adheres to the principles of Findability, Accessibility, Interop-
erability, and Reusability (FAIR) (Wilkinson et al., 2016) serve to guide data
producers as they navigate around data collection challenges. These ele-
ments help to maximize the added value gained by contemporary, data
sharing, and dissemination methods, processes, and techniques. It is im-
portant that the FAIR principles apply not only to “data” in the conventional
sense, but also to the algorithms, tools, and workflows that led to that data.
The FAIR principles emphasize machine actionability (i.e., the capacity of
computational systems to find, access, interoperate, and reuse data with
none or minimal human intervention), because humans increasingly rely
on computational support to deal with data, given the increase in volume,
complexity, and creation speed of data (Wilkinson et al., 2016).

The abbreviation FAIR/O data are sometimes used to indicate that the
dataset or database in question complies with the FAIR principles and also
carries an explicit data-capable open license. The following principles are
worth detailing, as they describe the relevant properties of data taken from
(FAIR principles, 2021). The lists below are taken from (FAIR principles,
2021) and (Wilkinson et al., 2016) and present the attributes of each prin-
ciple of FAIR. These principles are presented here and will be referred to
throughout the chapter to both balance and level set the goals and objec-
tives for data collection, wrangling, and pre-processing.

Findable: The first step in (re)using data is to make it “find-able” or “search-
able.” Metadata and data should be easy to search for both humans and
computers. Machine-readable metadata are essential for automatic dis-
covery of datasets and services, so this is an essential component of the
“FAIRification” process (FAIR principles, 2021).
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F1. (Meta)data are assigned a globally unique and persistent identifier
F2. Data are described with rich metadata (defined by R1 below)
F3. Metadata clearly and explicitly include the identifier of the data they

describe
F4. (Meta)data are registered or indexed in a searchable resource (Azeroual

et al., 2018)

Accessible: Once the user finds the required data, they need to know how
they can be accessed, possibly, including authentication and authorization.

A1. (Meta)data are retrievable by their identifier using a standardized com-
munications protocol

A1.1 The protocol is open, free, and universally implementable
A1.2 The protocol allows for an authentication and authorization pro-

cedure, where necessary
A2. Metadata are accessible, even when the data are no longer available

(Azeroual et al., 2018)

Interoperable: The data usually need to be integrated with other data. In
addition, the data need to interoperate with applications or workflows for
analysis, storage, and processing.

I1. (Meta)data use a formal, accessible, shared, and broadly applicable lan-
guage for knowledge representation

I2. (Meta)data use vocabularies that follow FAIR principles
I3. (Meta)data include qualified references to other (meta)data

Reusable: The ultimate goal of FAIR is to optimize the reuse of data. To
achieve this, metadata and data should be well-described so that they can
be replicated and/or combined in different settings.

R1. Meta(data) are richly described with a plurality of accurate and relevant
attributes

R1.1. (Meta)data are released with a clear and accessible data usage li-
cense

R1.2. (Meta)data are associated with detailed provenance
R1.3. (Meta)data meet domain-relevant community standards
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The FAIR principles refer to three types of entities: data (or any digital ob-
ject), metadata (information about that digital object), and infrastructure.
For instance, principle F4 defines that both metadata and data are regis-
tered or indexed in a searchable resource (the infrastructure component).
The benefit of referencing data in this manner allows for the ability to in-
corporate many comprehensive features needed to prepare data to support
analytics, modeling, machine learning (ML), and Artificial Intelligence (AI)
processes and workflows. These principles will serve as a reference point for
core requirements for data collection, wrangling, and pre-processing and
will be referenced throughout the remainder of the chapter. The next sec-
tion will discuss data pre-processing as it pertains to data wrangling and
data munging.

9.3 Data pre-processing: data wrangling and munging
The terms “data science,” “datafication,” “business analytics,” and “big
data” were coined based on many different developments in data retrieval,
storage, and analysis during the last years. Although tools and technologies
evolve constantly, understanding and preparing a newly acquired dataset
for further usage still requires much time and effort. This initial and very
fundamental process of examining and transforming data into a usable
form is known as “data wrangling” or “data munging” (Azeroual, 2020; En-
del and Piringer, 2015). The data wrangling process involves a broad and
deep understanding of the content, structure, and quality issues and nec-
essary transformations as well as appropriate tools and technological re-
sources needed. The whole wrangling procedure needs to be very efficient,
especially for small projects or unique datasets, where the effort to auto-
mate and document does not seem to be achievable, although necessary.
Altogether, data cleaning accounts for 50 percent to 80 percent of the time
and costs in analytic or data warehousing projects respectively (Endel and
Piringer, 2015).

A key goal of wrangling and munging is to make incremental steps to-
ward improving the overall quality of the data. Data of poor quality, that
may have omissions or malformed elements, cannot be properly used in
AI/ML algorithms. Fig. 9.2 clearly identifies incorrectness, redundancy, and
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FIGURE 9.2 Examples of data quality problems (Abuosba et al., 2018).

inconsistency issues within the dataset that we will be discussing in the next
section, taken from Abuosba et al. (2018). This particular dataset demon-
strates a critical need to wrangle and munge the dataset into a format that
eliminates or substantially reduces these problems to enable it to be con-
sumed by a to-be developed AI/ML algorithms. Data problems of these
types must be addressed way upstream from any subsequent capability and
algorithm development.

As discussed in the previous section, these types of data issues can also
introduce bias through training, and testing on data of poor quality can pre-
vent an algorithm from operating at its maximum efficiency. This can in
turn yield false positives, thereby consuming more “human calories” (i.e.,
more effort by humans in the loop) than originally intended, and hence nul-
lifying much of the intent of using AI/ML for efficiency and automation in
the first place. See Fig. 9.3.

Hence, it is imperative that processing, wrangling, and munging activi-
ties align with a core goal of driving towards high enough data quality to
be consumed by AI/ML capabilities to support an ongoing and iterative ef-
fort to improve algorithm performance and quality. The graphical abstract
presents an exemplar workflow to include steps where collection, wran-
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FIGURE 9.3 Exemplar Data Quality Workflow (Abuosba et al., 2018).

gling, and munging are among key steps. In Azeroual et al. (2018) and Aze-
roual (2020) an example of a data cleansing lifecycle from dirty to cleansed
to processed is presented in Figs. 9.4, 9.5, and 9.6.

In Fig. 9.4, notice the Name column (or what we will call label) has several
records that could be the same, but the first and last name are permuted
(i.e., some records have the first name before the last and vice versa). Notice
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Author ID Name ORCID Birth Date Address
12345 John Smit 0000-0123-1345-3487 12/23/1987 123 6th Str Melbourne,

32904
12345 Dr. John Smit 0000-0000-0000-0000 23.12.1987 6th St 32904
12345 John William Smit 0000-0123-1345-3487 872312 10 St 32904 6th

FIGURE 9.4 Example table of unclean data (Abuosba et al., 2018).

Author ID First Last ORCID Birth Date Address
12345 John Smit 0000-0123-1345-3487 1987-12-23 FL; Melbourne; 123 6th St
12345 John Smit 1987-12-23 FL; Melbourne; 123 6th St

John Smit 0000-0123-1345-3487 FL; Melbourne; 123 6th St

FIGURE 9.5 Example of cleansed data (Abuosba et al., 2018).

Author ID First Last ORCID Birth Date Address
12345 John Smit 0000-0123-1345-3487 1987-12-23 FL; Melbourne; 123 6th St
12345 John Smit 0000-0123-1345-3487 1987-12-23 FL; Melbourne; 123 6th St
12345 John Smit 0000-0123-1345-3487 1987-12-23 FL; Melbourne; 123 6th St

FIGURE 9.6 Example of cleansed, matched, and consolidated (Abuosba et al., 2018).

also that within the same figure that data with the Birth Date label are not

uniformly formatted. Both types of data within these labels pose challenges

for future AI/ML algorithms that may need to consume these fields. Data

wrangling and munging involves formatting these elements in a manner

consistent with F, A, and R of the FAIR principles mentioned in the previous

section.

With wrangling and munging completed, Fig. 9.5 depicts the cleansed

dataset. Notice that the Name column has been split into First and Last to

support the FAIR principles of Findability, Interoperability, and Reusabil-

ity mentioned in the earlier section (Wilkinson et al., 2016). The Birth Date
and Address column are uniformly formatted to support Interoperability

and Reusability (Wilkinson et al., 2016). AI/ML algorithms will now ben-

efit from this uniformity as the possible bias manifesting in data loss in-

troduced through poor formatting has been mitigated through these data

wrangling and munging steps.
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In Fig. 9.6, the data within the cleansed table in Fig. 9.5 is matched
and consolidated to support the FAIR principles of Interoperability and
Reusability (Wilkinson et al., 2016).

In the next section, ETL and ELT data architectures will be presented.

9.4 Data processing architectures: ETL & ELT
In Marín-Ortega et al. (2014), the authors compare and contract extract-
transform-load versus extract-load-transform architectures.

In a typical data architecture, to include business intelligence (BI) data
warehouses (DW) infrastructures, data is extracted from ingested sources,
firstly transformed, then cleaned and loaded (Jorg and Dessloch, 2009). Be-
fore data are loaded into a DW for example, it is necessary to process “raw
data” for a variety of reasons. Incoming data must be normalized. Also, the
source data may contain erroneous, corrupted or missed data, so the pro-
cess of cleaning and re-consolidation are needed. This also presents the
case for imputation as discussed earlier (Hunt, 2017; Luengo et al., 2012).
This pre-processing is commonly known as extract, transform and load
(ETL): data are first extracted from the original data source, then trans-
formed, including normalization and cleansing, and finally loaded into the
DW (Jorg and Dessloch, 2008). While database technologies used for data
warehousing had seen tremendous performance and scalability enhance-
ments over the past decade, ETL has not been improved in scalability and
performance in the same level of degree as database. As a result, most in-
frastructures are increasingly experiencing a bottleneck: data cannot be
easily acquired with necessary actuality. Clearly, to provide near real-time
capabilities, this bottleneck needs to be resolved. Costs of data storage were
always a significant factor, but with the advent of the cloud and reduced
hardware costs, this is becoming cheaper with time. As a result, analysis
can be performed over larger datasets with smaller investments. Further-
more, former (but robust) extract, transform and load approaches cannot
be easily applied to answer all needs of business, which includes work-
ing with big data and, as a result, new approaches and/or architectural
changes are needed. The main disadvantage of ETL is that data must be
firstly transformed and only then loaded. It means that during the trans-
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formation phase, mass amounts of potentially valuable data are thrown
away (Jorg and Dessloch, 2009). However, to eliminate drawbacks of ETL,
improvement of latest storage techniques can be used (Jorg and Dessloch,
2008).

ELT (extract, load and transform) in comparison with ETL, has four fol-
lowing advantages: (1) flexibility in adding new data sources (EL part); (2)
aggregation can be applied multiple times on same raw data (T part); (3)
transformation process can be re-adopted, even on legacy data; (4) speed-
up process of implementation. Also, transformation with ELT can be ap-
plied and re-applied taking into account changes in business requirements.
Based on above reasons it is more preferable to adopt extract, load and
transform (ELT) instead of extract, transform and load (ETL) in the within
data architectures. The next section discusses data operations automation
management known as DataOps.

9.5 DataOps: data operations automation management
DevSecOps pipeline design and development to support data wrangling
and pre-processing, automation best practices for pre-processing steps to
include error handling DevOps (Capizzi et al., 2020; Lwakatare et al., 2015) is
an approach for software development and (IT) system operation combin-
ing best practices from both such domains to improve the overall quality of
the software-system, while reducing costs and shortening time-to-market.
The DevOps formalism can be generalized as a good practice for improv-
ing a generic product or service development and operation, by connect-
ing these through feedback from operation to development. An important
feature of DevOps is the automation of such a process: continuous deliv-
ery (CD) enables organizations to deliver new features quickly and incre-
mentally by implementing a row of changes into the production via an
automated assembly line, called the continuous delivery pipeline. This is
coupled with continuous integration (CI) that aims at automating the soft-
ware/product integration process of code, modules and components, thus
identifying a CI/CD pipeline. The tools adopted to implement this high de-
gree of automation in the DevOps process identifies a toolchain. DevOps
toolchain tools are usually encapsulated into different, independent con-
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tainers deployed into physical or virtual servers (typically on Cloud), and
then managed by specific scripts and/or tools (e.g. Jenkins), to orchestrate
and coordinate them automatically. Such DevOps principles have been
therefore either specialized to some specific software/application domains
(security: SecOps, SecDevOps, DevSecOps (Lwakatare et al., 2015), system
administration: SysOps, Web - WebOps or WebDevOps) or even adopted,
rethought, and adapted in other contexts, such as Artificial Intelligence
(AIOps) and machine learning (MLOps), and data management (DataOps).

The latter, DataOps, aims at mainly organizing data management ac-
cording to DevOps principles and best practices. To this end, DataOps
introduces the concept of data flow pipeline and toolchain, which is to
be deployed in containerized (Cloud) environment providing feedback
on performance and QoS of the overall data management process, used
to real-time tune the pipeline to actual operational needs and require-
ments. As discussed above, DevOps pipeline automation involves different
toolchains, each continuously generating messages, logs, and data, includ-
ing artifacts. To achieve DevOps aims and goals, such data has to be prop-
erly managed, collected, processed, and stored to provide insights from
operations to the development stages. DevOps data management could
therefore be quite challenging, due to the large amount of data to be consid-
ered, and its volume and variety (Capizzi et al., 2020; Lwakatare et al., 2015).
In the next section data tagging, provenance, and lineage will be discussed.

9.6 Data tagging, provenance, and lineage
Upon completion of CWM processes, data may be tagged to identify its
source, how it was acquired, and who it can be shared with. These types
of metadata are critical in tracing each element of a data source that may
be used for information sharing. Within the national intelligence enter-
prise, this type of sharing supports not only the aggregation of information
assurance metadata (including enterprise data headers), but also allows
inter-agency access control, automated exchanges, and appropriate pro-
tection of shared intelligence. Using agreed upon data header standards, a
structured, verifiable representation of security metadata bound to the in-
telligence data enables data systems to become inherently “smarter” about
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FIGURE 9.7 Data provenance conceptual model (Glavic and Dittrich, 2007).

the information flowing in and around it. Such a representation, when
implemented with other data formats, improves user interfaces and data
processing utilities, and can provide a larger more robust information as-
surance infrastructure capable of automating some of the more critical but
menial management and exchange processes (DNI, 2021).

Information sharing largely depends on data provenance and lineage,
that is, documenting where a piece of data came from and the process by
which it arrived at its storage target. Fig. 9.7 presents this. As described in
the figure, this is becoming increasingly important, especially in scientific
databases, where understanding provenance is crucial to the accuracy and
currency of data (Buneman et al., 2001; Simmhan et al., 2005; Glavic and
Dittrich, 2007). Extending these use cases to other venues, such as national
security, involves application of similar principles.
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Data lineage enables an end-to-end data-centric audit trail that can fa-
cilitate all levels and forms of compliance. As assuring AI can center on
meeting certain compliance standards, data lineage focuses on tracing data
quality issues along with other errors to root causes, where impact analysis
can be conducted on any proposed change. Physically and logically sepa-
rated systems can benefit from data lineage by describing various metadata
connectivity constructs, where identification of business rule discrepancies
and data incompleteness is critical. This also supports other governance
participants to respond to issues before they become a problem, making
possible data quality improvement for the possible reuse of existing infor-
mation in all its forms.

The intelligence community (IC) has standardized the various classi-
fication and control markings established for information sharing within
the information security markings (ISM), need-to-know (NTK), and access,
rights, and handling (ARH) XML specifications of the Intelligence Commu-
nity Enterprise Architecture (ICEA) data standards. The IC enterprise data
header XML specification further expands on this body of work, adapting
and extending it as necessary to meet mission-unique needs. By specifying
a data object’s header information required for exchange on the IC enter-
prise, EDH ensures a secure method of information sharing and discovery,
supporting use cases, such as the IC Cloud.

Though increases in data volumes can lead to improved performance
and increased accuracy of models, what is more important is the quality of
the data. Training models on data that is too noisy or lacks variance can lead
to models that lack real predictive power. As a result, the assurance of AI
models involves ensuring that data used to train them is of sufficient qual-
ity to promote maximal predictive power, while avoiding setbacks, such as
overfitting.
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Abstract

Concerns of robustness, reliability, resilience, and elasticity in Machine Learn-
ing (ML) systems are important, and they must be considered in trade-off with
efficiency factors. However, they need to be supported and optimized in an end-
to-end manner, not just for ML models. In this chapter we present a conceptual
approach to architectural design and engineering of the robustness, reliability,
resilience, and elasticity (R3E) for end-to-end big data ML systems at runtime.
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We propose quality of analytics as a contractual means for optimizing end-to-
end big data machine learning (BDML) systems. Based on that, we propose to
define and abstract diverse types of components under R3E objects and devise
operations and metrics for managing R3E attributes. Through a set of proposed
coordination, monitoring, analytics, and testing methods, we identify essential
tasks for tackling R3E concerns when developing BDML systems. Finally, we
illustrate our approach with an example of an end-to-end BDML system for
building objects classifications.

Keywords

Software systems, machine learning, big data, software architecture, elasticity,
cloud computing, engineering analytics

Highlights

• This chapter characterizes robustness, reliability, resilience, and elasticity (R3E) in

architectural designs for end-to-end big data machine learning systems.

• We provide a novel model of quality of analytics chain (QoAChain) to abstract and

define constraints for assuring robustness, reliability, resilience, and elasticity of

end-to-end machine learning.

• We present a concept of R3E objects and operations abstracting components in big

data machine learning systems.

• We discuss engineering methods for coordinating, monitoring, analyzing, and

testing R3E attributes.

10.1 Introduction
Big data machine learning (BDML) systems enable different types of ML-
based pipelines, which deal with big data in motion or at rest. End-to-
end BDML systems support tasks from processing raw data to producing
inference results. Thus BDML systems involve several different software
components, including data sources collectors/connectors, message bro-
kers, edge data preprocessing and aggregators, cloud data stores, ML serv-
ing platforms, and ML services. These components are cross-layered and
cross-infrastructural, due to the nature of diverse ML pipelines and data
to be supported by such systems. Therefore, components of an end-to-end
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BDML system are potentially deployed and offered in multiple edge and
cloud infrastructures. Typically, the data to be inferenced and the appli-
cation using the ML model-as-a-service are from the consumer, whereas
the ML model-as-a-service can be run in the edge or cloud by the ML ser-
vice provider, which offers the service to many consumers. Furthermore,
computing, storage, and communication services might be offered by other
providers. Such systems for real-world ML must be designed with robust-
ness, reliability, resilience, and elasticity (R3E) concerns from a multi-party
perspective. Although individual components may be designed and tested
with certain degrees of R3E, the challenging question for the develop-
ment of end-to-end BDML systems is to guarantee expected runtime R3E
attributes across layers and infrastructures. Therefore, recently, the role
of software systems and underlying distributed computing platforms and
their intersections with ML have been discussed intensively. Since BDML
systems are complex and typically used for critical businesses, the R3E at-
tributes play a key role in BDML software architectures and implementa-
tions. Ensuring R3E is challenging for complex software systems, because
R3E attributes are highly interdependent and multi-dimensional. Espe-
cially, R3E attributes in BDML systems are related to three aspects: services,
data, and ML models. The key research question in our work is how to build
and optimize the R3E attributes for BDML systems in an end-to-end man-
ner; and the “end-to-end” aspect forces us to examine various components
of BDML systems together, following their dependencies, interactions and
functions.

This chapter presents a novel conceptual approach to R3E engineering
for BDML systems, in which we will focus on software architecture and
design aspects. We develop abstractions and methods for architectural de-
signs, runtime optimization, and engineering analytics in BDML. Our ap-
proach considers different levels of abstractions of BDML, from data collec-
tion to training to model serving to determine key constraints, engineering
steps, monitoring, and management processes for making BDML robust,
reliable, resilient, and elastic. Our conceptual approach makes the follow-
ing contributions:
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• QoAChain as a means to combine quality of analytics constraints, ser-
vices contracts, and data contracts for specifying runtime R3E attributes
and constraints

• abstractions and models for R3E objects and operations in BDML
• engineering methods for coordinating, monitoring, analyzing, and test-

ing R3E attributes

Our approach covers key aspects of R3E engineering and layouts the foun-
dational work for the development of specific techniques and tools to sup-
port R3E in BDML systems. To illustrate our approach, we will use a realistic
example of end-to-end BDML for building objects classifications.

The rest of this chapter is organized as follows: Section 10.2 characterizes
R3E in BDML and presents our motivating examples and research ques-
tions. Section 10.3 presents our R3E approach. We present a concrete ex-
ample of R3E aspects and identified requirements in Section 10.4. Further
related work will be discussed in Section 10.5. We conclude the chapter and
outline the future work in Section 10.6.

10.2 Background and motivation
10.2.1 Background – characterizing BDML

A BDML system can be characterized as follows:

• system structures and functions: a BDML system includes various com-
ponents implementing different functions. Examples of components are
a data storage service and an ML serving platform, whose functions are
storing data and serving ML models, respectively. Components have dif-
ferent relationships and possible inputs and outputs. R3E attributes can
be associated with individual components, a set of components, and the
system as a whole.

• supporting computing, data, and communication infrastructures: com-
puting infrastructures provide different types of computing resources for
different tasks, notably data preprocessing, training, and serving. Typi-
cally, such infrastructures include advanced computing systems, such as
CPU/GPU resources, containers and Kubernetes, message brokers, and
edge systems. The data infrastructures provide data for training and data
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FIGURE 10.1 Example of ML pipelines and components in BDML systems.

being inferenced as well as other types of data related to ML, such as ML
model experiments and performance of ML services. Our focus is on big
data infrastructures.

• runtime quality/capabilities: they include multiple attributes, for exam-
ple, regarding to fault-tolerance, high performance, high availability, and
security of software services. From the data view, a BDML system has to
deal with big data characteristics, such as volume, variety, velocity, and
veracity, from the data source to the end of the ML pipelines. Further-
more, ML models have different quality attributes, depending on domain
requirements and business contexts.

For example, Fig. 10.1 shows a view from common tasks in end-to-end
BDML pipelines. From the ML pipelines perspective, the system-as-a-
whole can be seen as a meta pipeline orchestrating different sub systems,
where each subsystem can be implemented differently, such as with Air-
flow, Lambda, TensorFlow, and other supporting services. Each of them
requires a variety of components for data, software services, ML algorithms,
and pipeline orchestration.

In this chapter, we consider well-studied R3E attributes in the state-of-
the-art literature:

• robustness attribute (Gribble, 2001; Laranjeiro et al., 2021) is about the
ability to cope with errors, such as with the error of the data (Sehwag et
al., 2019).
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• reliability attribute (Littlewood and Strigini, 2000; Saria and Subbaswamy,
2019; Elsayed, 2012) is about the ability to properly function/operate ac-
cording to the service specification, e.g., the availability of a service must
be 99%.

• resilience attribute (Trivedi et al., 2009; Brtis et al., 2021) is about the abil-
ity to hold out required capabilities under adversity, e.g., due to system
failures or security attacks.

• elasticity attribute (Dustdar et al., 2011) is about the ability to stretch and
return to normal service capabilities, e.g., under external forces of usage
demands.

We will rely on common definitions and usages of these attributes from
the big data and ML perspectives. Table 10.1 gives examples about key R3E
concerns and factors from big data and ML views of BDML systems. Our
approach will support R3E attributes in such common senses.

10.2.2 Motivating example: machine learning for classifying
building elements

We consider a prototype for an end-to-end BDML system for classification
of building information modeling (BIM) elements in the architect, engi-
neering, and construction domain. ML-based BIM classification allows to
speedup the design and check conformity of building models. In our col-
laboration, an initial end-to-end BIM BDML system has been developed
using various AWS services for moving data; ML capabilities are built with
TensorFlow and Keras (Ryu et al., 2021). Fig. 10.2 shows a simplified view
of a new architectural design for the discussion of the role of R3E in this
chapter, where we are leveraging serverless platforms to better manage and
optimize the complex relationships between various components. In the
new design, data exported from user tools will be moved to Data Service.
New data will be detected, and preprocessing and feature engineering will
be triggered by serverless platforms, before ML Service serves requests of
classifications. Atop the ML Serving Platform, we have ML Service with dif-
ferent ML Models for BIM classification.

Fig. 10.2 not only shows an end-to-end system with various components,
but also creates clear interfaces between different sub-pipelines, such as
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Table 10.1 Common R3E with big data and ML concerns.
R3E attributes Cases from big data view Cases from machine learning view

Robustness deal with erroneous and bad data
(Zhang et al., 2017), data processing
job robustness

dealing with imbalanced data, learn-
ing in an open-world (out of distribu-
tion) situations (Kulkarni et al., 2020;
Sehwag et al., 2019; Saria and Sub-
baswamy, 2019; Hendrycks and Diet-
terich, 2019)

Reliability reliable data sources, support of qual-
ity of data (Zhang et al., 2020; Lee,
2019), reliable data services (Klepp-
mann, 2016), reliable data processing
workflows/tasks (Zheng et al., 2017)

reliable learning and reliable inference
in terms of accuracy and reproducibility
of ML models (Saria and Subbaswamy,
2019; Henderson et al., 2017); uncer-
tainties/confidence in inferences; reli-
able ML service serving

Resilience software bugs, infrastructural resource
failures, fault-tolerance and replication
for data services and processing (Yang
et al., 2017)

bias in data, adversary attacks in ML
(Katzir and Elovici, 2018), resilience
learning (Fischer et al., 2018), compu-
tational Byzantine failures (Blanchard
et al., 2017)

Elasticity utilizing different data resources; in-
creasing and decreasing data usage
with respect to data volume, velocity,
and quality; elasticity of underling re-
sources for data processing (Wang and
Balazinska, 2017)

elasticity of resources for computing
(Huang et al., 2015; Harlap et al.,
2017; Gujarati et al., 2017), elastic-
ity of model parameters; performance
loss versus model accuracy; elastic
model services for performance

FIGURE 10.2 Overview of an end-to-end big data machine learning system for BIM.

preprocessing, feature engineering, and serving, enabling us to carry out dif-
ferent performance/cost optimizations for different pipelines and their un-
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derlying components. It also allows us to deal with R3E attributes that are
more flexible for subpipelines and underlying components. However, it cre-
ates various R3E concerns that need to be addressed together. For example,
ML Service has to be elastic to support different requirements with respect
to accuracy, cost, and performance. This is dependent on the elasticity of
the underlying ML Service Platform, which is strongly linked to comput-
ing resources, and on the output of feature engineering, which in turn is
strongly dependent on the exported data sent to Data Service and prepro-
cessing robustness and reliability.

10.2.3 Research questions

Key issues of end-to-end BDML are not just about efficiency, such as highly
responsive in serving the classification with a minimum cost, but also in
trade-offs with robustness, reliability, resilience, and elasticity. For exam-
ple, in the BIM scenario (Section 10.2.2), the accuracy of inference results
from ML service and the resilience of ML service are more important than
the response time due to the business nature of the domain. As recognized
in (Ackley, 2013), performance must also be aligned with robustness and
resilience. The robustness of the ML model depends on the data input.
From the computation and network, reliability concerns for edge-cloud
have many issues (Suryavansh et al., 2019; Nguyen et al., 2019). The reli-
ability concern from the data aspect is that the data source must provide
“reliable data,” interpreted as the data quality and quantity satisfied the re-
quired conditions. On the other hand, from the service viewpoint, the ML
model serving will be considered as a reliable service when it can return the
results in specified time. This turns out to be dependent on multiple fac-
tors, such as the reliability of the underlying computing resources (e.g., no
failure) and the elasticity of the resources (e.g., to assure response times in
the expected range).

We see that R3E concerns exist in different parts of a BDML system.
However, currently, there is no systematically way to capture, represent,
monitor, and optimize such R3E attributes from the design and architec-
ture viewpoint. Our vision in this chapter is the following:
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R3E attributes can be systematically modeled, programmed, and cap-
tured at different levels of abstractions in BDML systems, enabling the
coordinated optimization of these attributes in an end-to-end view,
based on specific contexts of the intended end-to-end ML pipelines
executed in BDML systems.

Consequently, we have the following important research questions (RQs):

• RQ1: what would be the model for abstracting R3E constraints? With di-
verse R3E concerns, we need to capture key R3E attributes and describe
them into appropriate constraints.

• RQ2: how can we abstract complex components in the R3E view and define
suitable operations for managing R3E? Components in BDML systems
need to be managed through the R3E view, which should capture at-
tributes and essential operations.

• RQ3: which are the key engineering methods for achieving R3E? Engineer-
ing methods for monitoring and managing R3E attributes across com-
ponents of BDML systems must be laid out, paving the way to develop
suitable tools and frameworks.

The R3E approach will provide key conceptual steps and components to
address the above-mentioned questions.

10.3 Key elements of R3E approach
10.3.1 QoAChain: chaining diverse types of quality

constraints as a contract for optimizing end-to-end
BDML

RQ1 requires us to determine how to abstract R3E attributes and to spec-
ify R3E concerns for optimizing BDML systems. Fig. 10.3 gives a high-level
view of the complex relationships among various concerns of different at-
tributes when optimizing BDML. Given an application, big data and ML
pipelines are combined and executed to analyze input data (data in) and
produce results. Such executions are carried out with edge-cloud resources
as services. There are many questions with respect to attributes associ-
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FIGURE 10.3 Concerns among components and stakeholders in optimizing ML.

ated with used models, input data, results, and execution environments of
computing, data and communication services, as exemplified in Fig. 10.3.
These concerns are from different involved stakeholders, such as the appli-
cation users, the BDML system provider, the developer and scientist of ML
pipelines, and the resources provider. Overall, they reflect the concerns of
dealing with trade-offs between R3E and efficiency.

Consider the complex relationships among various components and
stakeholders in BDML; we choose to combine the concept of quality of
analytics (QoA) (Truong et al., 2018), machine learning service contracts
(Truong and Nguyen, 2021), and data contracts (Balint and Truong, 2017;
Truong et al., 2012) for end-to-end BDML. We summarize these works in
the following:

• Quality of analytics (QoA) (Truong et al., 2018) emphasizes the need to
optimize data analytics based on specific contexts that is elastic. It char-
acterizes complex relationships between quality of results, performance,
and cost that are not fixed, but changing according to requirements, even
for the same system:
• Quality of results, outputted from data analysis tasks, including ML

ones, are characterized by the user/domain expert, e.g., quality of data
of the output and the accuracy of predictions.

• Input data has complex characteristics with respect to, for example,
quality of data and data volume and velocity, that strongly influence
infrastructural resources as services, such as task execution, comput-
ing machines, and storage.
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• Complex types of cost (money) and performance are based on busi-
ness purposes, contextually expected and changed by involved stake-
holders.

• The recent work on machine learning contracts (Truong and Nguyen,
2021) defines contractual terms between ML service providers and ML
customers. ML contracts focus on ML-specific attributes, such as infer-
ence accuracy, at runtime that are agreed between the customers and the
services.

• Existing data contracts (Truong et al., 2012; Balint and Truong, 2017) fo-
cus on constraints on data to be delivered from data sources (providers)
to consumers. They focus very much on quality of data attributes.

Clearly the above-mentioned concepts aim at guaranteeing important con-
straints seen in BDML systems. ML-specific attributes, data quality at-
tributes, and common service attributes can be associated with various
parts of a BDML system. The associations can be for individual components
or a whole pipeline, and can indicate different expectations in the BDML
system. Due to the diversity of component types, inputs and outputs, it is
difficult to have a single way to specify such constraints for BDML systems.

A “reliable BDML system” should guarantee the specified runtime qual-
ity attributes built from the work on QoA, ML contracts, and data contracts,
while maintaining designed R3E attributes. Due to the nature of ML sys-
tems, we can use these concepts to specify constraints for different parts of
a BDML system for different purposes, such as:

• data contract: a constraint on data completeness for input IoT data
• ML contract: a constraint on inference accuracy for inference results
• common service contract: a constraint on the response time for the end-

to-end processing

These examples show that runtime constraints can be defined for dif-
ferent components for different attributes, and these constraints might be
specified by different models. A BDML system is designed and optimized
for different ML pipelines, which serve different business purposes, de-
pending on the usage of the resulting outcome of the pipelines and the
business goal of the provider of the pipelines supported by the BDML sys-
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FIGURE 10.4 A simplified view of QoAChain and its relations to BDML systems and existing
contracts.

tem. Therefore, a QoA-based approach can help to deal with the diversity
of what, when, where, and how runtime attributes related to R3E can be
supported. The QoA-based approach should include metrics for services,
data, and ML models to reflect the end-to-end view. It should support
human-in-the-loop and domain expert integration when defining QoA,
due to the domain aspect of end-to-end BDML. To this end, we define
“Chaining QoA for BDML” (QoAChain) as a contractual means for opti-
mizing end-to-end BDML systems. QoAChain constraints described in a
“contract” for optimizing R3E attributes (i) implement service contract and
data contract models, (ii) enable monitoring and optimization techniques
centered around contracts, and (iii) allow runtime changes and updates ac-
cording ML-specific contexts by people or intelligent software. QoAChain
constraints are based on various metrics inherent in BDML.

Fig. 10.4 shows key sub-elements of a proposed QoAChain and its relation
to a BDML system. First, in our view, a BDML System consists of many Com-

ponents; each Component may have sub components. A Component will utilize
some resources (to implement required functions) and/or will deliver re-
sources (e.g., featuring data/resulting prediction). Resources in our view can
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be simple or complex, and they are not just infrastructural resources. The
main categories of resources to be utilized or delivered are Services and
Data. Services can be further divided into different types, such as for data
processing, computing, storage, and inferencing. Data can be used to repre-
sent input data and output data (e.g., inference result in the case of ML ser-
vice). In terms of quality, represented by Quality, there are many attributes
known in big data and ML, such as ResponseTime, Data Quality, and In-

ference Quality (see also Section 10.2.1); we just illustrate some of them
in Fig. 10.4. QoAChain for a BDML System consists of different QoAConstraints,
which are associated with Components or the BDML System as a whole. QoA-
Constraints are used to specify constraints on attributes that should be
monitored and optimized for R3E. They include tradeoffs among Resources,
Quality, and Costs. QoAConstraints can be implemented by using existing,
specific contract specifications. Examples of constraints in a chain are:

• a constraint on data completeness for IoT input data sent to a message
broker, which passes the data to an ML service for dynamic inference of
the IoT data

• a constraint on inference accuracy for an ML service, given a constraint
on data completeness and data volume that the ML service handles in a
window of time

• a constraint on the response time between from the time a component
sends a batch of data to a message broker to an ML service until the time
the component receives the inference result

Based on QoAChain, the next question is how to manage R3E attributes
across multiple contexts in end-to-end BDML systems, such as to which
components we should associate QoAChain and how to manage them.

10.3.2 R3E objects and operations

For RQ2, we will address fundamental abstractions for objects and op-
erations for R3E. Consider the internal structure of a BDML: BDML =
{c1, c2, · · · , cn}, whereas ci is a component, which is a part of BDML. A com-
ponent can be a software service, a container instance, a virtual machine
(VM), or a middleware; a component can be instantiated as a resource-
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as-a-service. A component can be composed from a set of components,
creating a complex component as a subsystem of a BDML system. For ex-
ample, a subsystem for data preprocessing in a BDML can include contain-
ers and workflow orchestration components. Given the structure of BDML
explained in Section 10.2.1, a component of BDML can be described using
a set of objects; an object can represent a very complex component, such as
an extract-transform-load process that filters data suitable for feature engi-
neering, or represent a simple task, e.g., a data validation task.

10.3.2.1 Conceptualize R3E objects
In terms of management, we view components, pipelines, tasks and their
input/output as programmable objects. We define an object as an R3E ob-
ject if we can associate R3E policies and attributes with the object, mean-
ing that we can examine R3E capabilities for the object and control these
attributes. Given a BDML, not all the objects can be an R3E object. Fur-
thermore, in the view of the developer, they might not see an object as an
R3E object if they cannot apply R3E techniques. However, the operator of
BDML might see that object as an R3E one. For example, consider an ML
model which has no elastic parameters to influence robustness. The devel-
oper might not focus on the ML model as an R3E object. The operator sees
that the underlying computing resources can be changed for the ML model,
thus it can be an R3E object.

We propose to conceptualize R3E objects, shown in Fig. 10.5. An R3Eob-

ject represents a BDML Component. BDML Component can be classified accord-
ing to their functionality and layers, such as infrastructural objects, ML
algorithm objects, and data objects. Furthermore, an BDML Component can be
composed from other BDML Components. Therefore we have a similar classi-
fication of R3Eobject. An R3EObject will have to implement a set of oper-
ations/APIs for controlling and monitoring and will be associated with a
set of attributes —R3EAttributes— each attribute is represented as a metric
name and value.

When applying the R3E approach, R3E objects can be identified and built
from two perspectives: existing knowledge about contemporary objects
that we use, such as containers, VMs, and middleware, which already have
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FIGURE 10.5 A simplified conceptual model of R3E objects.

built-in features for controlling certain aspects of R3E. Second, the new ob-

jects to be developed for BDML must implement such features. Given a

BDML system, in our approach, we do not need to represent R3EObject for

all possible BDML Components. However, using a composition model, we can

also build an R3EObject for the entire BDML system that links to other R3EOb-

jects representing other components. Via the dependency of R3EObjects,

we can capture the whole picture of the system to be optimized. For the im-

plementation, we are investigating two models: R3EObject as implemented

as a resource of a microservice (an adaptor model) and as an interface im-

plemented within components themselves.

10.3.2.2 R3E attributes associated with R3E objects
We classify attributes into different subcategories, associated with services,

data, and ML models, shown in Fig. 10.4. Each attribute is represented as a

metric under a tuple (name, value).

• Services quality: covers different types of attributes for a variety of ser-

vices, including infrastructural computing services, data storage, com-

munication services, and platform services. Common quality attributes

are well-known in literature, such as response time, availability, and

MTBF.
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• Data quality: covers data quality metrics, such as completeness, timeli-
ness, currency, validity, format, accuracy, and data drift.

• ML models quality: includes known quality in ML models, such as accu-
racy, F1 Score, and MSE.

These metrics are captured for individual components and composite com-
ponents and tasks of ML pipelines carried out atop such components.

10.3.2.3 R3E operations and APIs
Given an R3E object, we must be able to control it to meet R3E constraints,
which are pre-defined or changed during runtime. For example, if param-
eters of an ML model as a R3E object can be controlled to affect the ML
model, we can then optimize the ML model for different degrees of robust-
ness, reliability, resilience, and elasticity. Similarly, if an object performing
feature engineering can be tuned with different granularity of feature ex-
traction and selection, then we can control the object to have different data
quality values. Furthermore, to allow for controlling, we must be able to
monitor and query states of R3E objects at runtime. This can be done di-
rectly through querying the object or indirectly through the monitoring
systems. Shown in Fig. 10.5, two types of key operations are for R3E control-
ling and monitoring. An R3E operation associated with R3E objects will be
implemented as an API. Inputs and outputs of the API are centered around
metrics and constraints specified in QoAChain.

10.3.3 Engineering methods

For RQ3, we propose a set of engineering methods for R3E coordination,
monitoring and analytics, and testing, benchmarking and experiments. We
will describe engineering methods, but leave the implementation of tools
and frameworks for such methods out of the scope of this chapter.

10.3.3.1 Coordination for R3E
Having R3E objects enables us to optimize the BDML system through con-
trol and reconfiguration of R3E attributes, thus leading to changes in com-
ponents of the BDML system. Due to the complexity and structure of the
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BDML system, coordination of such controls and configurations is chal-
lenging.

Architectural styles for R3E coordination: To perform the coordination
of controls and reconfigurations of various R3E objects, we must consider
suitable architectural styles coupled with BDML systems. Most architec-
tures for end-to-end BDML systems follow either the reactive style or the
workflow style as the basic architectural style. Furthermore, due to the com-
plexity of individual components, each component might also follow the
workflow or reactive style. Basically,

• reactive style: the data/event from one task/component triggers the next
action in the pipeline/system (Smith, 2018). This model usually fits very
well with large-scale BDML systems

• workflow style: a workflow is used to control tasks/components in ML
pipelines/systems. However, most systems focus on leveraging work-
flows in the training or inferencing.

We design our approach to work with the reactive system style. This will
be aligned with BDML pipelines consisting of components across differ-
ent layers and different infrastructures (e.g., edge and cloud) and different
providers. Furthermore, using reactive models, we can intercept BDML sys-
tems at different places to create optimization and feedback channels to
support R3E. Fig. 10.6 present the high-level components view. A BDML
system consists of different subsystems, such as Computing and Data Plat-
form, Data Processing Platform, and Serving Platform. Each subsystem is
complex and can be implemented with different technologies. ML tasks in
ML pipelines are spread in these subsystems, and they are coupled through
reactive principles by using messages. Therefore we do not need a global
workflow system to orchestrate them, but we can use a set of R3E Manage-

ments. Each R3E Management will interact with a subsystem using three inter-
faces: R3EPolicies are used to control subsystems; R3EAttributes are used
to capture states, and R3EConstraints specifies QoAChain. Among R3EMan-

agements, the reactive principle is also used to provide an end-to-end view
of the whole system.
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FIGURE 10.6 R3E reactive systems with group of management.

Distributed controls: Each component, based on the view in Fig. 10.1, can
be controlled and managed through the individual component’s R3E ob-
ject. For example, data collections can be controlled to select suitable data
sources, and such controls are independent from another control of the
ML model service. However, from an end-to-end viewpoint, we need to
coordinate these controls to achieve the defined QoAChain for the whole
BDML system. Fig. 10.7 presents our approach to control ML tasks and cor-
responding components by using Monitoring Process and Control Process

to interact with R3EObject. For each subsystem and subpipelines on that
subsystem, R3EObjects are used to monitor and control tasks and compo-
nents. Corresponding Monitoring Process and Control Process will inter-
act with these R3Object. Exchanges among subpipelines, such as the fea-
turing data outputted from feature engineering subpipeline to training

subpipeline, will be also monitored. Individual Control Process for differ-
ent subpipelines will be coordinated by a crossover Control Process. Thus
we have distributed controls, but through a centralized coordination. In
our implementation, we plan to implement functions in Monitoring Pro-
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FIGURE 10.7 Distributed monitoring and control processes utilizing R3E objects.

FIGURE 10.8 Scopes of tests, benchmarks and experiments.

cess and Control Process using serverless frameworks. Note that Monitoring
Process will need to work with monitoring systems that we will discuss in
the next section.

10.3.3.2 Monitoring and analytics
Monitoring and analytics monitor and analyze R3E attributes of services,
data, and ML models and map the R3E attributes to R3E objects. For the
whole approach, we need to leverage different methods for monitoring and
analytics. Shown in Fig. 10.8, we will need (i) monitoring probes and frame-
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FIGURE 10.9 R3E W4H analytics context.

works, (ii) tests and benchmarks units and frameworks, and (iii) data anal-
ysis/machine learning for understanding monitoring data. We will support
different scopes of monitoring and analytics: the system as a whole, sub-
system/subpipeline, and component/task. With such scopes, we will focus
on end-to-end aspects. For example, data reliability can be examined along
the path from data sources to the final inference results. The consumer can
also expect an end-to-end R3E attribute, such as accuracy and response
time, which can only be achieved if we are able to monitor different parts
and to perform coordination-aware assurance, e.g., using elasticity princi-
ples, in the system as a whole scope. For the implementation, we will need
to integrate various monitoring systems for services (such as Prometheus),
for data (e.g., data validation tools from scikit-learn and TensorFlow Data
Validation), and for ML models (e.g., extracted from ML frameworks).

In terms of analytics, we also have different perspectives about which
techniques can be applied for which parts and whether we can have evalua-
tion and interpretation in a subjective manner. Here the context of analytics
is important. Therefore we suggest to use a context model of what, when,
where, who and how for analyzing R3E. Fig. 10.9 presents the context model
for understanding R3E attributes. Our approach in the implementation is
to extend the work on monitoring of ML service contracts (Truong and
Nguyen, 2021) to cover R3E.
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FIGURE 10.10 Conceptual view of R3E tests, benchmarks, and experiments.

10.3.3.3 Testing, benchmarking, and experimenting for R3E
To run tests, benchmarks, and experiments (TBE) is of paramount impor-
tance for optimizing R3E. The challenge is that it is not just related to ML
training and serving, but also to other tasks in the whole BDML system.
Testing, benchmarking, and experimenting have to do across subsystems
and focus on correlating R3E issues. Current ML testing frameworks are
mainly focused on ML models (Aggarwal et al., 2019; Riccio et al., 2020).
Testing big data is currently focused on data storage and querying (Alexan-
drov et al., 2013; Li et al., 2016; Baru et al., 2012; Gulzar et al., 2019; Bajaber
et al., 2020). Combination of different tests into a coherent R3E view is cur-
rently missing. Furthermore, ML experiment solutions (Gharibi et al., 2019;
Duarte et al., 2017) focus on mainly model metadata, used datasets, and
hyperparameters, but the management of data sources, services perfor-
mances, and code/data versions is not integrated.

Fig. 10.10 outlines our approach for testing, benchmarking, and ex-
perimenting. R3E TBEUnit is an abstract unit designed for testing, bench-
marking, and experimenting. At the top level, we use workflows to coor-
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dinate tests/benchmarks across subsystems for different subpipelines. We
will develop a variety of R3E test/benchmark units for BDML; each unit
test/benchmark not only one component, but also a layer or an aspect, e.g.,
data. Last, R3E integration tests/benchmarks/experiments carried out for
individual subsystems and components are linked together.

10.4 Illustrative examples

In this section, we explain strategies for optimizing the BIM scenario men-
tioned in Section 10.2.2, considering that we have to apply the R3E ap-
proach for the BIM scenario to allow the optimization of the BIM ML
pipeline in an end-to-end manner. To this end, we analyze the scenario
and apply step-by-step of the R3E approach mentioned in Section 10.3. In
what follows, we summarize R3E aspects, identified requirements to be ad-
dressed. For each category, we only show key examples.

In terms of QoAChain we have identified:

Aspects Identified requirements
Model accuracy as a contractual means between BIM and customers for the whole system
Response time as a contractual means between the ML service provider and customers for

inferencing
Accuracy &
response time
tradeoffs

accuracy is more important than response time to customers. Therefore elas-
ticity of cloud resources for ML services can be flexible (using CPU, GPU, and
even spot instances)

The accuracy and response time tradeoffs are based on the business of
the BIM scenario: it is important to predict and classify building objects
with a high degree of accuracy to make sure that the design is correct and
reliable. For this, the customer does not need a real-time prediction. Conse-
quently, in terms of R3E at runtime, computing and data resources could be
allocated differently with respect to the cost. For example, GPU resources
might be used only if a higher cost is accepted by the customer, whereas
more computing resources are needed for data preprocessing and feature
engineering phases.



Chapter 10 • End-to-end machine learning systems: the R3E approach 361

In terms of R3E objects and operators, we have identified:

Aspects Identified requirements
R3E objects include (i) data resources collector and selector (trustful data sources, text, and

3D data); (ii) feature engineering component (3D data extraction granularity); (iii)
ML models (model versions and parameters); (iv) ML services (coupled with ML
models and underlying computing resources); computing resources (cloud-based
CPU & GPU resources)

Operators data feature engineering operators are for fine-grained and high-grained of data
extraction; changes of ML models and parameters; elastic computing resources
with possibility to have different types of resources, including edge hardware,
cloud-based CPU and GPU

The data resource collector and selector not designed as data sources are
typically fixed, e.g., from S3 storage or shared file-based storage. This re-
quires the design of new components for data collector and selector that are
integrated with data source metadata and data resource catalogs and the
change of the data pipeline from User Tool to Data Service (see Fig. 10.2).
One example is to use DVC1 in combination with quality of data metrics,
such as trust, data completeness, and timeliness, that are determined dur-
ing the data export task. Another aspect is to control feature engineering

task, which is tightly coupled with preprocessing, but strongly influences
the accuracy, cost, and time of the prediction in ML models. This requires
us to separate preprocessing and feature engineering tasks.

In terms of R3E Engineering, we have identified:

Aspects Identified requirements
Coordination for
R3E

three subsystems are identified: preprocessing, featuring engineering,
and serving. They can be optimized independently or together.

Monitoring and
analytics

quality of data in data collection; model accuracy metrics during serving;
performance response time; costs paid to cloud resources

Tests, benchmarks,
and experiments

tests of data validation; benchmarks in training; monitoring and prove-
nance for data resources and machines for individual experiments

Through the separation between preprocessing and feature engineering,
and introduce an R3E object between the two tasks for controlling feature

engineering. Finally, ML models need to be controlled separately through
QoAChain coupling the ML models with resource elasticity.

1
https://dvc.org.

https://dvc.org
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10.5 Discussion
Different communities have advocated R3E in different ways. In ML bench-
marks, various initiatives for testing robustness, performance, and cost
have been carried out (Tang et al., 2020). Recently the discussion of end-
to-end ML has attracted many researchers. Especially, in the software en-
gineering and ML production, the optimization of many phases in end-to-
end ML pipelines is on the focus (Amershi et al., 2019). AIOps (Dang et al.,
2019) focuses on using AI to optimize quality of software. Our work has a
similar ultimate goal, but our approach differs; we focus on software ser-
vice programming, engineering, and analytics. To our best knowledge, there
is no previous roadmap for R3E for end-to-end BDML.

Different components of an end-to-end BDML system have different R3E
attributes and concerns that lead to different optimization focuses of R3E.
For example, in ML services and models, robustness as a critical concern
has been discussed intensively (Sehwag et al., 2019). However, the elas-
ticity of ML services has not been studied well (Huang et al., 2015), while
the elasticity of infrastructural resources for enabling cloud computing has
been studied intensively. Another example is that, while data is very impor-
tant for robustness in ML training and ML services, monitoring quality of
data monitoring and supporting data resources elasticity in ML have not
been well developed. The reliability, reflecting the concept of offering “reli-
able service” (Kumar and Vidhyalakshmi, 2018; Galetzka et al., 2006), for
different individual components (e.g., ML services, data stores, and data
brokers) has been studied intensively, but the reliability of BDML systems
has not been studied well in an end-to-end manner. Resilience (Robbins
et al., 2012) is mostly addressed at the system services. We need to under-
stand how ML models resilience (Park et al., 2017) is related to elasticity of
data and other aspects, e.g., message middleware (Wang et al., 2010) and
programming languages (Grove et al., 2019) in our pipeline design.

10.6 Conclusions and future work
In this chapter, we present a novel conceptual approach for implement-
ing robustness, reliability, resilience, and elasticity for end-to-end big data
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machine learning systems, called R3E. Given R3E attributes, we proposed
to use QoAChain as a contractual means for specifying constraints of R3E.
To manage R3E of components and tasks, from the R3E view, we abstract
them under R3E objects and devise operations for monitoring, controlling,
and optimizing R3E. Our approach has presented key engineering meth-
ods for main design and engineering activities with respect to R3E. In our
current work, we have not addressed all tools that implemented our ab-
stractions and engineering methods. We are working on the monitoring and
observability of ML services (Truong and Nguyen, 2021) and a service for
collecting trails from tests, benchmarks, and experiments for end-to-end
ML systems. However, this chapter layouts fundamental steps for address-
ing R3E design and engineering in the future.

We foresee that different scenarios can be elaborated to have a deeper
view on R3E. Details of tools and components can be carried out for train-
ing optimization, runtime ML model serving, out-of-distribution detection
and optimization, and elasticity serving. The situation is even more chal-
lenging when BDML systems have more distributed learning (Verbraeken
et al., 2020), as the nature of complexity is increasing. We will revise our ap-
proach to address such new development. Our current work is to focus on
two aspects: end-to-end self-optimized solutions and QoAChain toolset.
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Abstract

AI methods are becoming more common in the field of economics, but these
models must be bias-free, fair, and explainable. In other words, we need AI as-
surance. Economic forecasting has benefited from machine learning techniques,
such as neural networks, to increase model performance, but these AI techniques
must be audited, accountable, and interpretable to be useful for economic pol-
icymaking. The rise of natural language processing and large language models
has created new challenges for economic policymaking institutions, which need
to be aware of AI assurance and how to harness them safely.

Keywords

AI assurance, AI explainability, detecting bias, natural language processing,
large language models

Highlights

• Discover how Artificial Intelligence is being used in economics and how the field can

mitigate bias by following assurance practices in both sectors, private, and public

• Get exposed to an in-depth overview of explainability techniques in microeconomic

research with sample code and graphical output

• Find out how natural language processing is implemented in economics and

mitigate potential risks for typical tasks such as conducting sentiment analysis and

utilizing large language models for text generation

11.1 Introduction to harnessing AI for economics
Economics and Artificial Intelligence (AI) are becoming increasingly linked
as increased computational power and advanced AI models are supple-
menting the traditional realms of econometrics. To fully embrace the po-
tential of AI in economics, the “black box” needs to be cracked open to
assure that more flexible machine learning (ML) models can be explained
as effectively as traditional linear models.

Economic policymaking can be enhanced with the use of AI. It is an excit-
ing alternative to econometric equilibrium models with unrealistic model
agents. AI can solve nonlinear and nuanced problems in economics that are
out of reach to traditional econometrics. AI in economic simulations can
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act like human actors, evading policies for individual benefit similar to real
behavior. In Zheng et al. (2020), improvements in tax policy are evaluated
using reinforcement learning agents who learn how to stockpile income to
avoid taxation and choose their own level of output given tax rates. The AI
tax economist developed tax rates to improve both equality and productiv-
ity in their simulated world compared to real-world outcomes. What is the
potential for economics if AI continues to advance at its current pace? What
are the risks to relying on these models in research and policy? How can AI
be used in economic institutions?

AI produced models for economic policymaking need assurance through
the entire process: ethical data collection and pre-processing, bias miti-
gation during and after model training, and explainability techniques for
model outcomes. AI has helped advance the study of economics, while
economic theories, particularly in the field of game theory, have also im-
proved AI explainability through tools such as SHapley Additive exPlana-
tions (SHAP) (Shapley, 1953; Lundberg and Lee, 2017).

This chapter examines the landscape of AI use in economic modeling,
natural language processing (NLP) applications for economics, the possi-
bilities for gain and misuse of large language models and its impact on
policymaking, as well as discussing the innovations of AI for international
trade. Policymaking transparency, applications of explainability methods,
and concerns about model assurance will be a central theme throughout
these topics.

AI research has gained attention by designing simulation models to fore-
cast stock fluctuations and other microeconomic market measures. Parkes
and Wellman (2015) reviews how AI researchers are working towards a “syn-
thetic homo economicus,” an economic agent capable of making rational
decisions, along with the challenges and progress made in the design of
these intelligent agents. As economic researchers continue to explore ways
to improve the performance of standard econometric models, their atten-
tion continues to be drawn to the use of ML algorithms as these methods
continue to see dramatic improvements in information technology and
other research fields.
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The impact of AI in economic theories and the current technology hold-
ers are documented by Marwala and Hurwitz (2017) and Moloi and Mar-
wala (2020). As with other fields of study, the availability of ever larger
datasets has resulted in the increasing use of AI techniques, such as ma-
chine learning in the fields of microeconomics and finance.

The availability of massive datasets (big data) have proved to be es-
sential for sound policy decision-making in both the public and private
sectors, with many private organizations viewing big data as not just a
buzzword, but instead as a long-term strategic concept to build into their
workflow. The potential benefits of big data, from macroeconomic and fi-
nancial statistics to ultimately policymaking, are documented by Hammer
et al. (2017). Khalid and Rachid (2019) discuss uses of big data in economic
analysis and their potential to improve microeconomic prediction models
accuracy, while also identifying the challenges of using big data in eco-
nomic analysis, which include access, replication, and the technological
skill to work with these datasets.

Big data analytics are being eagerly explored by economists, and the use
of AI techniques on big data is considered one of the greatest potentials for
new discoveries in economic analysis. The accessibility of ML methods in
trending programming software languages, such as R and Python, and the
ability to link these data analytics to other conventional programming lan-
guages, such as SAS and MATLAB®, continue to increase the popularity of
ML for econometric analysis. For example, one can easily download soft-
ware (for either R or Python) and, with a few lines of code, fit decision trees
or random forests regression on a large dataset and quickly extract the rel-
evant coefficients.

Natural language processing (NLP) techniques have permeated nearly
every industry and have successfully made their way into economic pol-
icy. NLP provides a rigorous way to create additional quantitative data to
study the drivers of economic outcomes and changes to relevant trends. In
this section, the need for transparent and methodical handling of textual
analysis is highlighted, specifically in the context of assessing the effects
of Federal Open Market Committee (FOMC) communications on financial
asset prices and firms’ earnings calls, trends in the wake of the COVID-19
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global pandemic. There will also be discussions on how to assure black-box
textual models that are so frequently employed on central bank statements,
social media texts, and other large corpora over time. In addition, prior to
the analysis stage of the AI lifecycle, thorough assurance and bias mitiga-
tion is required at the data collection, model training, and evaluation stages.

Many companies have utilized complex neural network techniques to
create products and services to sell to consumers as well as help busi-
ness operations. Language models are integrated into many tools, such as
customer service chat boxes, language translation programs, and search
engines. A well-known class of products that use language models are AI as-
sistants that execute tasks based on user verbal commands, such as Apple’s
Siri and Amazon’s Alexa programs. The leading drivers of language model
development are the creation of tools for assisting persons with disabilities,
overcoming language barriers, reducing time on tedious tasks, and devel-
oping intelligence in robotics. Over the last decade, innovation in AI and
increased public use of neural networks has spread this technology across
society. Thus making it very likely the average person has already encoun-
tered or used a language model whether they realized it or not.

Widespread use of language models in the field of economics and fi-
nance is still in its early stages. This is specifically evident in macroeco-
nomics, where there are not many public mentions of how institutions are
utilizing language models for policy analysis in their journey to monitor
the aggregate economy. However, in the private sphere, language models
are being tested to conduct sentiment analysis on monetary policy reports
and to generate simulated Federal Reserve statements. There is great inter-
est and incentive for using natural language processing (NLP) techniques
on monetary policy announcements to detect “hawkish” sentiment that
would imply central bankers being focused on policy measures surround-
ing inflation or “dovish” sentiment, which focuses on the labor market and
economic growth. It is important to note that language models are complex
and using them effectively requires heavy investments in education and
application. These investments have a significant influence on a team’s ca-
pabilities to utilize them within financial institutions and private banks. At
this time, institutional economists and Wall Street data scientists often use
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simpler NLP methods to answer textual related questions, but this could
change in the near future, thanks to increasingly powerful language mod-
els.

Language models at their core can be defined as a statistical probabilistic
model that determines the probability of a given sequence of words within
a sentence. They are often used within NLP for executing tasks such as
text summarization and translation. Large language models (LLMs) are a
class of language models that use deep-learning algorithms and are trained
on extremely large textual datasets that can be multiple terabytes in size.
LLMs can be classed into two types: generative or discriminatory. Genera-
tive LLMs are models that output text, such as the answer to a question or
even writing an essay on a specific topic. They are typically unsupervised
or semi-supervised learning models that predict what the response is for a
given task. Discriminatory LLMs are supervised learning models that usu-
ally focus on classifying text, such as determining whether a text was made
by a human or AI.

The use of Artificial Intelligence in the domain of international trade has
grown as more access to advanced computing techniques and micro-level
data become available. International trade has several scopes from macro-
level trade balances at the country level to commodity-level data of bilateral
country trade, to individual container level shipments traveling from one
country to another, and to the GPS data on the ships tracking the routes
of those containers. It is critical to have assurance for AI methods at the
data, model structure, and outcome stages can effectively assess the value
of these rich data sources.

The success of international trade has important implications for the
global economy. Supply chains have become networks across national bor-
ders, with “just-in-time” manufacturing providing low inventory costs and
high productivity. Even minor disruptions to trade can add substantial costs
for consumers, producers, and shippers. As world borders shut down at the
beginning of the COVID-19 pandemic, trade ground to a halt. This affected
not only shipments of furniture and exercise bikes, but also personal pro-
tective equipment and pharmaceuticals. Data at the commodity level can
show the distribution of this catastrophic halt to trade. Further complicat-
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ing trade in 2021 was the grounding of the container ship, Ever Given, in the
Suez Canal, which blocked trade through one of the busiest trade routes
in the world. Data companies, such as Marine Traffic provided data on ex-
act ship locations, which enabled analysts to evaluate the magnitude of the
shipping delays. To effectively prepare for the next black swan event that
impedes trade, data scientists must know how to harness and assure AI
methods using this complex data.

The rise of big data has advanced the potential for international trade re-
search using AI methods. Traditional data sources, such as national trade
balances, have delays in release that limit usefulness as input for quick
policy responses. The coarseness of overall trade data also obscures the un-
derlying mechanisms at the commodity level, which is another example of
Simpson’s paradox. Big data tools, such as Hadoop and Spark, are benefi-
cial for providing the needed computational power to process hundreds of
millions of rows of container level data.

A variety of AI methods are used to study international trade data, includ-
ing data mining and graph neural networks. Each of these methods requires
specific assurance techniques to implement reliably.

11.1.1 ML in economic models

Advances in AI techniques (including ML) have encouraged its widespread
use, ushering in “4IR or Industry 4.0” (Schwab, 2016), the fourth industrial
revolution, where the rapid accumulation of data models and input data is
the new norm (Moloi and Marwala, 2020). The accessibility of ML tools has
also increased the risk of improperly utilizing ML toolkits or misinterpret-
ing their results. The increasing desire to improve the performance of ML
models has led to the production of more complex models, which require
additional tools to allow for reliable and clear explanations. These differ-
ent tools can take textual and visual indicators that give users a realistic
understanding of the relationship between the predictors and the model’s
generated prediction.

These explanation tools are considered critical in economic research,
because many economic models depend on determining accurate param-
eters (such as β0, β1, . . . , βn) to predict the relationship between a response
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variable (y) and a set of explanatory variables (X). However, many machine
learning algorithms rely on producing predictions of y using complex and
multi-layered parameters that are not clearly associated with a specific ex-
planatory variable xi, causing a fundamental problem when replacing a
standard econometric toolbox with an ML toolbox. The success of AI in big
data analytics results from their ability to uncover complex structures that
may be unknown and completely specified in advance. ML models can be
used to fit complex and very flexible functional forms to the data without
overfitting; additionally, it can find available templates that work well out
of sample. ML toolkits also scale well when applied to big data, which is not
the case for some standard econometric techniques.

ML tools are new empirical tools to economics, and XAI attempts to ad-
dress how the resulting prediction made with the AI tools correlates with
known traditional (standard) techniques. Murdoch et al. (2019) refer to
three “overarching desiderata for evaluation: predictive accuracy, descrip-
tive accuracy, and relevancy” for the effectiveness of AI interpretability.

Model interpretability is domain-specific and an active area of research
in econometrics. As a result, the general guidance provided in the economic
literature recommends carefully deciding how to encode and transform the
underlying variables when using ML techniques (Mullainathan and Spiess,
2017). The following section documents some of the current applications
and economic research using XAI.

11.1.2 AI accountability models in economic research

Currently, the application of AI techniques in both economics and trade
forecasting include the use of data collected from several different sources,
such as a company’s activity, news articles, and Twitter feeds, online re-
views, and other sources, which may be very challenging for a human to
monitor and in most cases impossible for a human to evaluate in real-
time. Increasingly, the economics field has seen expanded use of AI and
deep learning, taking advantage of the availability and accessibility of the
tremendous computing power of graphical processing units (GPUs) in-
house and in the cloud, resulting in AI hardware replacing humans in high-
frequency trading (HFT).
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A “black-box” model’s decisions are sometimes too complex for a human
to understand or may produce models that are challenging to troubleshoot.
All the while, advanced AI methods, such as facial recognition, AI loan bots,
AI interview evaluators, online recommendation systems, and more, are
transforming everything about the economic world. For economic policy
institutions to keep up, researchers need to provide transparency in the use
of AI-driven models.

Additionally, in more regulated fields, such as health and criminal jus-
tice, explainable artificial intelligence (XAI) models have become crucial.
This urgency is further driven by the need to reduce the risk of unintended
consequences when employing these advanced solutions. Since AI-based
algorithms already outperform humans, simply looking at the parameters
of the model is beyond our understanding. Fortunately, AI researchers have
found other ways to examine and understand an AI’s output. This is where
Explainable AI comes in; first is the interpretability (the ability to interpret
an AI model), and second, the explainability (the ability to explain a model
and its outcome in a human-centric way).

XAI methods can be split into two general categories: model-based and
post-hoc (Murdoch et al., 2019). Model-based explainability refers to de-
signing simple AI models, whose inner workings and decision logic can
be easily represented and interpreted. Post-hoc XAI methods approximate
“black-box” behavior by producing useful estimations of the model’s inner
workings and decision logic after receiving a trained and tested AI model
as input. It then creates comprehendible representations in the form of the
feature importance scores, rule sets, heatmaps, or natural language (Mur-
doch et al., 2019). There are numerous examples of XAI being employed to
advance economics research, which will be covered in the next section.

11.1.3 Adopters of economic forecasting using XAI

Economists are employing machine learning applications not only to ob-
tain better predictions, but also for policy decision-making. Batarseh et al.
(2021a) suggest strategies to utilize when performing and developing AI as-
surance by providing a theoretical roadmap for a wide range of domains,
including economics and finance. Recent economic-related AI modeling
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attempts to incorporate performance indicators that can be analyzed and
scored to both reflect a technology’s human-centering and as a form of
quality inspection. The leading economic forecasting research work that
exemplifies AI assurance can be placed into three broad categories: fore-
casting, institutions, and finance.

Forecasting applications in microeconomics is still in its early stages.
Yang et al. (2020b) present a class of interpretable neural network models
that can produce highly accurate and interpretable predictions. The model
encodes a type of interpretable function named persistent change filters,
which allows the neural network to be written as a simple function of a
standard number of interpretable features, indicating the outcomes of in-
terpretable functions they have been encoded with. They then used the
model to predict an individual’s monthly employment status using high-
dimensional administrative data, reporting close to 95% in-sample accu-
racy. The interpretable model performance compared favorably to some of
the best conventional machine learning methods, whose prediction mech-
anisms are easier to understand. Severino and Peng (2021) evaluated fraud
prediction in property insurance claims using various machine learning
models based on data from a Brazilian insurance company. They estimated
the impact of features in prominent cases of false positive and false nega-
tive model predictions using the explainable artificial intelligence methods
SHAP and LIME. This explainable step would help risk analysts and profes-
sionals when working with AI-driven models for insurance claims.

Cook et al. (2021) use regression and PDP (one of XAI’s model-agnostic
tools) to estimate and examine the feature effects on the “slope and boot-
strap variance” contributions of attributes of house pricing using the Iowa
tax assessor dataset. The paper compares explanatory characteristics of
OLS to that provided by PDPs when evaluating the feature effects of the
direction and magnitude of changes in the predicted outcome as a result
of changes in the feature values. The paper also compares LSE with Shap-
ley and ALE; for each case, the interpretation is detached from and takes
place after the model is fitted. Possible extensions to this research were
provided to the motivated user, including an extensive comparison of OLS
tables with Shapley values, examining links between instrumental variables



Chapter 11 • Assuring AI methods for economic policymaking 381

using causality-directed acyclic graphs (DAGs), and identifying feature in-
teractions using available model-agnostic tools.

Historically, applications of ML have focused more on financial topics.
Gramespacher and Posth (2021) noted the difficulties of using ML mod-
els to improve prediction accuracy, while following regulatory obligations,
such as identifying the hidden cost associated with credit defaults in loan
portfolios during the review and approval stages, while following regula-
tory obligations. The paper documents how ML methods can be used to
address specific needs of credit assessment and how it makes sense to opti-
mize for an economic target function rather than simply accuracy. Misheva
et al. (2021) use LIME and Shapley values to explain ML credit scoring mod-
els developed using data from a US-based lending platform. LIME was used
to explain local instances, whereas SHAP explained both local and global
instances. Finally, the paper discussed some of the primary challenges as-
sociated with using these explainable tools on financial datasets, such as
longer execution times, and suggested ways to overcome these challenges.

It can be difficult to interpret important features of AI models, though
it is critical to have proper explainability when AI models are involved in
influential aspects of life, such as banking. Hurlin et al. (2021) provide a
framework for guidance on how lenders, controlled by their regulators, can
monitor algorithmic fairness and improve model outcomes for the ben-
efit of protected groups. Brusseau (2021) investigated if AI findings con-
form to that of humans, or vice versa, by modeling humanist investing in
AI-intensive companies that are intellectually robust, manageable for an-
alysts, useful for portfolio managers, and credible for investors. Carrillo
et al. (2021) discuss the challenges of applying ML methods to real-world
problems and how they affect relevant and novel explanations methods.
Additionally, the article presents strategies to help mitigate these challenges
when implementing explanation methods in the appropriate domain. The
suggested mitigation strategies depended on the model-agnostic method
used. Some of the most commonly used perturbation-based methods con-
sidered included PDP, ICE, ALE, SHAP, and LIME.

In the field of finance, there has been progress on using XAI. Ohana et
al.’s (2021) article used a gradient boosting machine (GBM) tree-based ap-
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proach to predict large S&P 500 price drops from a set of 150 technical,
fundamental and macroeconomic features and reported an improved ac-
curacy over other ML methods. They harnessed SHAP to identify the most
important features to predict stock market crises, and subsequently se-
lected a subset of those features for a final improved model. Their analysis
uncovered the predictive role of the tech equity sector before and after
the March 2020 financial meltdown. Giudici and Raffinetti (2020) present
a global explainable AI model based on Lorenz decompositions and ex-
pands on previous contributions based on variance decompositions. They
provided unifying variable importance criteria, which combined predictive
accuracy with explainability, using normalized and easy to interpret met-
rics. The proposed decomposition was applied to predict bitcoin prices.

Economics XAI has even made progress in ways that will help economic
institutions understand best practices. Navarro et al. (2021) provide a “user-
centric desiderata” (real-world use cases of XAI to establish and address
bias by ML-based decision-making models) discussing standard explain-
ability requirements needed by statistical production systems at the Eu-
ropean Central Bank. Preuss (2021) provides a review of the literature that
details developments and the status of AI governance and the relevance of
frameworks that ask for practicality, leading to suggestions of changes to
regulations that are impossible to implement given current technology. Roa
et al. (2021) discusses the impacts of alternative data, data collected from an
application-based marketplace, contrasting traditional bureau data based
on credit scoring models. Their results showed an improvement in predict-
ing borrowers’ behavior in groups traditionally underserved by banks and
financial institutions, thereby validating the relevance of these datasets for
predicting economic behavior in low-income and young individuals, who
are most likely to engage with alternative lenders. Additionally, the paper
discusses the use of the TreeSHAP method for stochastic gradient boost-
ing interpretation. Their results revealed interesting non-linear trends in
the variables originating from the app-based datasets, which may not usu-
ally be available to traditional banks. In their view, the results of their study
present an opportunity for tech companies to disrupt traditional banking
by correctly identifying alternative data sources and appropriately handling
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the information they provide. Nesvijevskaia et al.’s (2021) article focus on
fraud management issues and the intricacies of developing fraud detection
models (FDM) to address the trade-off between accuracy and interpretabil-
ity of detection. The article also provides a review of the different machine
learning-based approaches to process fraud-related data. Finally, the pa-
per examines ways to offer pragmatic and short-term responses to banks
and policymakers without forcing economically and ethically constrained
stakeholders into a technological race.

11.2 Commonplace explainability methods
AI models are in essence black boxes; it is difficult to understand how their
immense complex connections come together to produce outputs. The
main reason behind this difficulty are the many nonlinear relationships
that exist across a large number of parameters or features. Currently, it is
still hard to discern in concrete terms a global explanation of why an AI
model is producing a certain outcome. Techniques and software are avail-
able in the research community to help address these concerns raised by
AI accountability and include freeware visual tools to explain the datasets
and models, data labeling tools, and commercial learning-based data an-
notation tools. These methods provide decision-makers a way to justify
a model’s behavior, which is critical for policymaking accountability. This
section will discuss and implement some of the methods available for as-
suring ML models.

The two broad categories of explanations for predictive machine learn-
ing models are model-specific and model-agnostic. Freitas (2014) pre-
sented examples of model-specific explanations, including linear regres-
sion and logistic models (the simplest “native explainable” models), deci-
sion trees, classifiers such as SVM (support vector machines), and Bayesian
probabilistic classifiers.

Model-agnostic approaches explain models in a post-hoc fashion by ac-
cepting the model as a “black-box,” and then attempt to approximate their
behavior (Wachter et al., 2017). An example of this approach is local inter-
pretable model-agnostic explanations (LIME) (Ribeiro et al., 2016), which
attempts to provide local explanations in the form of linear approxima-
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tions of the model in small regions of the space. This approach is practical
when explaining, for example, why a particular individual has been denied
a mortgage application. Other post-hoc model-agnostic methods provide
explanations in ranking features, even when the underlying model is not
linear, include InterpretML (Nori et al., 2019), SHapley Additive exPlana-
tions (SHAP) (Lundberg and Lee, 2017), and Partial dependence plots (PDP)
(Friedman, 2001). Each takes a distinct approach to determining the im-
portant contributors to an ML model. The next sections will explain the
methodology behind LIME, SHAP, and PDP and its implementation on
the microeconomic cross-sectional dataset, called “The California Hous-
ing Dataset.” This is a fairly common machine learning prediction dataset
for California median housing (Pace and Barry, 1997).1 Like the Califor-
nia housing dataset, the Boston housing dataset was also once included
in scikit-learn’s repository of pre-loaded datasets. However, it has been re-
moved from future versions of the package, as it presents serious ethical
problems for training data. The original goal of this dataset was to study air
quality’s effect on median housing prices. To do this, Harrison and Rubin-
feld (1978) included features such as number of rooms, units built, etc., as
well as one glaring feature that presents numerous ethical problems: the
feature “B” referencing the “Black portion of the population” inappropri-
ately identifies a potential causal relationship between race and Boston
housing price elasticity. This model, in predicting housing prices, has en-
coded racism as a feature in predicting said prices, with little to no evidence
that this is a factor in housing prices. Ethically sourced, nonbiased data
is critical for training any AI model, so as a result, the California housing
dataset will remain in the scikit-learn repository. In the code chunk below,
the California housing data is loaded and previewed.2

1
Data can be found here: https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.

html.
2
Code explained in this chapter is on GitHub: https://github.com/AndersonMonken/

AI-Assurance-Econ-Policymaking.

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://github.com/AndersonMonken/AI-Assurance-Econ-Policymaking
https://github.com/AndersonMonken/AI-Assurance-Econ-Policymaking
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Table 11.1 Head of California housing dataset.
longitude latitude housing_

median_age
total_
rooms

total_
bedrooms

population housholds median_
income

median_
house_value

ocean_
proximity

−122.23 37.88 41.0 880 129.0 322.0 126.0 8.3252 452600 NEAR BAY
−122.22 37.86 21.0 7099.0 1106.0 2401.0 1138.0 8.3014 358500 NEAR BAY
−122.24 37.85 52.0 1467.0 190.0 496.0 177.0 7.2574 352100 NEAR BAY
−122.25 37.85 52.0 1274.0 235.0 558.0 219.0 5.6431 341300 NEAR BAY
−122.25 37.85 52.0 1627.0 280.0 565.0 259.0 3.8462 342200 NEAR BAY

The output of the head function is shown in Table 11.1.
Subsequent sections will continue this example to conduct a random for-

est regression and use explainability methods on the model results.

11.2.1 Local interpretable model-agnostic explanations
(LIME) explainer

LIME is a model-agnostic technique to explain the local environment
around a single prediction (Ribeiro et al., 2016). LIME functions by explain-
ing locally at an individual instance level, determining the differences in
features, rather than assessing explanations at the aggregate or high model
level. It attempts to fit a linear relationship for each individual production to
explain why the instance produced a specific outcome. LIME provides the
model with agnostic explanations making it easier to explain innumerable
classifiers (such as random forests, support vector machines, and neural
networks). LIME can explain the predictions of any classifier or regressor in
a reliable way by approximating it locally with an interpretable model.

11.2.1.1 LIME methodology
Let f denote the original prediction model, and g denotes the explanation
model, with g ∈ G, where G represents the class of potentially interpretable
models (for example, linear models and decision trees). Suppose we target-
specific local methods designed to explain a prediction f (x) based on a
single input x.

Then the explained model for x often uses simplified inputs x′ that cor-
relate to the original inputs through a mapping function x = hx(x

′). Local
methods try to ensure g(z′) ≈ f (hx(z

′)) whenever z′ ≈ x′ with g acting as
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input over absence/presence of the interpretable components (hence the
domain of g is {0,1}d .

As not every g ∈ G may be easy to be interpretable, we denote �(g) to
represent a measure of complexity (instead of interpretability) of the expla-
nation g ∈ G (e.g., for decision trees �(g) could represent the depth of the
tree. For linear models, �(g) could denote the be the number of non-zero
weights).

Next, denote by f : Rd → R the model being explained, by πx(z) a mea-
sure of the proximity between an instance z and x (a locality around x), and
by L (f ;g;πx) a measure of g’s approximation of f in local area πx .

The local surrogate models that ensure both interpretability and local fi-
delity constraints can be expressed as minimization of L (f ;g;πx), whereas
having �(g) is very low and ensures that the model is interpretable.

The interpretability constraint can be expressed mathematically as fol-
lows:

ξ (x) = argmin
g∈G

(L (f ;g;πx) + �(g))

This equation can be used for different explanation families of G, fidelity
functions L , and complexity measures �. For example, in the case of a
LIME explainer, one could focus on sparse linear models as explanations
and perform the search around a particular prediction using perturbations.

11.2.1.2 LIME implementation
The package for LIME3 has three main modules to use with different types
of datasets:

1. lime_tabular: used for structured dataset predictor explanations
2. lime_text: used for textual dataset word explanations
3. lime_image: used for image dataset pixel explanations

This section will cover lime_tabular. In a subsequent section, lime_text will
be used to explain a sentiment result from a transformer network. The code
chunk below shows the data being split into training and testing data at a

3
LIME package: https://marcotcr.github.io/lime.

https://marcotcr.github.io/lime


Chapter 11 • Assuring AI methods for economic policymaking 387

90/10 ratio as well as the random forest execution and the LIME explana-
tion. The training performance is significantly better (97%) than the test
performance (68%).

Random forest is often one of the strongest machine learning models for
structured data prediction. The LIME explanation is performed at the sin-
gle instance level. The predicted value 222,290.00 is broken down into the
variable’s negative or positive effect, given specific rules; the values for that
instance are given in Fig. 11.1. The values of each predictor are shown in
Table 11.2.

11.2.2 SHapley Additive exPlanations (SHAP)

SHAP is a model-agnostic method that uses situational importance to mea-
sure a variable’s importance (Lundberg and Lee, 2017). Unlike LIME, which
approximates interpretable linear models in the area of a given prediction,
SHAP draws from economic game theory, where each player receives a re-
ward based on its contribution to the final outcome (Shapley, 1953). Shap-
ley values describe the predictors contributions (i.e., additive contribution)
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FIGURE 11.1 Python script that splits the California housing dataset, run random forest
regression, and produce LIME explanation.

Table 11.2 Feature values for
index 42 of the California hous-
ing dataset and positive (yellow
(gray in print version)) or nega-
tive (blue (dark gray in print ver-
sion)) effect on prediction.
Feature Value
Latitude 32.78
Longitude −117.07
median_income 4.71
housing_median_age 26.00
total_rooms 3725.00
Population 1516.00
Households 627.00
total_bedrooms 623.00

to an outcome and are used to explain why models make a particular pre-
diction.

11.2.2.1 SHAP methodology
SHAP uses samples that provide estimates for feature importance in linear
models in the presence of multicollinearity by computing how much varia-
tion the predictor promotes for a locally given point (how much a predictor
contributes to its deviation from a given point). This is achieved by com-
paring a predictor’s contribution to its expected contribution, as expressed
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below, with βj ’s depending on a subset of the input variables for a nonlinear
case.

φj (x) = βj · (xj − E[xj ])
The interactions are measured by computing the contribution of variable j

when fixed together with different subsets of variables.
To explain the working of SHAP, as with LIME, let with LIME, let f denote

the original prediction model, N the number of features, and S the subset
of features without our feature of interest i. Shapley values can be written
as follows:

φj (N,f ) = 1

N

∞∑
Q⊆N\{j}

(|S|! (|N | − |S| − 1))! (f (S U {i}) − f (S) ,

where:

A. 1/N denotes each individual feature i’s contribution to the overall pre-
diction when it is included in the model

B.
∑∞

Q⊆N\{j}(|S|! (|N | − |S| − 1)) denotes the permutation that will appear
before and after i

C. (f (S U {i}) − f (S) denotes the average using all features

The resulting value becomes the feature of interest’s averaged marginal
contribution towards the final prediction.

At a high level, the Shapley values conceptually aims to capture the im-
portance and contribution by comparing the changes in the outcome for all
possible orderings when the features of interest are introduced to a given
model.

11.2.2.2 SHAP implementation
The SHAP implementation is conducted using the SHAP package in
python.4

The same random forest regression is used from the previous explain-
ability implementation, as shown in Fig. 11.2.

4
SHAP package: https://github.com/slundberg/shap.

https://github.com/slundberg/shap
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FIGURE 11.2 Python script that runs SHAP explainability method on random forest predic-
tion.

The SHAP explainer perturbs the model to find out the Shapley values
for each variable. This process can be computationally intensive for large
models or datasets. The waterfall diagrams include rich information about
the same instance as LIME explained. The random forest E[f (x)] or aver-
age prediction is 22.326, and each of the variables listed are given credit for
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changing from the baseline. The final prediction is 24.98, and the strongest
variables are “LSTAT”, “RM”, and “CRIM”.

11.2.3 Partial dependence plots

Dependency visualizations often provide a way to gain intuitive insights
into the relations that exist in a dataset. Partial dependence plots (PDP)
provides a model-agnostic method of showing relationships between fea-
ture and predictor variable (Friedman, 2001).

PDP averages the results for the features that we’re interested in (typi-
cally one or two) across a specified range of values, in effect marginalizing
the other features to determine the dependence of the specific features of
interest. PDP plots are then obtained by plotting values of the feature of
interest by the averaged predictions. If one feature is considered, the PDP
plot layout includes feature values on the x-axis and the prediction on the
y-axis. While two features of the PDP plots look like a heatmap with the two
features on the x and y axes and the color scale as the prediction. By observ-
ing trends from the PDP, one can understand the behavior of features in a
prediction model. As implemented in Cook et al. (2021), PDP serves as an
analog to coefficient from a traditional econometric model.

11.2.3.1 PDP methodology
To explain the working of PDP, as with LIME, let f denote the original pre-
diction model, and partial dependence function fxs is the model using our
features of interest, xs , and xc are the remaining features, consisting of our
full feature space. Finally, we let Pc(xc) be the probability density of xc, so
we have

x = xs U xc

fxs(xs) =
∫

f (xs, xc).Pc(xc).dxc

As it is not feasibly to integrate over all possible values of xc, the integral
can be estimated by taking the average over a given dataset, simplifying the
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FIGURE 11.3 Python script that runs the random forest regression and produce partial
dependence plot.

given equation as

fxc(xs) = 1

N

N∑
i=1

f (xs, xci)

Conceptually, we hold the features of interest xs constant and compute pre-
dictions over all other combinations of the complement set xc by averaging
out predictions across the given dataset to obtain the partial dependence
value for that instance.

A plot (PDP plot) can then be generated after computing averages for
each instance over a specified range of values in xs; a plot (PDP plot) can
then be generated.

11.2.3.2 PDP implementation
In Fig. 11.3, a linear vector is created that spans the entire range of the
predictor of interest “total_bedrooms.” While holding other predictors con-
stant, the value of “total_bedrooms” is stepped from its minimum to its
maximum, while the model is re-predicted using the modified input predic-
tors. The average prediction is taken for each step of the “total_bedrooms”
predictor and plotted to show the prediction’s partial dependence on the



Chapter 11 • Assuring AI methods for economic policymaking 393

“total_bedrooms” value. It is also possible to bootstrap at each step to pro-
duce a bootstrap confidence interval across the “total_bedrooms” values.

11.3 Mitigating bias in AI models for economic prediction
The first opportunity to mitigate bias in the AI pipeline is in the pre-
processing stage, where the data cleaning, wrangling, and feature engi-
neering steps occur before any algorithm is applied. Thus pre-processing
is independent of the algorithm/model itself.

One of the mitigation techniques to use at this stage is reweighting. This
involves assigning weights row-wise to existing biased training data based
on the frequency of said bias in the dataset. The main advantage of this
approach is that the underlying data is left unchanged, while bias is mit-
igated (Kamiran and Calders, 2017). However, it is important to note that
this technique is not involved in the model training process, and therefore
some accuracy-discrimination tradeoff is expected.

One of the most well-known and widely used datasets in the machine
learning world is the adult dataset gathered from the 1994 US census and is
now publicly available on the UCI machine learning repository.5 Table 11.3
shows same dataset restricted to the gender and income categories. The
probabilities represent the portion of a subgroup under a particular in-
come category. The primary goal in this dataset is predicting whether an
individual has an income higher than $50k. Male is the privileged group

5
Find the data here: https://archive.ics.uci.edu/ml/datasets/adult.

https://archive.ics.uci.edu/ml/datasets/adult
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Table 11.3 Adult Dataset (Restricted to
Gender and Income Counts)a.
Gender Income Count Probability
Female <=50k 9592 89%
Female >50k 1179 11%
Male <=50k 15128 69%
Male >50k 6662 31%
a Similar study can be found here: https://
towardsdatascience.com/reweighing-the-
adult-dataset-to-make-it-discrimination-free-
44668c9379e8.

(31% probability of having a positive outcome, income greater than $50k),
whereas female has an 11% probability of this outcome. Also, it is worth
noting that this dataset is limited in its scope of gender identity.

Before manipulating the data directly, it is imperative to think about how
to quantify this idea of unbiasedness (or fairness). The disparate impact
metric is one of these measures (Cesaro and Gagliardi Cozman, 2020). It is
found by taking the ratio of the sensitive group with a positive outcome,
which in this case is females with an income greater than $50k over the
non-sensitive (privileged) group with a positive outcome (males with in-
come greater than $50k). A score of 1 indicates the dataset is “completely
unbiased,” meaning that both are equally likely to achieve this outcome.

DI = Ppositive & unprivileged

Ppositive & privileged

Equivalently,

DI = P(Ŷ = 1|A = f emale)

P (Ŷ = 1|A = male)

Weights should be assigned according to the frequency counts from Ta-
ble 11.3. For example, for the female (unprivileged) group with an income
of under $50k (negative outcome), the weight is calculated as follows:

Wnegative & unprivileged = # of unprivileged ∗ # of negative

all ∗ # negative & unprivileged

https://towardsdatascience.com/reweighing-the-adult-dataset-to-make-it-discrimination-free-44668c9379e8
https://towardsdatascience.com/reweighing-the-adult-dataset-to-make-it-discrimination-free-44668c9379e8
https://towardsdatascience.com/reweighing-the-adult-dataset-to-make-it-discrimination-free-44668c9379e8
https://towardsdatascience.com/reweighing-the-adult-dataset-to-make-it-discrimination-free-44668c9379e8
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Wnegative & f emale = 10,771 ∗ 24,720

1,256,257 ∗ 9592
= 0.8525

The authors use reweighting on the entire adult dataset (as well as others)
and test it on a variety of models. They apply reweighting and calculate the
DI score and equality of opportunity metrics to their models using the AIF-
360 library by IBM.6 The weights, calculated as indicated above, serve as
inputs to their logistic regression model. Introducing reweighting at the be-
ginning of the machine learning pipeline results in a much higher DI score,
slightly above the 0.8 DI score specified by US employment law. They also
utilize SHAP to explain individual predictions. Their results show that the
introduction of reweighting favors the unprivileged group, as expected, sig-
nificantly reducing bias.

In-processing bias mitigation describes interventions made during the
learning process of the model. Adversarial debiasing is one of these meth-
ods, and it involves building two models. The first model aims to predict
the target variable, based on whatever feature engineering steps that have
already been taken. The second model tries to predict, based upon the pre-
dictions of the first model, the attribute contributing to that bias (gender,
race, etc.). In an ideal world, the second “adversarial” model should not
be able to predict the sensitive attribute, indicating virtually no bias. This
model therefore guides modifications to features and parameter weights
in the predictor model to weaken the predictive power of the adversarial
model until it cannot predict the sensitive attribute. While originally pro-
posed by Goodfellow et al. (2014) in the context of generating images, this
adversarial learning framework is generalizable to any model in which one
has access to model parameters.

Zhang et al. (2018) proposed a framework for a classifier trained on the
adult dataset to predict income. They considered the case where gender is
both implicitly and explicitly included in the data. They implemented their
first model which aimed to predict Y based on X, while modifying weights
W to minimize model loss Lp. They then defined their adversarial model to
predict sensitive attribute Z from Ŷ . More formally, the modification rule

6
Package is available for both Python and R https://aif360.mybluemix.net/.

https://aif360.mybluemix.net/
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for the weights W of the model is

∇WLp + proj∇WLα
∇WLp − α∇WLα

where α can be changed depending on the desired balance between model
accuracy and unbiasedness.

Using this framework, the authors trained two logistic regression classi-
fiers, one with mitigation and one without, and found that this adversarial
learning framework for predicting income resulted in near equality of odds.
More formally, Ŷ and Z are independent given Y , meaning the predictions
are uncorrelated with the sensitive attribute, which was their goal. They
found that this adversarial debiasing framework results in a small 1.5% de-
crease in accuracy, and that the false positive and false negative rates are
approximately equal across subgroups. Assuring that models are not biased
does not necessarily mean degraded performance.

Post-processing occurs after the model has been trained and used to
make predictions, and, like pre-processing, doesn’t require access to the
inner-workings of the model, making this stage of bias mitigation suitable
for any AI method. Calibrated equalized odds is a post-processing algo-
rithm proposed by Pleiss et al. (2017), in which a cost function is introduced
to penalize the model for disparities in false negative rates, false positive
rates, or a combination of cost functions across sensitive groups, such as
gender groups, racial groups, or age brackets. Equalized odds is achieved
when the sensitive and unsensitive groups (in our case, gender) have equal
error rates, according to some cost function of choice. This is to ensure that
an error type doesn’t disproportionately impact one group over another.
The choice of cost function is dependent on the specific problem at hand.
Using the same 1994 adult dataset, the authors harnessed the false negative
condition to predict income with equalized costs across genders. Modify-
ing the outputs from their logistic regression model, which outputs prob-
abilities, the authors adjust the probability thresholds for sensitive groups
such that balance is achieved for calculating false negative rates across both
groups. Introduction of this cost function to mitigate bias between genders
decreases the overall accuracy rate by 10%.
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The aforementioned examples are a non-exhaustive list of mitigation
techniques and frameworks. IBM’s AI 360 Fairness 360 is an open-source
toolkit with bias mitigation tools and metrics for any processing step, in-
cluding those mentioned above. Feldman and Peake (2021) studied the
latter two mitigation frameworks and concluded that their end-to-end bias
mitigation approach, in which they employ bias mitigation techniques at
every stage of the project lifecycle, proves to be more effective than any sin-
gular mitigation technique at maintaining fairness across multiple metrics.

11.3.1 NLP use in central banking

Data from social media, earnings calls, policymaking meetings, and more,
have become publicly available over time, opening many new avenues of
opportunity for data scientists to study our economy. This increase in data
availability, specifically public access to economic information, such as
data, models, and forecasts relevant to the central bank’s decisions, reflects
positively on the Federal Reserve System and the European Central Bank.
According to a study conducted by European Central Bank economists, the
abandonment of hidden discussions concerning monetary policymaking
has ushered in a new era of transparency, which both reduces inflationary
biases and gives the central bank more flexibility to respond to economic
shocks (Geraats, 2002).

The Federal Open Market Committee, consisting of the seven Board of
Governors members and five of the 12 Reserve Bank presidents, is the pri-
mary monetary policymaking body of the Federal Reserve system. Eight
meetings are scheduled annually, where the committee addresses the most
relevant market information disseminated in statements and minutes. NLP
can be specifically employed to study the impacts of policy changes on fi-
nancial outcomes.

Though ample data is available on the financial market effect of FOMC
meetings and utilizing natural language processing to predict stock prices,
there are few rigorous studies on the effect of FOMC minutes on asset
prices. Carlo Rosa7 studied the effect of FOMC minutes releases on trea-
sury rates, stock prices, and U.S. dollar exchange rates over a six-year time

7
https://www.newyorkfed.org/medialibrary/media/research/epr/2013/0913rosa.pdf.

https://www.newyorkfed.org/medialibrary/media/research/epr/2013/0913rosa.pdf
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period. She found that the release of these meeting minutes has a tangi-
ble impact on asset prices. When minutes are released, two-year treasury
yields suddenly increase roughly three times larger on event days than nor-
mal (non-FOMC release) days. Treasuries at shorter maturities are the most
affected asset class, followed by U.S. dollar exchange rates. However, the
asset price response, or any changes in asset price immediately after the re-
lease of FOMC minutes, has declined since 2008. This decline reflects more
transparent and consistent discussion of the committee. FOMC discus-
sions have been clear in their objectives, such that policy discussions over
time should not have shocking results, as shocking results contribute to in-
creased volatility. The decrease in asset price volatility after FOMC minutes
releases suggests the effect of greater transparency on behalf of the FOMC.
Economic policymakers and data scientists alike should be aware of these
asset price effects, as central bank communications have clear and tangi-
ble effects on financial outcomes. FOMC meeting data must be handled
sensitively, because the information contained in their release can have
profound market effects.

NLP techniques allow us to predict producer/consumer expectations,
as well as identify rapidly changing trends during black swan events.
Data from quarterly earnings calls, where a firm discusses their financial
progress and results for a given period, have become increasingly more
publicly available, giving data scientists a new avenue to study producer ex-
pectations. While data from news articles and social media provided insight
into consumer expectations for the economy, Hassan et al. (2020) moni-
tored firms’ earnings calls transcripts during the beginning of the COVID-19
pandemic to identify adverse or positive effects on firms. A global phe-
nomenon requires global coverage of data, and the authors collected data
on both domestic and international firms. Checking these outcomes at the
sub-group level is critical for confirming that Simpson’s paradox8 does not
affect the overall firm results (Simpson, 1951).

Hassan et al. (2019, 2020) first identified which portions of the tran-
scripts contained COVID-19 and other disease-related discussions, which

8
Simpson’s paradox is when the overall trend in the data is not representative of individ-

ual sub-group trends.
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they did by comparing training libraries with disease-related text to non-
disease-related text. They began by taking a list of pandemic diseases up-
dated on the World Health Organization website and focused on outbreaks
within the sample period beginning in 2002 and ending in March 2020,
and then restricted their training list by only including diseases that at-
tracted an international audience and were concerning to investors. They
then included synonyms to the remaining list of outbreaks to ensure that
all disease-specific related information is picked up from transcripts. Fine-
tuning speech-to-text data, as in the case of earnings calls transcripts, re-
quires an additional layer of assurance that captures colloquialisms as well
as synonymous terms used in speech over text. For example, “novel coron-
avirus,” “COVID-19,” “coronavirus,” and “covid” can be used interchange-
ably (depending on time-varying context), but whether we are analyzing
formal text form the NIH or a phone call between companies, one name
for the disease may be more prevalent than the others, so it is important to
account for all of them.

In this example, a lot of training data related to “coronavirus” is time de-
pendent. Coronaviruses have existed for centuries and have been studied
for decades. Though this case may be particularly obvious in identifying
that the coronavirus discussed in earnings calls is the COVID-19 that has
impacted every corner of the globe in recent years, this principle of assur-
ing data in the appropriate context pervades every domain, just as assuring
facial recognition technology recognizes a multitude of skin tones in a va-
riety of lighting environments. The research group conducting this study
also performed a human audit on a sample of transcripts to ensure that
they were using the correct word combinations for the associated disease
outbreak and verified that these combinations had no alternate meaning
other than the disease in question.

By analyzing the presence of these disease-related “bigrams” (two-word
combinations) in light of firms’ business operations, the authors were able
to identify the top three issues firms were facing: supply chain disruption,
decrease in consumer demand, and employee welfare. Some of this anal-
ysis also highlighted business opportunities for certain firms specializing
in testing equipment, antiviral medication, etc. As the first quarter of 2020
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progressed, an increasing number of firms were expressing concerns about

employee welfare, especially in the context of work from home options, and

supply chain discussions nearly tripled.

Hassan et al. (2020) also considered firm-level responses in the context of

past diseases, SARS and H1N1 in particular. Does prior exposure to diseases

help firms deal with the gravity of the COVID-19 pandemic? To analyze how

well firms have dealt with COVID-19 in the context of past diseases, the

authors conducted coronavirus sentiment analysis in the context of prior

epidemic exposure. They found that firms that had more extensive discus-

sions around SARS and H1N1 had significantly fewer negative sentiment

scores related to COVID-19, suggesting a more positive outlook on handling

this pandemic compared to those who haven’t dealt with diseases in the

past.

But how are these sentiment scores determined? Though the paper in-

cludes an OLS regression to predict negative COVID-19 sentiment and

counts the use of negative-tone words used in conjunction of these dis-

cussions, it does not consider the subject of these negative tone words.

Sentiment analysis is seemingly a black box of words to scores, so trans-

parency on how those scores are determined and calculated is imperative

in NLP research. Whether sentiment scores should be calculated through

a transformer model, such as “Bidirectional Encoder Representations from

Transformers” (BERT) or a sentiment dictionary, such as VADER, is up to the

data scientist, but it is important to assess the ramifications of both these

different methods.

Dictionary-based approaches are among the simpler of the two meth-

ods, involving creating two dictionaries, of terms (words or phrases) carry-

ing positive and negative sentiment, respectively. If a text hits both dictio-

naries, it is classified as both, and classified as neutral if it hits neither. This

approach would prove beneficial if one were to analyze smaller strings of

text (like short responses in a chat, as opposed to long earnings calls tran-

scripts) and would also not run into any of the issues that arise by using

machine learning models in general for sentiment analysis.
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11.3.2 NLP transformer networks

Whereas sentiment dictionaries rely on a simplistic and straightforward
implementation, BERT and its varieties employ a transformer language
model, a mechanism implemented using convolutional neural networks
trained with attention models at each stage. BERT is also trained on an
incredibly large corpus of text, which includes the entirety of Wikipedia
and Book Corpus. The advantage of the BERT model is that it is bidirec-
tional (the B of BERT), able to read an entire sequence of words at once
(not just from left to right or right to left), allowing the model to learn the
context of a word based on its surroundings. Spoken language is incredibly
complex, teeming with variations in tone and use of metaphors and col-
loquialisms. Since much of NLP applied to economics involves analyzing
transcripts of spoken dialogue, it is imperative that the models used to an-
alyze this text are robust in understanding the relationships among words
non-sequentially and over the span of a large corpus of text. These corpora,
such as central bank chairman speeches, firms’ earnings calls transcripts,
or even press conferences, are far too extensive to rely on simple sentiment
dictionaries that do not capture long term relationships/dependencies be-
tween words and ideas.

In the case of analyzing FOMC minutes and statements, the complexi-
ties of these texts span across time periods. Simply knowing whether or not
we have reached a “positive” term (via sentiment dictionary) won’t give any
context. To notice policy trends, we must gather and analyze this data over
time, and capture long-term relationships within the text. Though it may
seem that BERT is the clear winner in the large-scale sentiment analysis
category, it is costly. This trade-off between model complexity and compu-
tational resources is an essential consideration a data scientist must make
when deploying any model.

Sentiment varies greatly depending on its domain or context. For ex-
ample, “Significant upside profit potential” has a far more positive senti-
ment than “Heighted upside risk to inflation outlook.” As a result, these
general-purpose models are not nearly as effective in conducting special-
ized sentiment analysis as their “finely-tuned” counterparts. Using lan-
guage models that are pre-trained for specific circumstances has become
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more commonplace in natural language processing. As the applications of
NLP become more specific, task-specific modifications to training models
are required. As in the COVID-19 earnings calls case study, financial discus-
sion utilizes specialized language. Assuring that the corpus of data used to
analyze a COVID-19-firm, related text is fine-tuned for financial discussion
is a means of assurance. FinBERT, a language model based on BERT, is a fi-
nancial domain-specific transformer model that outperforms other robust
machine learning methods in financial sentiment analysis (Araci, 2019). It
is trained on years of earnings calls transcripts, analyst reports, and the sim-
ilar texts.

However, the underpinnings of BERT, let alone FinBERT, can be quite
complicated to understand for someone who is not a machine learning
engineer. Its sheer power to analyze and classify text requires substantial
transparency between itself and the user. Explainable Artificial Intelligence
tools, such as LIME and SHAP, are incredibly useful here. LIME is primar-
ily used to explain models that classify data by category (examples include
facial recognition, sentiment analysis, etc.) via learning a local linear repre-
sentation around the prediction.

11.3.3 LIME for text explanations

Consider a finance-related tweet uploaded to the IEEE dataport (Taborda et
al., 2021). The pretrained FinBERT model can be used with an appropriate
tokenizer, which breaks up texts into small chunks, or tokens, for analy-
sis (Araci, 2019). All these tools are open source. After loading the model
and data, one can perform sentiment analysis on a single tweet shown, as
shown in Fig. 11.4.9

The standard output for sentiment analysis using BERT is SoftMax ac-
tivations. This is often used as the last step in a neural network, where a
vector of numbers is converted to a vector of probabilities, normalizing
these outputs so that they are interpretable as a probability for each class.

9
Dataset publicly available here: https://ieee-dataport.org/open-access/stock-market-

tweets-data.

https://ieee-dataport.org/open-access/stock-market-tweets-data
https://ieee-dataport.org/open-access/stock-market-tweets-data
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FIGURE 11.4 Python script that explains sentiment prediction - Feature Importance for
Tweet.

This tweet is classified as positive, with a probability of 88%, though it
would be insightful to know why. What specific attributes contribute to this
result? LIME is one method to explain the probability outcome.

The LIME explainer uses a function that takes in a string of text and the
pretrained FinBert model and outputs a list with the effect from each word
in the input text, as shown in Fig. 11.4. LIME is what is known as a post-hoc
technique, as the explainability tool is introduced “after the fact” of model
execution and not from the beginning of preprocessing and model training
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(ante-hoc). After the model is trained and run on a string of text, LIME’s in-
ner workings allow us to see which attributes of the text contribute most to
the overall positive result. It does this by iteratively perturbing the input, the
tweet, with token masking, and then calculating sentiment scores at each it-
eration. For example, LIME would remove the word “higher” from the tweet
and calculate the sentiment score, which would be relatively lower than the
result from using our full tweet. Comparing the two scores shows the im-
pact that single feature (word) had on overall sentiment.

Seeing how sentiment scores change with the removal of particular fea-
tures (words) gives the explainer an idea of which features are more impor-
tant. The list of attributes consists of single words, and you may remember
that models, such as FinBERT, understand both long term dependencies
and relationships between words in a string of text to output their results.
Though it would be favorable to see which word relationships contribute to
this, it is important to remember LIME approximates this model linearly, so
it may not be possible to uncover these black-box relationships entirely.

Once again, the nuances of language are complex, and these models only
go so far in mimicking the human intelligence that NLP strives for. Many
language models have yet to find a consistent and accurate way of detect-
ing sarcasm and analyzing metaphors. Though these models are used in
primarily formal settings in the context of economic policymaking, likely
devoid of much sarcasm, it is critical to understand the nuances of the do-
main of study before deploying a language model. Policymaking account-
ability depends on it.

Though transparency is of utmost importance as models become more
scalable and ubiquitous, assurance is needed in all parts of the project life-
cycle. Data collection, though seemingly mundane, is pivotal in shaping
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economic machine learning outcomes. It is important to think critically
about the data samples being gathered and used to train a model. If the
sample consists of a bunch of web-scraped finance-related posts from Red-
dit and Twitter, then one must assure the quality of the text and confirm
it is free of bias. The training process is where the “learning” in machine
learning takes place. Let’s say these Reddit posts and Tweets frequently put
“female” next to “teacher” and “male” next to “professor.” This bias could
permeate into a model. Word embeddings allow data scientists to turn
words into a series of numerical values to then input into machine learning
models. These word embeddings still contain the aforementioned patterns,
and the model will learn those biased patterns and perpetuate the associ-
ations of female: teacher and male: professor. Online texts are filled with
human stereotypes, expressed explicitly and implicitly; these stereotypes,
or biases, present in data are amplified by machine learning models. Why?

It is no secret that the world is teeming with inequality: the gender salary
gap, racial disparity in homeownership, etc. Data from a historically un-
equal society perpetuates those existing inequalities if not dealt with di-
rectly. Inequalities are present in the dialogue used online, whether con-
sciously expressed or not, and therefore layers of assurance are required at
every step of the project lifecycle.

11.3.4 LLMs and the AI central banker

Two generative models that have defined the LLM landscape are generative
pre-training transformer (GPT) models and bidirectional encoder repre-
sentations from transformers-based (BERT-based) models. There are many
more LLMs that have accelerated the improvement of LLM performance,
such as ERNIE, ELMo, GROVER, Big BIRD, Rosalita, and many others, as
shown in Table 11.4. However, the GPT and BERT projects capture both the
immense power of LLMs and the associated risks that come with them.

The GPT project by OpenAI highlights the importance of model parame-
ter size in creating human-like text. There have been three iterations of the
GPT project so far, each increasing the number of features within the model
exponentially. One of the primary goals of this project is to create a robust
unsupervised zero-shot model that requires little fine-tuning to execute a
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Table 11.4 Current Most Impactful LLMs.
Timeline Model Institution Assurance

Considerations
Parameter
Size

Citation

2018-2020 GPT-1, 2, 3 OpenAI Pre-trained on
BookCorpus; very
human-like outputs;
GPT-1 and GPT-2 are
open-source; English
language dominate

117M;
1.5B;175B

Radford et al.
(2019); Brown
et al. (2020)

2019-2021 ERNIE 1, 2, 3 Baidu Trained on text and
graph data; pre-trained
on 4TB dataset; not
publicly available;
Chinese language
dominate

114M;10B Sun et al.
(2019a); Sun et
al. (2019b); Sun
et al. (2021)

2020 T-NLG Microsoft Pre-trained on unknown
dataset; not publicly
available; cited to be
integrated into
Microsoft products

17B Rosset (2020)

2018 BERT Google Pre-trained on
BookCorpus; foundation
for many other LLMs;
open-source; used in
many Google products

340M Devlin et al.
(2018)

2019 Megatron-LM Nvidia Pre-trained on
OpenWebText; removes
non-English content;
pyTorch model
parallelism

8.3B Shoeybi et al.
(2019)

2020 XLNet Google Auto-regressive model;
unidirectional nature;
not pre-trained; English
language dominate

110M Yang et al.
(2020a)

variety of tasks. GPT models initially develop most of their task understand-

ing from a thorough unsupervised pre-training process that is reliant on the

contents of the pre-training dataset. These models are then trained again
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in a supervised fine-tuning process to understand the nuances of a specific
topic or task with a training dataset.

In 2018, the GPT-1 project created a proof-of-concept model that showed
the utility of semi-supervised learning in LLMs. Radford and Narasimhan
(2018) started with a 117M parameter unsupervised model that was trained
on a large textual dataset, called BookCorpus. Then the model underwent a
supervised fine-tuning process that included an auxiliary learning objective
focused on language modeling that was optimized along with its primary
objective. In other words, though the GPT model’s primary objective was
predicting word sequences, it also optimized NLP tasks besides prediction.
Model development can be shown in the equations below, where t is the
given unsupervised corpus of tokens, and k is the context window size for
conditional probability using θ parameters. The second equation illustrates
the objective maximization of x tokens for y labels. The third equation
shows the influence of the auxiliary objective optimization L1 (C) with a λ

hyperparameter weight.

Auxiliary unsupervised language modeling objective:

L1 (T ) =
∑

i

logP (ti | ti−k, . . . , ti−1; θ)

Primary supervised fine-tuning objective:

L2 (C) =
∑

i

logP (y | x1, . . . , xn)

Combined loss function with primary and auxiliary objectives:

L3 (C) = L2 (C) + λL1(C)

The unsupervised language modeling auxiliary objective technique was
first implemented in an earlier study by Rei (2017), and OpenAI improved
upon its effectiveness with its pre-training process when it concluded that
the technique was most beneficial for large datasets. This model update re-
sulted in two important outcomes as highlighted in the seminal GPT paper:
improved generalization and faster convergence for LLMs. Better general-
ization for LLMs meant that GPT-1 was able to work with unseen data more
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easily when the data was from the same distribution of data it was trained
on. Faster convergence revealed that it took less examples from a distribu-
tion for a model to understand it, which made the model more accessible
over a diverse set of tasks. Overall, the model’s improved generalization ca-
pabilities translated to successful zero-shot setting performance compared
to state-of-the-art models. LLM performance is typically assessed by look-
ing at how well an LLM completes a set of tasks when trained on a challenge
(benchmark) dataset. When comparing task performance on NLP tasks
(such as question answering, commonsense reasoning, semantic similar-
ity, and classification) between GPT and specifically trained models, it was
reported that GPT performed the best on 9 out of 12 challenge datasets.

The next iteration of the project in 2019 was GPT-2, which focused
more on model parameter size compared to GPT-1. Updates to the training
methodology for GPT included adding task conditioning to increase zero-
shot performance, increasing model parameters to facilitate more general-
ization, and switching to a new pre-training dataset, called WebText (Rad-
ford et al., 2019). The model was split into four sizes (117M, 345M, 762M,
and 1.5B) to better identify the influence of model parameter size on NLP
task performance. It was found that as the number of parameters in the
model increased, the perplexity of tasks decreased regardless of the training
dataset. This essentially meant that the model’s prediction error measure
for the primary objective decreased as the features available to the model
increased. The outcome of this was that across NLP tasks, the model with
the highest number of parameters (1.5B) performed the best out of all the
parameter sizes of GPT-2. Unsurprisingly, the largest version of the model
outperformed most existing unsupervised models, similar to the results of
the GPT-1 assessment. Despite the continued success of the GPT project, it
was noted that GPT-2 underfit the WebText dataset, suggesting that the size
of these models was still too small to capture all the trends in the dataset.

In the realm of economics, zero-shot or few-shot capabilities in LLMs are
important for applications due to a basic issue that influences all language
processing tasks, the lack of well-labeled-content-specific big data. Prop-
erly fine tuning an LLM requires significant investment in hardware, soft-
ware, and time to build a labeled training dataset. Open source tools exist
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for labeling that make the process easier, such as Doccano, which is a script-
able annotation tool for machine learning.10 Even with Doccano, however,
the number of labels needed for a robust training process is still in the thou-
sands or millions, even to execute tasks, such as generating short economic
summaries. It would be much easier for an analyst to use a model that can
perform tasks well enough without the need to fine-tune, but LLMs haven’t
reached this level of performance yet. Currently, an analyst or economist
trying to utilize these models would need to dedicate immense resources
to build a training dataset with proper labels prior to the fine-tuning pro-
cess. Therefore the first two GPT models and the majority of LLMs are not
accessible to most researchers studying economics since the development
of datasets require great effort.

The most recent iteration of OpenAI’s experiment with GPT language
models is GPT-3, released in 2020, which is currently the largest neural net-
work ever created. The most impressive aspect of the latest model is how
simply dramatically increasing the parameters from 1.5 billion to 175 billion
made output incredibly diverse and human-like (Brown et al., 2020). The
large capacity of this model made writing essays and responses less distin-
guishable to a human’s writing, raising red flags on the potential public use
of this model. Important results from this model is its drastically improved
quality performance on few-shot setting tasks compared to zero-shot set-
tings and its improved fine-tuned in-context learning. Ultimately, the latest
release of GPT-3 has been a great leap forward in LLM development that
was almost entirely related to its immense size. However, GPT-3 is not an
open-source project like its predecessors, making use of it for economic re-
search even harder to explore.

The most obvious use for these powerful LLMs in macroeconomics is to
predict the language of future monetary policy statements, an idea that is
already being tested in the private sector on FOMC statements. A reason-
able goal that an institution can achieve with LLMs is fine-tuning a model
to draft and predict the language of future monetary policy statements
across major economies, while also classifying these texts along a hawkish
or dovish response gradient, as illustrated in Fig. 11.5.

10
Doccano code is available here: https://github.com/doccano/doccano.

https://github.com/doccano/doccano
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FIGURE 11.5 This figure is a visualization of the possible likelihood of sentiment of up-
coming monetary policy statement releases across several central banks. This prediction
can be created by analyzing sentiment on generated central bank statements that have
been produced when providing a large language model (LLM) macroeconomic indica-
tor conditions. This would come from a fine-tuned LLM that has been trained on various
central bank monetary policy statements and has understood language logic related to
historical events.

A project to predict monetary policy text would require a robust dataset
of monetary policy statements, press conference responses, and various
other examples of how a central bank communicates its policy intentions
to the public. Most of this data is offered publicly on central bank web-
sites and on other public online resources. The more predictable the syntax,
terms, and connotations of the textual policy examples and the larger the
dataset, the easier it would be for LLMs to adopt a reasonable response
pattern when given new information. As recalled before, LLMs function by
predicting the most likely reasonable response text when provided with a
task, such as answering a question. Therefore, a well fine-tuned LLM model
could provide policy recommendations when given specific economic con-
ditions that are generated from previously applied policy actions within the
training textual dataset.

A study by Middlebury Institute of International Studies showed evi-
dence of GPT models and other advanced neural language models inher-
iting the ideology of focused datasets (McGuffie and Newhouse, 2020). For
economics, this means if an LLM was trained on discriminating between
“hawkish” and “dovish” responses, it could further adapt its textual out-
put to include terms that are within those ideological paradigms, providing
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an opportunity to create alternative scenarios of central bank responses.
If such a model were to have these capabilities and were used to assist
institutional policy work, then institutions will need to implement rules
around the use of these outputs. For central banks, this would result in addi-
tional oversight to ensure ethical guidance is produced from these models
to maintain transparency and accountability for policy actions.

A downside to the complexity and the size of LLMs, is that models trained
to generate policy statements would largely be dependent on a limited
number of methods to explain its output. The broad classes of techniques
available for model interpretation use challenge sets, adversarial examples,
and prediction explainability methods to understand model connections
as explored in Danilevsky et al. (2020). However, many of these techniques
may not be able to capture the full depth of the most recently published
models that have placed restrictions on model code access and are pre-
trained on datasets not available to the public. These techniques also face
another issue of being English dominant, so if models are exposed to non-
English datasets it would be difficult to assess them using the most com-
mon NLP benchmark datasets and tasks. It is recommended that human
oversight be retained in some capacity to ensure that outputs used are
aligned with ethical guidelines and government mandates.

As shown in Table 11.4, GPT-1, GPT-2, and BERT models are all thor-
oughly open-source projects with little accessibility barriers besides tech-
nical knowledge. The social cost of having them available allows for more
free experimentation and application of these models in both helpful and
harmful contexts. For instance, an institution that is interested in training
a model to produce Federal Reserve statements for research and a group of
malicious actors wanting the same model to spread misinformation would
have equal access to reach their goals. In addition to assuring models its
utilizing in policy processes, an institution would also need to consider how
to handle outside actors, using such a model to impersonate leading policy
figures and spread misinformation.

During and after the release of GPT-1, misuse of this model was not
apparent and not many safeguards were provided to prevent a user from
fine-tuning the model for a negative goal such as spreading fake news. How-
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ever, during the development and release of GPT-2, concern about misuse
of these models was addressed more directly. OpenAI selected four univer-
sities to study different biases and vulnerabilities of the model as iterated in
their report focusing on the social impacts of GPT-2 (Solaiman et al., 2019).
It was found that LLMs are strongly influenced by the data given to them
and are capable of creating believable misinformation. The following year,
with the release of GPT-3, a similar thorough report was not released, but
was more of a discussion summary of open research questions regarding
the model. The report points to an urgent need to discuss model accessibil-
ity, inherent model bias, and deliberate harmful use to spread misinforma-
tion (Tamkin et al., 2021).

One of the most important aspects of these models that institutions
should consider starts at the beginning of an LLM-based project: choos-
ing which pre-trained LLM model should be used. This may be perhaps
the most important consideration since picking a pre-made model means
also accepting or planning to mitigate any inherent bias. AI central banker
could be biased towards a certain monetary policy framework even before
the model is fine-tuned based solely on the training data.

11.3.5 Data assurance of LLMs

The foundation for advanced LLM models is the dataset they are being
trained on. However, an important study in 2016 raised the issue of gen-
der stereotypes bias appearing in word embeddings after a model was
trained on Google news articles (Bolukbasi et al., 2016). The effectiveness
of a model can be benchmarked by the data that it is exposed to both in
the pre-training process and the fine-tuning process, though datasets in-
volved in either stage of the training process inherently carry some form of
bias, and it can be difficult at times to detect the influence it has on model
outputs. An obvious example of the impact of data on models and how it
influences the functionality of AI is MIT’s Norman AI project.

The 2018 Norman AI project was developed by MIT to show how data
can significantly impact a machine learning model, similar to the ideolog-
ical experiments mentioned earlier by Middlebury University. The model
was trained on a compilation of dark disturbing content from Reddit, and
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was then tasked to provide a textual description of images (Yanardag et al.,
2018). The outcome of the experiment was a clinically diagnosed psycho-
pathic AI. Norman was fed a challenge dataset of Rorschach inkblots, and
its outputs were compared to another model that was pre-trained on more
standard data instead of the dark Reddit dataset. The results showed quite
disturbing outputs from Norman that were drastically different from the
other model. The MIT project highlights an extreme output created from
the data it was exposed to. However, bias can be more subtle in datasets
and has remained unfiltered in outputs of influential LLMs. Many studies
like the GPT reports on risk and bias focused on how these models could
be fine-tuned to have negative bias or be used for harmful actions. The first
opportunity for bias in a model derives from the pre-training datasets, as
they have been found to contain harmful bias trends that have passed into
the foundation for many projects. It is critically important to address and
assure the caveats of pre-training datasets used for LLMs, before and after
they are fine-tuned.

The pre-training dataset for GPT-1 was BookCorpus, a dataset of over
20,000 unpublished books. During the development of the GPT-1 project,
BookCorpus was considered a common textual dataset to work with and
has been used to train around thirty important language models, including
BERT. In a recent study, it was found that BookCorpus has concerning is-
sues, such as containing duplicate books, copy-right violations, and an un-
balanced list of genres (Bandy and Vincent, 2021). A large number of books
from the dataset have a disclaimer listed on its cover, making public use of
this dataset a violation of their licensing rights.11 This discovery is a signifi-
cant issue if the dataset is used for active policy work outside of the research
sphere because of potential legal implications. Other issues included only
containing 7000 unique books out of the claimed 22,000 books and drawing
too many adult romance genre books compared to other topics. The repet-
itive texts paired with the genre skew create avenues for potential inherent
gender bias in text generation for models that use BookCorpus. This would
be most problematic in zero-shot setting applications that do not have any

11
The disclaimer that was found was as follows: “[this book] may not be distributed to

others for commercial and non-commercial purposes”.
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form of bias mitigation, but can also be an issue even if models have some
form of assurance.

The issues raised surrounding BookCorpus shows the need for struc-
tured documentation surrounding textual datasets and the potential bias
in many currently available models. Models such as FinBERT, which are
used for economic analysis, can carry bias from their pre-trained state to
their fine-tuned model output if the fine-tuned dataset also contains con-
nections to the same bias paradigms. When a model is fine-tuned or built
upon, researchers will typically freeze earlier layers of a neural network,
while adding in the new later layer that will accommodate the training of
more nuanced relationships. This practice carries long-term model func-
tionality and trends through the network, consequently percolating bias
into the later layers. On the macroeconomic level, if bias pertaining to cer-
tain hawkish or dovish policy actions is inherent in the fine-tuning pro-
cess, then text generated by these models for central bankers will provide
non-neutral language when recommending policy action. To intentionally
perpetuate this bias, an analyst could simply compile a series of monetary
policy statements from a single individual or central bank that has a history
of preferring one policy method or the other and use it as the only fine-
tuning dataset.

Even with the expanded set of diverse datasets available today, it remains
the case that there is not a perfectly unbiased large dataset. It is still difficult
to create a balanced dataset for specific content because of bias in histori-
cal trends and data availability. While sometimes the greatest limiting factor
for mitigating bias in datasets is time, using smaller balanced datasets can
render a model effective only in a small range of tasks. Thus even if smaller
datasets are easier to manage, it is not an option to scale dataset size down-
wards either. As LLMs become more commonly used, there will continue to
be a tradeoff between providing a sufficient volume of datasets and effec-
tively mitigating potential bias in a focused dataset. Models will continue to
require the creation of large datasets for now; more techniques will need to
be developed to identify trends that connect with harmful outcomes. With-
out data assurance for these large datasets, a model could turn out to be a
more elusive version of Norman.
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11.3.6 LLM transparency

Many models are trained on private datasets that contain personally iden-
tifiable information (PII). Typically, these datasets are medical information
datasets that a company acquires through a purchasing agreement and is
legally bound to follow strict guidelines regarding its use. One of the main
restrictions being that the information in these datasets is not allowed to
be shared, distributed, or accessible to the public. Recently a study in col-
laboration with Google, Apple, OpenAI, and a few top universities, found
that, aside from bias issues with pre-training datasets, there is a significant
data privacy challenge with LLMs as well (Carlini et al., 2021). The goal of
this project was to illustrate how difficult it would be for an individual to
perform a data extraction by leveraging the model’s actions alone, and is
a caution for potential data breaches occurring in the future. The project
describes the creation of a successful data extraction process of PII from
GPT-2’s pre-training dataset (WebText), by exploiting the model with tar-
geted questions. Breaches such as these can cause harm to individuals and
is a security concern related to the neural network information retrieval
process within LLMs.

If a central bank is using these models to draft policy or regulation for
a specific community or sector, it would be important for the policymaker
and analyst to secure/discard outputs that leak sensitive information. Pub-
lic transparency when using these models in both the private and public
sector is varied across the field. There aren’t clear guidelines on best prac-
tices, but there is a call for more rules to be implemented regarding data
privacy overall. Some companies have responded by choosing to hide pre-
training datasets from the public, such as Google’s mysterious large dataset
it uses to train models, while others continue to publish the datasets they
made along with their models. It is difficult to determine the best measure
of data privacy for both pre-training and fine-tuning datasets.

Since the release of these analysis reports and community concerns re-
garding the use of AI, most of the guardrails for these models are being men-
tored and created by the model creators themselves. This can be seen in
OpenAI’s choice to forgo making the GPT-3 project fully open-source, just
as it has done with its previous models. As discussed in several points pre-
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viously, OpenAI has dedicated a significant number of resources to under-
standing the risks associated with its GPT project. However, the company
has also admitted that it doesn’t have the resources to safeguard against
professional orchestrated attacks. They have called for government insti-
tutions to help protect against such instances from occurring. At the same
time, BERT has continued to be open-source despite Google’s incorpora-
tion of it into its search engine. The accessibility of the code behind the
models remains varied, with some companies turning away from having
code repositories being completely open-source. So far, the AI community
has decided that allowing LLMs and the majority of large datasets created
to train LLMs is beneficial to encourage transparency. Nonetheless, in 2020
and 2021, many governments have drafted policy guidance to begin pro-
cessing guardrails and transparency rules that are more than just recom-
mendations. The greatest challenge will be for these rules to strike a proper
balance that will protect against the misuse of these models in economics
and finance, while allowing value to be delivered from these models.

The next stage for the GPT project and other advanced language models
is unknown, but it is speculated that LLMs would soon be able to learn on
just a few examples, similar to how humans learn. The pathway to artificial
generalized intelligence (AGI) has become more of a reality with projects
like GPT, but with an unclear path forward. LLMs will continue to become
larger, more generalized, and harder to understand. Any economic institu-
tion will need to ultimately decide what characteristics of a model would be
best to use. Whether it should be one that is more open-source, one from a
private company, one from a non-profit, one made available only with an
API, or one that would have to be purchased, etc. In conclusion, it is im-
portant for institutions to develop and use tools to explain model outputs
as these models become larger and more complex. It is inevitable that they
will take part in the policy process at some point, and it is imperative that
institutions are capable of understanding and utilizing them.

11.3.7 Association rules mining

Association rules mining (ARM) is an application of decision rules, which
involves making conclusions using common patterns among sets of data to
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identify strong associations or “rules.” The most common use of association
rules mining is to find patterns in transaction data to discover which items
are frequently purchased together. Agrawal et al. (1993) was the first to use
transaction data. Decision rules derives from decision theory, which has its
roots in operations research from WWII to support decision-making using
empirical results.

ARM outputs are a series of “if-then” rules, showing co-occurrences be-
tween item sets X (antecedent) and item sets Y (consequent) out of N trans-
actions. One can also use regression syntax: X as the left-hand side (LHS)
variables and Y the right-hand side (RHS) variables. This means that when
items X appear in the data, item(s) Y are likely to be found, too. An example
rule for grocery transactions is {beer} ⇒ {diapers}, where beer is the an-
tecedent and diapers are the consequent. This would mean that diapers are
often purchased when beer is purchased. Note that correlation does not
equal causation. How strong is a given association X ⇒ Y? There are several
metrics to use to understand and evaluate associations:

1. Support (X) = # instances of X
# N transactions

2. Conf idence(X ⇒ Y ) = Support (X∪Y )
Support (X)

3. Lif t (X ⇒ Y ) = Support (X∪Y )
Support(X)∗Support (Y )

Support is the ratio of how many of the N transactions include items X. This
measure can be used to set limits on how common or uncommon items X
should appear for rules mining. The confidence measure is the ratio of how
consistently Y appears when X also appears, which can be thought of as
the conditional probability of Y happening given X. Finally, lift is the condi-
tional change on the probability of Y appearing when X also appears. When
lift is 1 then the two item sets are independent of one another. If lift > 1,
then X in a transaction means that Y is more likely to appear. If lift < 1 then
X’s appearance makes Y less likely. Another way to think about these rela-
tionships is that X and Y could be compliment (lift > 1), such as ice cream
and pie, or substitutes (lift < 1), such as coconut milk and almond milk.

Using ARM for international trade has been studied by Batarseh et al.
(2021b) to evaluate which commodities are frequently traded together.
Rather than a shopper buying items from a grocery store, a “transaction” is a
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country A going to another country B to choose from a variety of commodi-
ties in a specific year. Each category of commodity such as soybeans, elec-
tronics, and others are organized into the harmonized system (HS) codes,
which are used at high granularity for tariff actions. For research purposes,
higher-level aggregations have been considered.12 Data from the WTO was
used to evaluate how commodities are strong consequents or antecedents
within bilateral or multi-lateral relationships. In Batarseh et al. (2020), the
trade relationship between China and Australia in the aftermath of COVID-
19 was studied by analyzing the volume of bilateral association rules that
meet a given threshold. This method meant that the authors established
equal weighting of rules, digging for the common threads among millions
of rules. Harnessing ARM for understanding commodity-level trade data
has helped answer questions about trade relationships that traditional eco-
nomic methods would struggle to discern.

11.3.8 Graph neural networks

Supply chains have grown in complexity due to global economic integra-
tion. Consumers in country B rely on raw materials from country A, re-
finement in their own country B, and manufacturing in country C. AI has
contributed to the economic study of trade through early studies into appli-
cations of advanced modeling techniques, such as graph neural networks.
These trade flows are best described as networks, as demonstrated by the
gravity equation of trade in Anderson (1979). The study of network-based
(or graph-based) learning has been harnessed to solve problems in molec-
ular dynamics (Duvenaud et al., 2015), traffic prediction (Chen et al., 2020),
and stock market prediction (Li et al., 2020). These types of models are
called graph neural networks (GNNs).

GNNs are powerful at solving problems where there is a ripple effect from
one entity to another. In the case of traffic prediction, an accident at one
intersection is likely to cause additional congestion on surrounding roads.
This is an example of a node-level prediction task, where all the nodes are
being predicted simultaneously. Communication between nodes is referred

12
Read more about HS codes at the International Trade Administration - https://www.

trade.gov/harmonized-system-hs-codes.

https://www.trade.gov/harmonized-system-hs-codes
https://www.trade.gov/harmonized-system-hs-codes
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FIGURE 11.6 Diagram showing how GNN prediction is made for node classification by tak-
ing other nodes connected by edges.

to as message passing because surrounding nodes are contributing to the
information set for prediction at a single node. These neighborhood effects
can be adjusted for the degrees of separation to include in the prediction
at a particular node (Defferrard et al., 2017). The edges in a GNN are criti-
cal to proper flow of information as stronger edges have greater effect than
weaker edges.

11.3.8.1 GNNs for international trade
GNNs have been harnessed for several international trade applications in
the last few years. Panford-Quainoo et al. (2020) were the first to show GNN
modeling of bilateral trade relationships. Using countries as the nodes and
bilateral trade as the edges of the network. See Fig. 11.6 diagram of how
the GNN is using information from surrounding countries to predict data
on China. That framework was able to perform several tasks, including pre-
dicting trade links and predicting country income brackets. This model was
implemented on a single time period, thus the choice of data could have a
substantial impact on the final result.

Expanding on the single period GNN, Monken et al. (2021) implements
a time-varying GNN structure for international trade. Combining the ele-
ments of a recurrent neural network structure, called long short term mem-
ory (LSTM), with GNNs helped the model overcome the challenge of the
edges of the network changing significantly over time. Traditional GNNs
struggle to formulate effective graph representation when edges change
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significantly. The node prediction task being tested was the trade unit value
(TUV) of soybeans, using previous volumes and prices of soybeans among
trading partners around the world. As a stable food commodity, the choice
of data meant that there would be substantial trade among many coun-
tries. Data assurance was conducted by identifying any issues with under-
lying values that were outliers in the distribution as well as large enough
volumes to have a real-world trade impact. The training method of this
GNN involved combined gradient across all countries such that all coun-
tries’ predictions contributed equally towards the loss function. This meant
that the outcome needed to utilize similar units across all countries. Assur-
ing the model output involved checking error rates across different cross
sections of the data, eliminating any possibility for Simpson’s paradox or
vastly varying model performance across countries. Another aspect of AI
assurance implemented was applying counterfactual scenarios, allowing
the complexity of the GNN to be empirically tested by perturbing the in-
put data. By altering single edges or nodes, multiple “what-if” scenarios
were tested. Further AI assurance using explainability techniques will make
GNNs even more useful for economic policymakers.

11.3.8.2 Explainability methods for GNNs
Various interpretability methods for GNNs are discussed in the review pa-
per by Yuan et al. (2020), which includes four broad categories as summa-
rized in Table 11.5. All have the goal of making GNNs more interpretable,
thus more easily assured, evaluated, and audited by economic policymak-
ers. Some of these methods build subgraphs to find the most salient con-
nections and features within the larger GNN, while others consider the local
environment of the prediction environment for interpretability.

Each of these explanation methods requires background research to im-
plement effectively. Frequently, the code implementation lags months or
years behind the paper describing the theoretical method. The most de-
veloped explainability method is GNNExplainer, which is available as part
of the PyTorch Geometric package. The other tools often have a GitHub
repo with someone’s code development. As GNNs become more common
in economics, more explainability techniques need to be developed in ma-
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Table 11.5 Summary of explainability methods for GNNs.
Category Description Example Tool Paper

Probe the gradients from model training to
determine the most important features

CAM (Class Activation
Mapping)

Pope et al. (2019)

Perturb the input data by introducing masks
against certain nodes, edges, or node
features to find which masks change the
output the most

GNNExplainer Ying et al. (2019)

Construct a localized model containing
immediately surrounding features to build an
explainable model

GraphLIME Huang et al. (2020)

Decompose the final prediction for the GNN
by stepping back a layer in the network and
testing the impact from the input features

GNN-LRP Schnake et al. (2020)

jor GNN package environments, such as PyTorch Geometric or Tensorflow

Geometric.

11.4 Conclusion

This chapter has outlined the current AI methods that are and will con-

tinue to reshape the economics domain. AI has already made advances

in three important ways: a) improving forecasting capabilities using flex-

ible machine learning models, b) evaluating and predicting policymaking

statements with large language models and natural language processing,

and c) evaluating trade relationships using graph neural networks and data

mining. AI methods, while often more powerful than traditional economet-

ric techniques, require AI assurance to be safely, equitably, and ethically

implemented. The landscape of AI assurance in economics has been dis-

cussed and three explainability techniques used in economics were cov-

ered: LIME, SHAP, and PDP. Economic policymaking institutions, however,

must be more accountable than private entities when employing AI models

for tasks that can fundamentally change the lives of people.
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Panopticon implications of ethical
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in healthcare
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A first-rate pilot (cybernetes) or physician feels the difference between possibilities
and impossibilities in his art and attempts the one and lets the others go; and then,

too, if it happens that he does trip, he is equal to correcting his error.
—Plato’s Republic, 360e-361a

...computer ethics is the analysis of the nature and social impact of computer
technology and the corresponding formulation and justification of policies for the
ethical use of such technology. I use the phrase “computer technology” because I
take the subject matter of the field broadly to include computers and associated

technology. For instance, I include concerns about software as well as hardware and
concerns about networks connecting computers as well as computers themselves.

—Moore, 1985
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Abstract

Addressing issues in the healthcare domain as principal illustrations, instru-
mentalities of Artificial Intelligence (AI) are explored at the nexus of ubiquity
and control reflected in the Internet of Things (IoT) and in various governance
and policy features. Roles of ethics and ontological determinations are examined
with particular attention to the effects of AI-enabled systems and policies on se-
lected groups and related health disparities and biases. The growth of predictive
data analytics and the simultaneous growth in the availability of interoperable
AI-enabled devices offer opportunities to mitigate healthcare disparities cur-
rently endemic in indigent, underrepresented, and underserved communities.
However, use of these devices can exacerbate inequities as well as ameliorate
them. By themselves, human and AI agents operating in an IoT-sustained in-
fosphere cannot solve problems related to the multiple forms of marginalization
that affect the health and wellbeing of particular communities. They require ac-
tively engaged and empathetic governance to address complex socioeconomic
issues and solve complex accessibility and distribution problems. In collabora-
tive environments, where healthcare provision depends on the synergy of human
and AI actors, regulatory models must not only address the ethical conduct of
medical practitioners, but also the professional conduct of informaticists, soft-
ware developers, and device vendors.

Keywords

Artificial Intelligence, ethics, healthcare, infosphere

Highlights

• By themselves, human and AI agents operating in an Internet of Things

(IoT)-sustained infosphere cannot solve the multiple forms of marginalization that

affect the health and wellbeing of particular communities.

• In collaborative environments, where healthcare provision depends on the synergy

of human and AI actors and systems, regulatory models must not only address the

ethical conduct of medical practitioners, but also the professional conduct of

informaticists, software developers, and device vendors.

• Human and AI agents require actively engaged and empathetic governance to

address complex socioeconomic issues and solve complex accessibility and

distribution problems.
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• Human and AI agents operating in an IoT-sustained infosphere require actively

engaged and empathetic governance to address complex healthcare issues and

solve related socioeconomic, accessibility, and distribution problems. In the broader

infosphere and collaborative environments, healthcare provision depends on the

synergy of human and AI actors within regulatory models.

12.1 Introduction
The advent of the Internet and the availability of relatively inexpensive
high-speed computers have facilitated the integration of human and ma-
chine agents in a global network of information-based digital capabilities
used to deliver products and services on a world-wide scale. This situation,
while directly or indirectly touching virtually all aspects of life in one way
or another, has been particularly transformative in medical practice and
healthcare provision. Over the last 25 years, the medical and healthcare
domain has witnessed an extraordinary growth in the artificial intelligence
(AI) supported, big data-driven practice of medicine. This growth has been
evidenced in the introduction of electronic health records (EHRs), personal
health records (PHRs), digital imaging, digitized procedures, increasing so-
phistication in laboratory test formulation, real-time availability of sen-
sor data, and the introduction of genomics-related projects, among other
things. AI support in healthcare frequently incorporates techniques such
as machine learning (ML) and natural language processing in, for example,
diagnostic expert systems, clinical decision support systems, robotics, and
process automation (Kuiler and McNeely, 2018, 2020).

AI is concerned with “the computational understanding of what is com-
monly called intelligent behavior, and with the creation of artifacts that
exhibit such behavior” (Ramesh et al., 2004). The term “augmented intelli-
gence” also has served as a conceptualization of AI, focusing on its assistive
role and emphasizing that its design “enhances human intelligence rather
than replaces it” (AMA, 2021). AI has its provenance in diverse disciplines—
mathematics, computational sciences, psychology, biology, semiotics, lin-
guistics, and philosophy—and reflects the use of inductive, deductive, and
abductive logic systems. (Peirce, 1958, 1997; Kuiler and McNeely, 2020)
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As an area of study, AI reflects different perspectives—cultural, scientific,
and technological—and depends on a range of methodological approaches
to ensure its efficacy. AI-facilitated data analytics typically are posited as
means for enhancing wellbeing and, with algorithm-based procedures, can
help address complex socioeconomic issues, reduce administrative bur-
dens, and solve multifaceted distribution problems, as suggested by current
pandemic-focused logistics efforts. However, AI-enabled systems also can
reflect or lead to problems and challenges to existence and life chances,
and have been invoked in terms of, for example, perpetuating discrimina-
tion (intentional or unintentional) and abrogating rights (e.g., invasions of
privacy). It is in this sense that questions arise in relation to AI assurance
regarding ethics in the design, development, implementation, and opera-
tionalization of AI-enabled instruments and policies, and motivating the
analytical direction of the research presented here.

While considering affective issues relative to ethical AI and assurance
more generally, the medical and healthcare domain is engaged here as a
principal illustration and analytical focus in light of its centrality on public
agenda and prominence in AI-driven practice. Since the mid-1990s, a de-
bate has taken place within the medical informatics community on how to
develop and integrate AI agents with the sound, ethical practice of medicine
and healthcare provision (Lloyd, 1985; Coiera, 1996; Kulikowski, 1996). In
this regard, the roles of ethics and ontological determinants are examined
with particular attention to medical and healthcare issues among indigent,
underserved, and underrepresented communities. Such populations may
be especially affected by AI-enabled policies and their operationalization
reflected in, for example, geospatial divides, digital and knowledge divides,
and other eudaemonic disparities, whose effects transcend technological
inequalities and inequities. Addressing disparities in healthcare access and
provision that afflict disadvantaged and disenfranchised communities in
many parts of the world, a conceptual framework and analysis are provided
in reference to ethical instrumentalities of AI explored at the nexus of digi-
tal ubiquity, especially based on the omnipresence of the Internet of Things
(IoT) and control, as delineated in issues of governance and regulation.
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12.2 Ontological perspectives
Ontologies encapsulate the intellectual histories of epistemic communities
and support the development of dynamic heuristic instruments that sus-
tain science and society. Noting an Aristotelean tradition, the universe has
been conceptualized as comprising entities that consist of form and mat-
ter, where form is, or contains, information (cf. Metaphysics, Book VII.3;
Bynum, 2010). Moreover, human beings are distinguished from other forms
of life, such as plants or animals, by the human abilities for theoretical
and practical reasoning (cf. On the Soul, Book III.3). Thus, information-
processing capabilities are encapsulated in physical bodies (Bynum, 2000,
2010).

In more modern terms, “information is not just an abstract concept... It
is a concrete property of matter and energy that is quantifiable and mea-
surable. It is every bit as real as the weight of a chunk of lead or the energy
stored in an atomic warhead, and just like mass and energy, information
is subject to a set of physical laws that dictate how it can be manipulated,
transferred, duplicated, erased or destroyed. And everything in the universe
must obey the laws of information because everything in the universe is
shaped by the information it contains” (Seife, 2006, p. 2). The concept of
cybernetics is relevant to this thinking, adumbrating Aristotelean notions
of matter and form, information and reasoning, by positing that it is in
the nature of the universe that all entities consist of information encoded
in matter-energy (Wiener, 1948, 1954). That is, humans and computerized
machines are cybernetic entities; they are dynamic systems with compo-
nents that communicate internally and externally with the outside world
by means of information channels and feedback loops. In this context, so-
ciety comprises communities of intra- and inter-dependent cybernetic en-
tities determined by information generation and exchange (Wiener, 1954;
Bynum, 2010; Boulding, 1956, 1966).

Panopticon effects of AI on the infosphere
As makers, manipulators, and encapsulations of information, human

intelligence and AI entities—collectively, cybernetic entities—operate as
agents in a universe of information, in an “infosphere” (Boulding, 1970,
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1980; Floridi, 2010b). The infosphere is born in the matriculation of artifi-
cial and human intelligences and their interactions (Floridi, 2010b; Bynum,
1985). As such, it is central to discussions of information ethics in which in-
formation fulfills three interdependent roles: as a resource, as a target, and
as a product (Floridi, 2010b).

In the healthcare domain, the interactions of these human and artificial
intelligent agents are operationalized via the IoT, resulting in a panopticon
effect. Telemedicine, for example, makes healthcare available to many indi-
viduals who otherwise would not have ready access to medical expertise or
facilities. AI/ML-enabled software as a medical device (SaMD) applications
allow medical practitioners to monitor the conditions of their patients at all
times, as long as secure information and communications technology (ICT)
connectivity can be maintained. SaMD performs on non-medical devices,
such as smartphones, smartwatches, laptops, tablets, or other computing
platforms. SaMD, for example, allows viewing of magnetic resonance im-
ages for diagnostic purposes from a smartphone (FDA, 2021a,b; IMDRF,
2020). Note that software that relies on data received from a medical device
but that does not have a medical purpose are not considered SaMD. Rather,
software that, for example, encrypts data transmissions from a medical de-
vice or software that controls the motor for pumping medication in an infu-
sion pump, MRI, EKG, EHR, and X-ray machines is designated software in a
medical device (SiMD) (FDA, 2021b). The graphical abstract provides a con-
ceptual framework of the infosphere, highlighting the importance of ethics,
sociocultural factors, and governance in the development and deployment
of AI agents in IoT environments.

The implementation of assurance regimens instill confidence that AI
agents in the infosphere operate within their appropriate ethical, regu-
latory, and legal frameworks. AI assurance is a technical specialty that
complements the independent verification and validation (IV&V) tasks of
industry-standard system development life cycles (SDLC). AI assurance
processes are designed to test the behavior of algorithms and the integrity
and accuracy of the data to which those algorithms are applied. Aspira-
tionally, AI assurance emphasizes that AI systems should be trustworthy
and fair by addressing social determinants equitably and without preju-
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dice, incorporate relevant legal and ethics codes, and comprise explainable
models with regard to data, algorithms, and their interactions (Batarseh et
al., 2021). Also, AI systems should be safe and secure. As a specialty do-
main, AI assurance focuses on the independent validation and verification
of AI systems and their platforms, their quality and reliability, their robust-
ness and efficacy, their security and resilience to adversarial attacks, and
their privacy protection mechanisms. Furthermore, AI systems should re-
flect thorough analyses and assessments of risks. It is also in this regard
that US Food and Drug Administration (FDA) regulations require that ap-
propriately constituted institutional review boards be formally designated
to evaluate and monitor all biomedical research that involves human sub-
jects and to protect their rights and welfare (FDA, 2020).

12.3 Ethics frameworks
In the context of AI development, the purpose and application of codes of
ethics are to delineate the moral dimensions of the development, introduc-
tion, and conduct of AI agents. They also apply to the systematic compu-
tational analytics of structured and unstructured data and their attendant
outcomes to guide the conduct of actors engaged in those activities.

Infosphere ethics
The conceptualization of a demiurge homo poieticus as the bridge

builder between physis (phusis) and techne in the infosphere has been used
in the recent literature on macroethics.1 From a macroethical perspective,
human beings, qua homo poieticus, are moral agents who have obligations
to maintain the infosphere and help it to flourish and increase in value
(Floridi, 1999, 2018; Floridi and Sanders, 2004, 2005). These obligations
constitute principles focusing on negative entropy (Floridi, 2010a,b, p 92):

1
Given that physis has active as well as passive aspects, it is not clear how this bridge can

be created without nomos, episteme, and phronesis (cf. Floridi and Sanders, 2004, 2005).
For an earlier discussion of the interdependencies between techne and episteme, physis
and nomos, in social, communitarian contexts, see Aristotle’s Nicomachean Ethics, Book
V and VI; on phronesis, see Book VI). See also Plato’s discourse on physis and nomos in
Gorgias, in which Callicles argues that it is a matter of justice according to physis for the
strong to prey on the weak.
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• Entropy ought not to be caused in the infosphere.
• Entropy ought to be prevented in the infosphere.
• Entropy ought to be removed from the infosphere.
• The flourishing of informational entities, as well as those of the whole in-

fosphere, ought to be promoted by preserving, cultivating, and enriching
their properties.

In the society more generally, the mitigation of entropy is necessary to sup-
port an ethical framework; however, it is not sufficient. Moral human agents
are also obligated to uphold principles of justice and freedom (Wiener,
1954, pp. 105-106; Bynum, 2010)2:

• Freedom: the liberty of each human being to develop in his freedom the
full measure of the human possibilities embodied in him

• Equality: the equality by which what is just for A and B remains just when
the positions of A and B are interchanged

• Good Will: the good will between man and man that knows no limits
short of those of humanity itself

• Minimum infringement of freedom: the compulsion the very existence of
the community and the state may demand must be exercised in such a
way as to produce no unnecessary infringement of freedom.

Healthcare Domain Ethics
An important issue that must be addressed is how to balance the benefits

and risks associated with the introduction of AI in the medical practice and
healthcare (Rigby, 2019). The benefits of integrating AI in medical practices
can be systemic by improving the care of patients and the efficacy of med-
ical procedures. Nevertheless, the need remains to minimize ethical risks
of AI implementation. In the healthcare domain, the previously discussed
macroethic principles are transformed into deontological ethics that are
epistemic and professional in application, focusing on the conduct of med-
ical and ICT professionals as informaticists in their respective spheres of
competence. Emphasizing consequentialism, i.e., engaging in actions that
cause more good than harm, healthcare ethics apply to the interactions

2
See also Bynum, 2000; UNESCO, 2019a,b, 2021.
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Table 12.1 Foundational Ethics.
Healthcare Practitioners Informaticists

Beneficence: All persons have a duty
to advance the good of others

Information-privacy and disposition: All persons have a
fundamental right to privacy and to control the data
about themselves

Non-malfeasance: All persons have a
duty to prevent harm to other
persons

Openness: The management and disposition of per-
sonal data must be disclosed in an appropriate and
timely fashion to the subject of those data

Autonomy: All persons have a
fundamental right to
self-determination

Access: The subject of an electronic record has the
right of access to that record and to correct the record
with respect to its accurateness, completeness, and rel-
evance

Equality and justice: All persons are
equal as persons and have a right to
be treated accordingly

Accountability: Any infringement of the privacy rights
of the individual person, and of the right to control over
person-relative data, must be justified to the affected
person in good time and in an appropriate fashion

Integrity: All persons must fulfill their
obligations to the best of their
abilities

Security: Data that have been legitimately collected
about a person should be protected by all reasonable
and appropriate measures against loss, degradation,
unauthorized use, destruction, access, use, manipula-
tion, or modification

Impossibility: All rights and duties
hold subject to the condition that it is
possible to meet them under the
circumstances that obtain

Legitimate infringement: The fundamental right of con-
trol over the collection, storage, access, use, and dispo-
sition of personal data is conditioned only by the legit-
imate, appropriate, and relevant data-needs of a free,
responsible, and democratic society, and by the equal
and competing rights of other persons

Proportionality: All positive features
and benefits must be balanced
against negative features and risks

Least intrusive alternative: Any infringement of the pri-
vacy rights of the individual person, and of the individ-
ual’s right to control over person-relative data may only
occur in the least intrusive fashion and with a minimum
of interference with the rights of the affected person

between healthcare providers and their patients (AMA, 2020). In their pro-

fessional conduct, informaticists are also expected to adhere to codes of

ethics that reflect universal principles. The guiding ethical principles for

healthcare and medical practitioners and informaticists are outlined in Ta-

ble 12.1 (cf. AMIA, 2013; AMA, 2020; IMIA, 2016; NIH, 2014).
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All medical professionals and informaticists are expected to abide by the
rules and legal dicta that apply to their epistemes. In the United States
(US), for example, professionals who are involved in medical research are
also expected to abide by the Federal Policy for the Protection of Human
Subjects (“Common Rule”) (DHHS, 1991, 2016) and the World Medical As-
sociation Declaration of Helsinki: Ethical principles for medical research
involving human subjects (WMA, 2018). It is expected that every legitimate
medical research project will have been subjected to a rigorous peer re-
view process and will have received the appropriate approvals. In addition,
medical protocols, practices, and research endeavors should be evaluated
continually for their safety, effectiveness, efficiency, accessibility, and qual-
ity (WMA, 2018). Along the same lines, computer scientists are expected to
abide by a code of ethics that stipulates that they will not use computers to
harm others, to steal intellectual property, and that they should be aware
of the social consequences of the systems they are developing (CEI, 2011).3

Medical device developers are expected to meet technological end regula-
tory challenges, such as accessibility, interoperability, cybersecurity, data
integrity, and data security (IMDRF, 2020).

12.4 Governance in the healthcare domain
Governance is a political process that imposes the structures, norms, and
rules that apply to matriculation in society. Aspirationally, governance
should incorporate inclusivity, transparency, participation, and responsive-
ness systemically as foundational principles. Such policy options include
binding law, self-regulation (identification and architecture), co-regulation
(privacy and ethics), standards and standardization, and laissez faire (“do
nothing”). In an AI environment, self-governance requires building trust in
industry, regulation, and liability mechanisms; the introduction of AI risks
mitigation practices across the AI development and implementation life
cycle; and the introduction of such practices through widely publicized cer-
tification and accreditation regimens (Röösli et al., 2021).

3
See Moore (1999) for a discussion of just consequentialism in computing. See Tavani

(2010) for a discussion of foundationalist debates in computer ethics.
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In an IoT environment, where the practice of medicine depends on the
collaboration of human and AI actors, regulatory models must address not
only the conduct of medical and healthcare providers, but also the profes-
sional conduct of informaticists, software developers, and device vendors.
Internet connectivity is ubiquitous. On the world stage, set forth in instru-
ments such as the Mauritius Declaration, the result of the International
Conference of Data Protection and Privacy Commissioners in Mauritius
(EDPS, 2014), principles and recommendations have been formulated to
reduce the risks associated with data collected via interconnected devices
in the big data ecosystem. Data may only be collected with consent and
should be assessed for privacy impacts and data anonymization require-
ments. The assertion is that individuals own their data and can control
them. In this context, self-determination is invoked as an inalienable right
of all human beings. (In the US, this right is encapsulated in the Health
Insurance Portability and Accountability Act, or HIPAA, regulations). The
idea is that data collected in an IoT environment should be “high in quan-
tity, quality, and sensitivity” (EDPS, 2014). Developers and vendors of IoT-
connected devices should be transparent and open with regard to the pur-
pose for which the data are collected, how they will be used, how long
they will be retained, their retirement, and their disposition. The functional
principle is that privacy and rules of ethics should be incorporated by de-
sign in IoT innovations, and constructive debate on the technological and
ethical implications of the IoT should be pursued and sustained.4

Sound governance depends on compliance with societal and epistemic
ethics and norms. In AI-IoT environments, this includes explainability and
interpretability, not only to increase awareness of algorithm complexities,
but also to ensure operational fairness and equity. In addition, it requires
an ethical auditing of algorithmic systems to mitigate the risks of social, cul-
tural, and economic inequities (Cath, 2018; Gasser and Almeida, 2017). In
the US, the Department of Health and Human Services establishes policies

4
FDA has proposed a framework for developing machine learning tools in healthcare.

The framework provides a useful starting point for discussing the development of ethics-
based AI, but does not fully address health disparities in pre- and post-marketing stages of
product reviews (Ferryman, 2020).
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for the governance of the American healthcare domain. While ICT-enabled
technologies provide opportunities to incorporate new functions and fea-
tures in medical devices, these new technologies also pose direct challenges
to existing governance practices: data anonymity and integrity, device in-
teroperability, accessibility, and cybersecurity. The FDA, which in the US
regulates SaMD, is also a member of the International Medical Device Reg-
ulators Forum (IMDRF), a voluntary group of nation-states that collaborate
to harmonize regulatory requirements for medical products that vary from
country to country, focusing, for example, on such topoi as unique de-
vice identification (UDI), personalized medical devices, standards, adverse
event terminology, good regulatory review practices, clinical evaluation,
and regulated product submission. The US National Institute of Standards
and Technology (NIST) has published standards to address IoT cybersecu-
rity pursuant to the Internet of Things Cybersecurity Improvement Act of
2020 (NIST, 2019, 2020; US Congress, 2020).

12.5 Societal disparities in wellbeing

Governance operates at the nexus of different dimensions—who holds
power, who makes decisions, who may participate (“stakeholders”), and
how accountability and transparency are instituted—and how these di-
mensions and their interdependencies are measured and formulated as
policies that accord fairness and equity to indigent, underserved, and un-
derrepresented communities to ameliorate their states of wellbeing.

Social determinants of health
Collectively, SaMD, SiMD, telemedicine, ICT-based portals, and other AI

agents have far-reaching panopticon effects in addressing the health and
wellbeing disparities that, in particular, afflict disadvantaged communi-
ties. However, AI agents operating in an IoT environment per sé cannot
solve the multiple forms of marginalization that may affect the wellbeing
of these communities, who are expected to overcome significant, quotidian
barriers to wellbeing, usually without general public awareness. These situ-
ations reflect complex interactions of various social determinants of health,
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Table 12.2 Social Determinants of Health.
Social and Economic
Environments

Physical
Environment

Cultural
Environment

Personal
Circumstances

Economic instability:
access to employment
and unemployment
support

Substandard housing
and living conditions:
lack of livable housing,
safe neighborhoods

Intolerance of culture
or social norms: reli-
gious intolerance, bi-
ased media character-
ization

Language barriers: lim-
ited facility and fluency

Societal instability: un-
equal access the juridi-
cal systems, likelihood
or presence of conflict

Geospatial dispersion:
population density per
standard geographic
area, geographic
distance to neighbors

Social exclusion:
racism and racialized
legal status, gender,
sexual orientation

Food insecurity: ir-
regular access to
food sources, limited
healthy diet options,
limited availability of
food banks

Education inaccessibil-
ity: unequal access to
early childhood educa-
tion, vocational train-
ing, higher education

Diaspora: immigration
provenance or history,
social stigma and dis-
crimination, effects of
colonialism, neocolo-
nialism

Inadequate personal
health: personal or
family member ad-
diction, pre-existing
medical conditions, in-
cluding mental health,
stress, biology, genetic
endowment

Social support unavail-
ability: lack of social
safety nets, social cap-
ital, social inclusion

Inadequate family
health: limited or
no access to elder
care, healthy child
development options

Health system inac-
cessibility: remoteness
from healthcare facili-
ties, lack of access to
healthcare providers,
healthcare unafford-
ability

Immobility: lack of
transport, limited
personal mobility

as summarized in Table 12.2.5 Furthermore, sociocultural and economic
inequities contribute significantly to premature death and diseases, partic-

5
Based in part on Henry, 2021; Magnan, 2017; Islam, 2019; Solar and Irwin, 2010.
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ularly among vulnerable groups, such as the elderly, disabled, women, and
children.

Bias in the healthcare domain
Growing evidence demonstrates the impact of bias on the accessibility,

provisioning, and research of healthcare that reflects the social inequalities
and inequities inherent in the delivery of healthcare. It is not uncommon,
for example, to overlook differential effects and outcomes relative to gender
and minority status in clinical research (Kannan et al., 2019). Accordingly,
there is an increasing need to analyze and assess deficiencies in the per-
formance of AI models (data and algorithms) in healthcare along the same
lines (McCradden et al., 2020). Bias is systemic, long-established, and per-
vasive and may include, in addition to algorithmic bias, such data biases
as historical bias, representation bias, measurement bias, evaluation bias,
aggregation bias, population bias, sampling bias, cross-platform behavioral
bias, presentation and ranking biases, cause-effect bias (mistaking correla-
tion for cause and effect), observer bias, and so on (Mehrabi et al., 2019).

Arguably, current medical epistemes tend to reflect automation bias,
an excessive, de rigueur reliance on ICT-based automation (Gianfrancesco
et al., 2018; Goddard et al., 2012). For example, it was expected that AI-
based automation would provide medical solutions during the COVID-
19 pandemic. However, the dissemination of rapidly developed models
that reflected and exacerbated cultural, data model, and algorithmic bi-
ases may have adversely affected existing health disparities (Röösli et al.,
2021). Although efforts have been made to address epistemic cultural and
AI-specific technological biases in model building and algorithm develop-
ment, the challenge remains to prevent adaptive models becoming biased
over time. This is the case even for those that incorporate hypothetically
fair algorithms, by the creation of feedback loops that reinforce and perpet-
uate existing biases over time. For example, an algorithm to predict patient
mortality or an individual response to treatments could “learn” from exist-
ing socioeconomic, racial, and ethnic disparities in care and predict worse
treatments for those patients.

In addition, the interactions of AI agents in IoT environments can dis-
seminate implicit and explicit biases among those agents. Medical AI
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agents may perpetuate implicit and explicit privilege-based biases that
disproportionately benefits individuals from groups who are already priv-
ileged over individuals from lesser-privileged groups. Also, even hypothet-
ically fair AI agents can only promote those courses of action that they
are intended to promote, which is intentional bias (DeCamp and Lindvall,
2020). As another example, phenotyping using EHRs could benefit from an
increasing focus on fidelity, both in the sense of increasing richness, such
as measured levels, degree or severity, timing, probability, or conceptual re-
lationships, and in the sense of reducing bias (Hripcsak and Albers, 2018).

Disparities in the healthcare domain
There are sociocultural and socioeconomic issues that cannot be ad-

dressed effectively by information and communication technologies alone,
increasing the need to address disparities in healthcare access, delivery,
and informatics (Veinot et al., 2019). The internet provides the technologi-
cal foundations for portals, telemedicine and telehealth operations, SaMD,
SiMD, and other IoT agents that are the means to address the healthcare
inequities that afflict indigent, underserved, and underrepresented com-
munities. However, there are limitations and costs associated with the use
of related technologies to address healthcare disparities. Telemedicine, for
example, provides not only a means to address socioeconomic and cultural
disparities, but also a means to address geospatial proximity, transportation
availability, and demographic density issues. Accordingly, telemedicine ser-
vices, such as portals, are useful for scheduling and coordinating care; for
recording personal measurements such as diet, food intake, bodily mea-
surements; and for monitoring home care patients. However, there are also
costs associated with such services. For example, there may be security
and unreliable connectivity problems. Moreover, not all diagnoses can be
done virtually; office visits may still be necessary. Furthermore, healthcare
in the US is a market-based commodity. As such, not all telemedicine ser-
vices are covered by healthcare insurance companies, and both patients
and providers must bear the out-of-pocket costs. Also, indigent patients
and small medical practices may not have the means necessary to acquire
reliable internet connectivity, equipment, and telemedicine products and
services. Frequently, there are indirect costs and overhead associated with
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telemedicine, and healthcare providers must also bear the administrative
costs of the healthcare services that they provide.

Regardless of levels of sophistication, AI-facilitated transaction process-
ing operations, data collection paradigms, and heuristic algorithms per sé
cannot address the healthcare disparities that afflict indigent, underserved,
and underrepresented communities. AI assurance in this regard requires
the sustained, conscientious efforts of relevant designers, developers, and
implementors to incorporate human ethics, such as fairness, equity, equal-
ity, nondiscrimination, autonomy, and transparency into their designs, ser-
vices, and products that operate in the infosphere.

AI-facilitated medicine can ameliorate as well as exacerbate health-
care access and delivery disparities. A survey of patient participation
in telemedicine during the COVID-19 pandemic, for example, identified
racial/ethnic, sex, age, language, and socioeconomic differences in access-
ing telemedicine for primary care and specialty ambulatory care. If not
addressed, such differences may increase existing inequities in care among
vulnerable populations (Eberly et al., 2020). Healthcare disparities may oc-
cur as broader social features, such as shared distrust of digital devices
or of the medical community. Health and healthcare disparities also may
reflect patients’ inability to pay for healthcare, regardless of the how it is
delivered (Ramsetty and Adams, 2020; Valdez et al., 2021). In a 2011–2017
study, for example, the US Veterans Health Administration used adminis-
trative data entered via a special portal (My Healthy Vet) to analyze PHRs
and to examine demographic characteristics and racial/ethnic differences
in portal registration and tool use among veterans with HIV. The data in-
dicated that racial minorities may have been less likely to use PHRs for
various reasons, including privacy concerns, lower education levels, and
limited internet access (Javier et al., 2019). Analyses of information carried
by social media indicate effectiveness in reducing mental health dispari-
ties for some marginalized population. For example, as have other groups,
some transgender patients have been found to use social media for build-
ing community and creating fora for discussions and sharing information.
(Grossman et al., 2019; Haimson, 2019).



Chapter 12 • Panopticon implications of ethical AI 445

12.6 Conclusion
The growth of predictive data analytics and the simultaneous growth in
the availability of interoperable AI-enabled devices offer opportunities to
mitigate healthcare disparities currently endemic in indigent, underrepre-
sented, and underserved communities. However, use of these devices can
exacerbate inequities as well as ameliorate them. Thus a variety of policy
imperatives can be identified relative to ethical AI. For example, to govern
the infosphere, the European Union Commission on AI has recommended
seven basic regulatory requirements (Terry, 2019, p. 38): 1) human agency
and oversight, 2) technical robustness and oversight, 3) privacy and data
governance, 4) transparency, 5) diversity, nondiscrimination and fairness,
6) environmental and social well-being, and 7) accountability.

However, the development of the infosphere in the US is essentially left
in the private commercial sector of the economy, and healthcare in the US
is a market-based commodity, acquired and traded in a third-party payer
system. Government agencies have limited powers to control and man-
age the acquisition and distribution of healthcare. Nevertheless, national,
state, and local governments can employ AI assurance measures and for-
mulate policies and implement programs that address the healthcare needs
of specified communities. To make healthcare more available to rural com-
munities, for example, the governments can work together to expand the
national electric grid and develop a high-speed internet infrastructure to
facilitate the distribution of telemedicine and the dissemination of health
information. In addition, US national and state governments can promote
access to affordable health insurance coverage available under the Afford-
able Care Act by increasing the number of health information exchanges
and by expanding enrollment periods and eligibility in Medicare and Med-
icaid programs, by increasing enrollments in programs such as the Chil-
dren’s Health Insurance Program, by increasing tax credits to help reduce
healthcare costs among vulnerable populations, and by developing policies
and programs to control and lower drug costs. In addition, governments
can create participatory multimedia campaigns to curb the spread of misin-
formation and to overcome, for example, cultural, racial, ethnic, language,
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age, and disability barriers to access and participation in healthcare as it
affects individual and societal wellbeing.

By themselves, human and AI agents operating in an IoT-sustained in-
fosphere cannot solve the multiple forms of marginalization that affect
the health and wellbeing of particular communities. They require actively
engaged and empathetic governance to address complex socioeconomic
issues and solve complex accessibility and distribution problems. In collab-
orative environments, where healthcare provision depends on the synergy
of human and AI actors, AI assurance and regulatory models must not only
address the ethical conduct of medical practitioners, but also the profes-
sional conduct of informaticists, software developers, and device vendors.
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Abstract

In the last few decades, uncertainty quantification (UQ) methods have been used
widely to ensure the robustness of engineering designs. This chapter aims to
detail recent advances in popular uncertainty quantification methods used in
engineering applications. This chapter describes the two most popular meta-
modeling methods for uncertainty quantification suitable for engineering ap-
plications: polynomial chaos method and Gaussian process. Furthermore, the
UQ methods are applied to an engineering test problem under multiple uncer-
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tainties. The test problem considered here is a supersonic nozzle under opera-
tional uncertainties. For the deterministic solution, an open-source computa-
tional fluid dynamics (CFD) solver SU2 is used. The UQ methods are developed
in Matlab® and are further combined with SU2 for the uncertainty and sen-
sitivity estimates. The results are presented in terms of the mean and standard
deviation of the output quantities.

Keywords

Uncertainty quantification, polynomial chaos, reliable design, sensitivity anal-
ysis, Kriging, Gaussian Process

Highlights

• The chapter updates recent advances in popular uncertainty quantification methods

used in engineering applications

• This chapter highlights specific application of supersonic nozzle

• Use of uncertainty quantification in a high dimensional test case is presented

• Efficient approach based on combining polynomial chaos and Kriging is used

• UQ methods are combined with CFD solver SU2 for statistical analysis

• Stochastic results are discussed in terms of mean and standard deviation

13.1 Introduction
In industrial applications, during the operation of engineering devices, sev-
eral properties and parameters of the components change with time. The
material properties of its components vary continuously due to several op-
erational factors. The failure point information of the weak components in
an industrial application is very useful. The safety of the engineering device
under consideration should always be of utmost concern for the manu-
facturers while designing the device. Using statistical information, the de-
signer can evaluate the safety margin or make the failure design margin
smaller than other components so that the impact of the weak component
can be minimized. With advancements in computer hardware and numeri-
cal algorithms, computational tools are used to design advanced and high-
performance engineering components in almost all engineering fields. For
example, aircraft, high-speed car manufacturers, sports, naval ship design-
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ers, etc., use computational fluid dynamics (CFD) to simulate fluids over
the device. These computational tools are also used for thermal and struc-
tural analysis to simulate and detect faults, cracks, and failure of the devices
by almost all industries.

Uncertainties are an inherent part of the computing systems concern-
ing real-world applications (Oberkampf and Trucano, 2002; Roy and Ober-
kampf, 2011; Beyer and Sendhoff, 2007; Schuëller and Jensen, 2008; Wiener,
1938; Xiu and Karniadakis, 2002; Smith, 2013; Kumar et al., 2021a, 2020b;
Kabir et al., 2021b,a, 2020; Kumar et al., 2021b, 2020a, 2019). Two physical
experiments can never produce the same results, as several of the system
parameters are not known properly and have uncertainties. When the same
system is modeled using computational tools and mathematical equations,
the input and system parameters are provided with constant values to pre-
dict the results without dealing with the uncertainties in the input param-
eters. Almost all aspects of engineering modeling and design are affected
by these uncertainties. Engineers and researchers have always encountered
issues related to uncertainties in terms of design reliability and robust-
ness. By understanding sources of uncertainties and quantifying them, one
can estimate confidence in the system outputs. In mathematical modeling,
uncertainties are usually encountered in initial conditions, boundary con-
ditions, material properties, weather conditions, and manufacturing toler-
ances.

Uncertainty quantification (UQ) is the field of detecting, describing,
quantifying, and managing uncertainties in computational designs of real-
world systems. In UQ, the system response is estimated in a stochastic way
by combining the deterministic solver with statistical tools. UQ methods
are statistical tools to assess safety margins in the system responses when
computer simulations are used to design an engineering device. UQ meth-
ods address the problems associated with incorporating system parameters
variability and stochastic behavior into systems analyses. Computer simu-
lations answer what happens when the system under consideration is sub-
jected to a set of input parameters. However, UQ expands this question and
answers what will happen when the system is subjected to a range of vari-
ability in the input parameters. UQ combines mathematics, statistics, and
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engineering. Generally speaking, UQ methods predominantly treat the sys-
tem to be studied as a closed system (like a black box), and an extensive
understanding of the system’s inner functioning is not required. The UQ
methods only need information about the input parameters of the model
and model responses to estimate probabilistic model responses. In the re-
cent past, uncertainty quantification and management are considered as
significant elements in risk management (the system can fail or be dam-
aged if it does not meet the design targets) of industrial designs (Oberkampf
and Trucano, 2002; Hirsch et al., 2018).

Due to the non-intrusive nature of UQ methods, these methods can be
adopted easily by researchers and industries from a wide range of engineer-
ing, industrial and financial sectors to achieve the following:

• Understand the uncertainties inherent in the system.
• Predict system responses concerning uncertain inputs.
• Quantify confidence in the system responses.
• Find optimal responses concerning a wide range of inputs.
• Reduce unexpected system failures.
• Implement probabilistic modeling and design processes.
• Predict parametric sensitivity on the model responses.

With increasing computational power and simulation techniques, it be-
came possible to make accurate predictions of real-world systems. Now
the challenges in engineering designs are moved toward predicting system
behaviors with respect to uncertainties efficiently. Traditional UQ meth-
ods based on Monte Carlo (Hammersley, 2013; Rubinstein and Kroese,
2016) usually need a large number of system evaluations. So these meth-
ods are restricted to simplified test cases and for research purposes only.
Monte Carlo methods are sampling-based methods, and the convergence
rate is very slow. In general, large samples (at least 104) are needed to
predict statistical quantities accurately. Alternatively, the literature pro-
poses several sampling schemes, such as Latin hypercube, sparse sampling,
clustered sampling, and stratified sampling to accelerate the convergence.
However, Monte Carlo methods have not gained massive popularity due
to their expensive computational cost. For large-scale problems and real-
world engineering applications, more recent methods based on machine
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learning approaches, such as polynomial chaos method (PCM) (Xiu and
Karniadakis, 2002; Najm, 2009; Hosder et al., 2007; Ghanem et al., 2017),
Gaussian process (or Kriging) (Quinonero-Candela and Rasmussen, 2005;
Bastos and O’Hagan, 2009), support vector machine (SVM) (Awad and
Khanna, 2015; Smola and Schölkopf, 2004), polynomial-chaos-Kriging (or
PC-Kriging) (Schobi et al., 2015; Wang et al., 2019) are proposed in litera-
ture and are applied to several diverse applications. Polynomial chaos and
Gaussian process models are seen as leading approaches for stochastic and
robustness analyses of very complex engineering applications. PC-Kriging
is a result of combining polynomial chaos and Kriging methods. These ap-
proaches are discussed in detail and are applied to an engineering applica-
tion in the sections that follow.

To understand the potential influence of input parameters on system
outputs, the sensitivity analysis (SA) method is used (Saltelli, 2002; Su-
dret, 2008). Various methods for global sensitivity analysis, such as linear
regression and variance-based analysis are discussed for sensitivity esti-
mation. A standard method of estimating system responses is using Sobol’
indices-based global sensitivity analyses. Various meta-modeling methods
can compute Sobol indexes, including Monte Carlo, graphical models, Krig-
ing, and support vector machine approaches. In recent years, surrogate
models that calculate Sobol’ indices have gained considerable attention.
The first step in this approach is to construct a surrogate model using the
design of experiments (DOE). Furthermore, this surrogate model is used
to estimate many model responses to compute Sobol’ indices. Computing
model responses from surrogate models are also called data-driven ap-
proaches, as several combinations of input parameters are used to explore
a wide range of input domains.

13.2 Polynomial chaos method for UQ
In 1938, Wiener proposed the polynomial chaos method for dealing with
Gaussian distributed uncertainties (Wiener, 1938). Xiu and Karniadakis
(Xiu and Karniadakis, 2002) demonstrated the ability to use it with any
probability distribution in a detailed analysis. In the last few years, the gen-
eralized method has been used in a variety of engineering applications,
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including computational fluid dynamics, heat transfer, nuclear reactor de-
sign, and structural analysis (Kumar et al., 2020c). Because adding uncer-
tainties increases the computation required to quantify them, early appli-
cations dealt with a limited number of uncertainties. With increasing un-
certainties, the number of simulations required to quantify the uncertainty
grows exponentially using the polynomial chaos method. This is referred to
as the dimensionality curse. Numerous improvements have been proposed
in literature (Blatman and Sudret, 2011; Liu et al., 2020; Hosder et al., 2007;
Kumar et al., 2016; Aremu et al., 2020; Liu and Bellet, 2019) to cope with the
curse of dimension and move the UQ process forward. Several researchers
also proposed model reduction algorithms (based on principal component
analysis) to accelerate the polynomial chaos method.

Numerous applications have used model reduction approaches. How-
ever, these approaches mainly were two-step processes and usually were
applied in semi-intrusive ways. Thus they were not very straightforward
to use for engineering applications where the models can be used as a
black-box. Several researchers proposed the idea of sparse sampling. Us-
ing sparse sampling schemes (such as Fejer, Clenshaw–Curtis, Conrod–
Patterson), the number of simulations can be reduced to achieve the same
accuracy as classical polynomial chaos. Blatman and Sudret proposed a
theory of sparse polynomial chaos, based on least angle regression in their
paper (Blatman and Sudret, 2011; Bourinet, 2018). Based on its principle,
this method used a maximum number of polynomial order approximations
for a given number of samples and a sparse polynomial chaos expansion
(PCE) for a given system response (Kumar et al., 2020c, 2021a,b, 2020b,
2016). Several other researchers also proposed the more or less similar idea
of sparse polynomial chaos using different error minimizing schemes. Re-
cently, numerous applications have seen the sparse polynomial chaos ap-
proach due to its straightforward usage and faster convergence capability.
In this section, some fundamental concepts for the polynomial chaos ap-
proach are described (Ghanem et al., 2017). It is relevant to note that the
lead author developed this method, and the descriptions have been re-
ported in different studies (Kumar et al., 2020c, 2021a,b, 2020b, 2016) for
a range of engineering applications.
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Based on a set of orthogonal polynomial basis functions, we can write a
stochastic model response for a system under uncertainty as follows:

Y = M(ξ) =
∑
b∈Nn

abψb(ξ), (13.1)

where ψb is an orthogonal polynomial for multidimensional dimensions,
b = b1 . . . bn represents an index, and the terms ab are called polynomial co-
efficients. A PCE is given by Eq. (13.1). A system of n-dimensional input un-
certainties is represented by ξ in the above equation. From a set of orthog-
onal one-dimensional polynomials, we construct the multi-dimensional
polynomials ψb as follows (Kumar et al., 2016):

ψb(ξ) = ψb1...bn
(ξ) =

n∏
i=1

ψbi
(ξi), (13.2)

where bi is the order of the polynomial expansion for the random variable
ξi .

Extended polynomial expansions usually truncate to a finite number
of terms, because higher-order terms are not significant in the system re-
sponse after a few terms. We truncate PCE into the following to achieve the
following degree |b| = ∑n

i=1 bi within a given order p (Du, 2019):

Y � Mp(ξ) =
∑

b∈Ap,n

abψb(ξ), Ap,n = {b ∈N

n : |b| ≤ p}. (13.3)

The total number of terms, P (basis functions), equals (n+p)!
n!p! when the

number of input uncertainties is n and the highest order of polynomial in
PCE is p. Polynomial coefficients can be calculated based on the PCE or-
der and solution samples (system responses using a deterministic solver as
black box). One can compute and construct the PCE of a stochastic output.
In the PCE, the first term (the zeroth-order term) represents the stochastic
response’s mean. In addition, one can also compute higher-order statistical
moments numerically by using these polynomial coefficients. Computing
polynomial coefficients can be done using numerical methods, such as col-
location and regression (Kumar et al., 2016).
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Once we calculate polynomial coefficients, the mean E(Y ) and variance
V (Y ) of the system output Y can be computed easily as below:

E(Y ) = a0;V (Y ) =
P∑

i=1

a2
i ψ

2
i , (13.4)

where the coefficients ai and ψi are the same as they were defined earlier.

13.3 Gaussian Process or Kriging for UQ
Kriging, also known as Gaussian process modeling, is a statistical method
for approximating various functions and computer experiments using
Gaussian processes. Kriging is also used as a surrogate model to estab-
lish a link between the inputs and outputs of expensive computational
models (Zhang and Apley, 2016). The Gaussian process has been used for
several machine learning applications related to regression and classifi-
cation in the last few decades. Krige first developed Kriging method for
geostatistical applications in 1951. In addition, it was used in metamod-
eling and data-driven modeling for numerous applications with noisy data.
The model is known as Kriging (after Krige in geostatistics). Using Gaus-
sian processes, Tarantola and Valette designed a Bayesian formulation for
inverse problems in geophysics (Tarantola et al., 1982). Based on the work
of Williams, Neal, and Rasmussen, the model was proposed to solve regres-
sion problems in statistics (O’Hagan, 1978; Hinton et al., 1995; Williams
and Rasmussen, 1996) and gained popularity. (Hinton et al., 1995; Williams
and Rasmussen, 1996; Gibbs and MacKay, 1997) provides the Bayesian in-
terpretation and detailed description of the model. Machine learning was
introduced to Gaussian process in the nineties. As a result of a detailed
comparison by Rasmussen (Hinton et al., 1995; Williams and Rasmussen,
1996) of the GP with the most widely used models, the GP started be-
coming very popular. He showed that GP approaches outperformed other
approaches in the vast majority of cases. Using the maximum-likelihood
estimation method (MLE), the GP model’s learning process involves tun-
ing the covariance parameters to the data. To obtain the prediction and
the degree of uncertainty associated with it, given a new input and con-
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ditioned on previous observations, one can easily calculate the mean and
variance of the predictive distribution. By using the definition of condi-
tional probabilities, we can easily obtain Gaussian distribution based on
the GP assumption (Girard, 2004).

The output response of the model M , according to Kriging, is the real-
ization of a Gaussian process. Kriging metamodel MK(x) of the true model
M(x) can be described as

MK(x) = βT f (x) + σ 2Z(x,ω), (13.5)

where βT f (x) is the mean of the Gaussian process, σ 2 is the variance of the
process, and Z(x,ω) is a stationary Gaussian process with a zero mean and
unit variance (Du, 2019). The underlying probability space (ω) is defined
in terms of a correlation function R(x1, x2; θ) that describes the correlation
between two sample points in the output space x1 and x2, as well as the
hyperparameters θ .

If y = y1, y2, y3, ..., yN are the outputs of the true model M(x) at sampling
points x = x1, x2, x3, ..., xN , the model prediction MK(x) at a new point x can
be estimated using Kriging metamodeling. The gaussian process metamod-
eling prediction is based on the fact that the prediction y′ at the new point x

and the responses from the true model y make a joint Gaussian distribution
as: {

y′
y

}
= NN+1

({
f T (x)β

Fβ

}
, σ 2

{
r(x)T r(x)

R

})
. (13.6)

In the above equation, F is the observation matrix with entries fj (xi) for
i = 1,2,3, ...,N and j = 1,2,3, ...,P , where fj (xi) are arbitrary functions at
observation points xi , and β are regression coefficients. The vector r(x) is
the cross correlations between the new point x and the known points xi as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r1

r2

r3

.

.

rN

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R(x, x1, θ)

R(x, x2, θ)

R(x, x3, θ)

.

.

R(x, xN, θ)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (13.7)
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where R is the correlation matrix at the known points xi and can be written
as

Rij = R(xi, xj ; θ), (13.8)

where i, j = 1,2,3, ...,N , or

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R(x1, x1, θ) R(x1, x2, θ) . . . R(x1, xN, θ)

R(x2, x1, θ) R(x2, x2, θ) . . . R(x2, xN, θ)

R(x3, x1, θ) R(x3, x2, θ) . . . R(x3, xN, θ)

. . . . . .

. . . . . .

R(xN, x1, θ) R(xN,x2, θ) . . . R(xN, xN, θ)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (13.9)

Using the conditional distribution properties of the multivariate normal,
the mean and the variance of the predictor can be written as

E{y′|y} = f T β + rT R−1(y − Fβ), (13.10)

σ 2
y = σ 2(1 − rT R−1r + uT (F T R−1F)−1u), (13.11)

where the regression coefficients β and the term u are defined as

β = (F T R−1F)−1FT R−1y, (13.12)

u = FT R−1r − f. (13.13)

13.4 Polynomial chaos Kriging for UQ
Kriging interpolates local variations in the system response Y as a function
of the neighboring design points, whereas PCE closely approximates the
regional behavior of Y (Amini et al., 2021). It is possible to obtain more accu-
rate PC-Kriging metamodels by combining local and global approximation
techniques. In PC-Kriging, there is an array of orthonormal polynomials
that represent the trend and which are defined as follows:

MPCK(x) =
∑

b∈Ap,n

abψb(ξ) + σ 2Z(x,ω), (13.14)
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FIGURE 13.1 CD nozzle.

where ψb are multivariate orthogonal polynomials concerning the input
distributions, and ab are the corresponding coefficients.

13.5 Uncertainty quantification of a supersonic nozzle
The UQ is crucial for assuring the results produced by mathematical mod-
eling in engineering applications. The standard deviation or variance can
be considered a safety bound or a confidence interval around the mean
values. Hence, we apply the methods discussed in the previous sections to
an engineering application in this section. We analyze the non-ideal super-
sonic compressible flow within a 2D converging-diverging nozzle shown
in Fig. 13.1 (Guardone, 2021). The nozzle is 0.123 m long, with a throat
height of 0.0084 m and an inlet height of 0.036 m (Guardone, 2021). This is
a test case provided in SU2 for deterministic CFD simulations (Guardone,
2021). It has a simple geometry, where the flow accelerates from subsonic
to supersonic speeds. It can be used to investigate compressible flows,
where simple ideal gas laws are not enough to describe thermodynamic
behavior properly. To determine the performance of the nozzle over a wide
range of inlet conditions, CFD simulations are first used to confirm its per-
formance. Then further CFD simulations are combined with uncertainty
quantification methods. Additionally, the uncertainty bounds for the noz-
zle performance in terms of pressure and Mach number, flow density, and
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Table 13.1 Flow conditions for C-D Noz-
zle CFD simulation.
Parameters Values
Working fluid Octamethyltrisiloxane

Inlet pressure 904,388 Pa

Inlet temperature 542.13 K

Turbulence model SST

Gamma value 1.01767

Gas constant 35.17

Critical temperature 565.3609

Critical pressure 1,437,500

μ 1.21409E-05

KT 0.030542828

temperature fields along the centerline are evaluated with respect to input

uncertainties. They are shown with mean and standard deviation values.

13.5.1 Test case description

Octamethyltrisiloxane (MDM), a pressure-sensitive fluid, is used as a work-

ing fluid for analyzing non-ideal supersonic compressible flow inside a

converging-diverging (CD) nozzle. Table 13.1 presents details about the

properties of fluid and flow conditions. This configuration results in a to-

tal exhaust pressure ratio of 3.125, which results in a supersonic outflow at

Mach number 1.5 (Guardone, 2021). The static pressure applied to the test

case’s outlet is 200,000 Pa. The computational domain and mesh are de-

picted in Fig. 13.2. The mesh is composed of 3540 quadrilateral elements

and 3660 nodes (Guardone, 2021). At the inlet and outlet boundaries, Rie-

mann boundary conditions based on characteristics are used. Symmetry

boundary conditions define symmetry boundaries. By mirroring the flow

around the x-axis, the mesh size is reduced, along with the computational

cost. On the boundary of a wall, Navier–Stokes adiabatic wall conditions are

applied.



Chapter 13 • Recent advances in uncertainty quantification methods 465

FIGURE 13.2 Computational domain and mesh.

13.5.2 Deterministic results

For deterministic simulations, the SU2 solver is run at the fixed bound-
ary conditions, flow conditions, and fluid properties as described earlier.
The total number of iteration was given 1000 so that all solutions and
residuals are converged nicely. We post-process the data with Paraview (a
multi-platform, open-source data analysis and visualization application).
See Fig. 13.3. In Fig. 13.4, solution fields for pressure, temperature, Mach
number, and flow density are exhibited for the whole computational do-
main. Furthermore, these quantities are also shown at the centerline of the
nozzle for better understanding and analysis. At the inlet of the nozzle, pres-
sure, temperature, and density of the fluid are at their maximum, and then
at their minimum near the outlet. In an inlet, the Mach number can be
viewed as a minimum, and at the exit, the Mach number reaches a maxi-
mum value.

13.5.3 Description of uncertainties

For the uncertainty analysis, seven input parameters; two from boundary
values (inlet temperature and inlet pressure), three from gas properties
(specific heat ratio γ , gas constant R and acentric factor ω), and two from
the viscosity model (molecular viscosity μ and molecular thermal conduc-
tivity KT ) are considered as uncertain. All parameters are considered uni-
formly distributed. The inlet pressure and acentric factor are assumed to
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FIGURE 13.3 Numerical results (provided serially in vertical format): pressure, temperature,
Mach, and density fields.
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FIGURE 13.4 Computational results: pressure, temperature, Mach number and fluid density
at the centerline of the nozzle).

Table 13.2 Input uncertainties for CFD simulations.
Parameters Values Uncertainties (%) Minimum Maximum
Inlet pressure (Pa) 904,388 5 859,168 949,607

Inlet temperature (K) 542.13 1 536.71 547.55

Gamma value 1.01767 1 1.00749 1.02785

Gas constant 35.17 2 34.47 35.87

μ 1.21409E-05 2 1.18981 1.23837

KT 0.030542828 2 0.029931971 0.031153684

Acentric factor (ω) 0.524 5 0.498 0.550

have 5% variability from the mean value. Gas constant, molecular viscos-

ity, and molecular thermal conductivity are assumed to vary 2% from their

mean values. Minor uncertainties of 1% from their mean values are given

to the inlet temperature and Gamma values. All the mean values for these

parameters, their uncertainties, and their ranges of variability are described

in Table 13.2.
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FIGURE 13.5 Solution samples for pressure, temperature, Mach number and fluid density
at the centerline of the nozzle).

13.5.4 Uncertainty analysis

As described in the previous section, the PC-Kriging method is used here
to estimate the combined impact of all input uncertainties on the system
responses of the CD nozzle. Usually, in the regression-based polynomial
chaos method, a total of 240 CFD samples (for PC order 3 and 7 input un-
certainties) will be required to estimate the statistical quantities (mean and
standard deviance) of the output accurately (see (Kumar et al., 2016)). Here
to construct the PC-Kriging-based surrogate model, only 100 CFD simula-
tions are used. For input parameters, 100 designs of experiments are con-
structed using the Sobol sequence-based sampling technique. In Fig. 13.5,
the CFD solutions for pressure, temperature, Mach number, and fluid den-
sity along the nozzle centerline are shown for all 100 samples. It can be
seen that pressure and Mach number are not varying much with the input
uncertainties. However, minor variations can be seen in density with the
input variations. The most significant variations can be seen for the tem-
perature field. In Fig. 13.6, the mean and standard deviation are shown for
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FIGURE 13.6 Mean and standard deviation for pressure, temperature, Mach number and
fluid density at the centerline of the nozzle).

all these quantities. These values are calculated from the PC-Kriging-based
surrogate model. The mean values behavior is similar to the deterministic
solutions. For pressure, temperature, and Mach number, the standard de-
viation values are higher at the outlet. That means the highest fluctuations
are at the nozzle outlet. However, the standard deviation for fluid density is
seen lower at the nozzle outlet.

It is also important to highlight that this developed uncertainty method
can be applied to other domains such as nuclear engineering in terms of
safety assessment of advanced reactor system (Kumar et al., 2021a). In addi-
tion, the authors also utilized this methodology to understand and evaluate
the uncertainties in composite materials (Kumar et al., 2021b).

13.6 Conclusions

In this work, first, we describe the two most popular meta-modeling meth-
ods (Polynomial Chaos and Kriging methods) suitable for uncertainty
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quantification in engineering applications. Furthermore, to increase the
efficiency, the polynomial chaos and Kriging methods are combined and
used for an engineering test problem under multiple uncertainties. A 2D su-
personic converging-diverging nozzle is considered for the analysis where
the multi-physics CFD solver SU2 is used for deterministic solutions. The
UQ methods (polynomial chaos, Kriging, and PC-Kriging) are developed in
Matlab® and are further combined with SU2 for uncertainty quantification.
The standard deviation can be considered as a safety bound or a confidence
interval around the mean values. Hence, for assurance in making crucial
decisions, the results are discussed in terms of the mean and standard de-
viation of the output quantities, i.e., pressure, temperature, Mach number,
and fluid density.

Future work will focus on its application in multiscale modeling of com-
posite accident-tolerant nuclear fuels with Sic/Sic claddings for small mod-
ular reactor (SMR) applications.
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to precision agriculture (PA). PA is the practice of mapping out precise input ap-
plication to maximize the yield. To do this, ATPs collect input and output data
from farmers and use Artificial Intelligence and machine learning to build pre-
scription maps, which farmers can program farm equipment to follow. The use
of PA has allowed farmers to use less resources, which saves money and reduces
environmental impact. However, technology is a two-sided coin, benefiting both
end-users, the farmers, and ATPs differently. In agriculture, power asymmetry
has been cited as a critical issue existing between farmers and ATPs,and this im-
pacts farmers negatively. For farmers to deploy and have more control over data
decision-making on their farms, AI assurance methods need to be integrated into
their technologies. There are currently a few studies on this subject in agricul-
ture, but many do not involve agricultural end-users or fall short of meeting
the needs of the end-users. If end-users and policymakers are not able to un-
derstand how their data is collected and used in the agricultural AI models, they
will not be able to make educated decisions about their work. This chapter pro-
poses solutions to benefit all agricultural end-users, including prompting the use
of participatory design and adopting more user-centered principles when inte-
grating AI assurance models into agricultural technologies.

Keywords

Precision agriculture, explainable AI, public policy, user-centered design

Highlights

• Currently, there are less than 10 studies of AI assurance in agriculture. Of these

studies, few test their systems with agricultural experts; none test their systems with

agricultural workers

• This is significant, because as agriculture becomes more automated and

technologically advanced, the end users who need to understand the “black box”

of AI system are overwhelmingly not ML experts

• Having this “black box” makes it difficult for agricultural workers to trust AI systems

and makes it difficult for policymakers to protect the interests of agricultural

stakeholders

• This chapter proposes several recommendations for more accessible XAI agricultural

systems, including utilizing participatory design, designing for different end users,

and having programmers be transparent and upfront about data use and privacy



Chapter 14 • Socially responsible AI assurance in PA 475

14.1 Introduction
As one solution to feeding a growing population with finite resources, some
farmers, researchers, and agricultural technology providers (ATPs) have
turned to Precision Agriculture (PA) (Chaterji et al., 2020; Ryan, 2019). PA
is the practice of mapping out precise input application to maximize the
yield. Industrial agricultural fields can range from 50 hectares (ha) to over
1000 ha in size, which means the characteristics of the soil can vary widely
from one side to the other, and what you put into the field (fertilizer, wa-
ter, fungicide, etc.) affects the output (yields) differently, depending on the
characteristics of the soil and the environment (FAO, 2014; Riquelme et al.,
2009). It is important for farmers to accurately identify what the needs of
the field needs of for better management, which can result in the reduction
of input waste and increased profit margins. While traditional agriculture
has the farmer apply the same amount of input (fertilizer, water, macro-
nutrients, pesticide, fungicide, etc.) to the entire field, which can lead to
areas in the field receiving too much or too little, precision agriculture uses
techniques to identify what the specific needs are in each area for targeted
application, thus reducing the overall amount of the input used, saving re-
sources, and reducing environmental impact (Santos et al., 2014). The PA
cycle is depicted in Fig. 14.1.

In the PA cycle, the first step is to acquire data such as soil characteristics,
weather conditions, or disease and pest information. These measurements
can be done with remote sensing using active or passive sensors or more
invasive techniques by soil sensors or taking samples into the lab. Often
this data must be coupled with locational data, which will aid in the cre-
ation of a prescription map described in the third step. The second step is to
process the data. There is vast research in this area of precision agriculture
using big data analysis techniques. Much of this analysis is completed us-
ing statistical techniques or application software. The third step is to create
a prescription from the analyzed data. This prescription dictates how much
of an input should be applied in a specific location. This is usually in the
form of a prescription map that is compatible with the applicator devices.
In the fourth step, the map is integrated into the applicator devices, such as
irrigation devices or fungicide applicators, which can follow the directions
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FIGURE 14.1 Flow chart of the precision agricultural process, including researchers imple-
menting the PA process in an apple orchard in Gunwi, Republic of Korea, July 16, 2015.
Courtesy of Brianna Posadas.

and vary the amount of input applied throughout the field. Once the appli-
cation is complete, the precision agricultural process can begin again. The
repetition of the cycle will depend on the input. For example, for irrigation
the cycle will be repeated on a weekly or daily basis (Ess and Deere, 2003).

14.1.1 AI in agriculture

Machine learning algorithms have been used in a wide range of precision
agricultural applications from yield prediction, disease detection, weed de-
tection, crop quality, species recognition, animal welfare, livestock produc-
tion, water management, and soil management (Liakos et al., 2018). Exam-
ples of the data types found on a farm are depicted in Fig. 14.2. Amatya
et al. used colored digital images of leaves, branches, and the cherry fruits
to detect cherry branches with full foliage using Bayesian models (BM)/
Gaussian naive Bayes (GNB) with 89.6% accuracy (Amatya et al., 2016).
Moshou et al. used spectral reflectance features to detect yellow rust in-
fected and healthy winter wheat canopies using artificial neural networks
(ANN)/multi-layer perceptron (MLP); they were able to detect yellow rust



Chapter 14 • Socially responsible AI assurance in PA 477

FIGURE 14.2 Different types of data found on a farm.

infected wheat with 99.4% accuracy and healthy wheat with 98.9% accuracy
(Moshou et al., 2004). Pantazi used spectral bands of red, green, and NIR
and texture layer to detect and map Silybum marianum using ANN/counter
propagation (CP) with 98.87% accuracy (Pantazi et al., 2017). Maione et
al. used twenty chemical components found in rice samples with an in-
ductively coupled plasma mass spectrometer to predict and classify the
geographical origin of a rice sample using ensemble learning (EL)/random
forest (RF) with 93.83% accuracy (Maione et al., 2016). Grinblat et al. used
vein leaf images of white beans, red beans, and soybean to identify and clas-
sify the 3 different species using deep learning (DL)/convolutional neural
network (CNN) with over 90% accuracy (Grinblat et al., 2016). Dutta et al.
used EL/bagging with tree learner to classify cattle behavior with 96% accu-
racy (Dutta et al., 2015). Hansen et al. used deep neural networks (DNN) for
pig face recognition with 96.7% accuracy (Hansen et al., 2018). Mohammadi
et al. used average air temperature, relative humidity, atmospheric pres-
sure, vapor pressure, and horizontal global solar radiation to predict daily
dew point temperature using ANN/extreme learning machine (ELM) with
over 98% accuracy (Mohammadi et al., 2015). Coopersmith et al. used pre-
cipitation and potential evapotranspiration data to evaluate soil drying for
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agricultural planning using instance-based models (IBM)/k-nearest neigh-
bor (KNN) and ANN/BP with 91–94% accuracy (Coopersmith et al., 2014).

14.1.2 Big data in agriculture

To implement the machine learning algorithms for precision agriculture
on a larger, industrial scale, agricultural technology providers (ATPs) col-
lect input and output data from farmers to build prescription maps, which
farmers can program farm equipment to follow (Leone, 2017). ATPs include
companies such as John Deere and The Climate Corporation. For years they
have been upgrading the equipment sold to farmers with sensors that pas-
sively collect information and send it back to the ATP, often without their
knowledge and protected by legal contracts (Carbonell, 2016). The type of
data ATPs collect include climate and weather data, agronomic data, ma-
chine data, and livestock data (Kamilaris et al., 2017). The type of ag data
that is collected and used by ATPs include weather, soil types, planting,
materials, spraying, yields, imagery, and other data related to farm man-
agement (Wolfert et al., 2017). A summary of agricultural data types are
in Fig. 14.2. By 2025, it is predicted that an average-size farm will produce
more than one million ag data points a day (Shipman, 2019). The use of PA
has allowed farmers to use less resources, which saves money and reduces
environmental impacts. As PA has grown as a field, and its dependence on
data from hundreds of farms to create its models has increased, PA has
had to rely on the techniques of big data (Mathivanan and Jayagopal, 2019;
Leone, 2017). Although PA technologies generate massive amount of data,
these technologies operate within a space of existing institutions, economy,
governments, and politics.

14.1.3 Political economy of PA

ATPs promote PA as technologies capable of improving agricultural pro-
ductivity, efficiency, and reduction in ecological footprints (Bronson, 2019;
Fraser, 2019). PA technologies are fitted with sensors that collect ag big data,
such as soil and animal health (Rose and Chilvers, 2018; Rotz et al., 2019).
Ag big data can improve the decision-making process for farmers. However,
there are concerns that the current model of agriculture through PA tech-
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nologies is geared toward the industrial model and reveals a long-standing
trajectory to increase the industrial model, where PA might perpetuate pro-
ductivist values. These long-standing productivist values are currently driv-
ing the design of PA technologies, just like previous innovations in agricul-
ture, such as the green and biotechnology, which created economic benefits
for farmers and at the same time created power asymmetry between farm-
ers and ATPs. The introduction of PA is indeed exacerbating power inequal-
ities between farmers and ATPs (Bronson, 2018; Clapp and Ruder, 2020).

With inherent characteristics of technology as neither good, bad, or neu-
tral (Kranzberg, 1986), PA is a double-edged sword that is currently de-
signed to benefit ATPs over farmers through the generation of big data.
Several concerns such as ownership, access, and power asymmetry, and pri-
vacy concerns have emerged (Carbonell, 2016; Fraser, 2019). ATPs, such as
Climate Cooperation, have end-user agreements and contracts protected
by intellectual property rights that prohibit farmers from modifying and
repairing their farming equipment. These contracts create power asymme-
tries that allow ATPs to have control and access over farm data, which shifts
power to the hands of ATPs (Carbonell, 2016; Wolfert et al., 2017).

The complexity and lack of transparency around end-user agreements
and contracts about how big data is generated, constitute part of a larger
and increasing consolidation of power and control by few corporate entities
in the ag industry also raises questions about trust in farming recommen-
dations that ATPs offer (Wiseman et al., 2019). Most ATPs do not reveal the
processes involved in data collection and storage, or how the data collected
are transformed into insightful farming recommendations. The entire pro-
cess is essentially a “black box,” where farmers have no full knowledge of
how PA works (Miles, 2019). Technologies designed by ATPs monitor the
everyday activities of farmers from planting to harvesting. Through this
process, ATPs benefit through predicting farmers’ activities to sell seeds
and agrochemicals (Wolfert et al., 2017). For PA to meet the promise of
crop productivity and reduction in ecological footprints from farming ac-
tivities, ATPs will need to ensure that PA technologies are fair and trusted,
where farmers understand and have access to decision-making for their
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uses before recommendations occur. Hence some sought of assurance on
the operation of these technologies.

To create trusted PA systems, ATPs will need to rely on transparency,
which is the foundation for socially responsible practices in an industry in-
creasingly controlled by few decision-makers separate from the farmstead.
Addressing the lack of transparency in PA systems will require developing
explainable AI (XAI) systems. The objective of XAI is to ensure that tech-
nologies can be transparent in how decisions are made and where end-user
understand why specific decisions are made. In other words, XAI aims to
produce explainable technologies and algorithms, where end-users under-
stand processes that go into making recommendations. (Batarseh et al.,
2021). XAI is currently a framework that explains these technologies (Wells
and Bednarz, 2021). XAI ensures that the deployment of technologies is
fair, transparent, and accountable (Barredo-Arrieta et al., 2019). In the next
section, we discuss the current methods used for AI assurance and XAI in
agriculture.

14.2 Current methods of AI assurance in agriculture
For the purposes of this chapter, we will be using Batarseh et al.’s definition
of AI Assurance:

“A process that is applied at all stages of the AI engineering life-cycle en-
suring that any intelligent system is producing outcomes that are valid,
verified, data-driven, trustworthy and explainable to a layman, ethical
in the context of its deployment, unbiased in its learning, and fair to its
users” (Batarseh et al., 2021)

The study of AI Assurance is a newer development for the agricultural
field. Only one paper was cited in Batarseh et al.’s (2021) review of the cur-
rent state of AI Assurance: a paper on applying Data Science in agricultural
policy with assurance using knowledge-based systems (Batarseh and Yang,
2017). Using this definition as a guiding principle, we have evaluated the
current state of AI Assurance in agriculture by reviewing 7 studies. These
studies were found using the snowball method, where inclusion criteria in-
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FIGURE 14.3 Screenshot of managing data streaming into the federal agricultural data
warehouse through Intelligent Federal Data Management Tool (Batarseh et al., 2018).

cluded literature in English which specifically mentioned AI assurance, XAI,
or interpretable machine learning for an agricultural application. Overall,
the studies were tested by the researchers themselves or unspecified ex-
perts. However, in agriculture, we need to be cognisant that the end-users
of these systems are not only the original researchers, but also the grower
or agricultural worker. The wider web of stakeholders must also be taken
into consideration as they are also affected by the data and algorithms that
are used in modern agricultural systems. Consumers should also be fac-
tored into the AI assurance models for it to be truly transparent. Increasing
the transparency of agricultural data can compel producers to improve the
environmental performance of their products and close the gap between
producers and consumers. Consumers will be able to trace the origins of
their products and understand and monitor the system under which it was
produced (Zaks and Kucharik, 2011). These recommendations will be ex-
panded on in later sections.

14.2.1 AI assurance in agricultural policy

Batarseh et al. (2018) created a suite of engines and tools for federal teams:
Intelligent Federal Math Engine, Validation Engine, and Intelligent Federal
Data Management Tool. A screenshot of Intelligent Federal Data Manage-
ment Tool is in Fig. 14.3. The Intelligent Federal Math Engine was built using
Dynamic SQL, which aid federal analysts to calculate numerous mathemat-
ical formulas and stores the results in a database. The Validation Engine can
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then check whether the data generated is valid. The Validation Engine was
built using 3 SQL stored procedures Flag validation, Technical validation,
and Summary statistics validation. The user interface utilizes the flag sys-
tem to visually present if the data is within an expected range and is valid.
The Intelligent Federal Math Engine is used to execute both the Intelligent
Federal Math Engine and the Validation Engine, along with other services.
In designing the Intelligent Federal Data Management Tool, researchers
collected software and hardware requirements from federal teams. Key re-
quirements were the following:

• Analysts should have the ability to perform automated validations on
data (and use the validation engine).

• Analysts should be able to update all the agricultural commodity-specific
metadata.

• Based on requirements, analysts should be able to change the privacy
level of data. Data privacy levels could be public, private, or confidential.

• A feature to manage all the data migration rules. A knowledge base that
includes mappings between two sources should be easily manageable.
Analysts should be able to add, update, and delete the data migration
rules (Batarseh et al., 2018).

Currently, the Intelligent Federal Data Management Tool is deployed at
the US Department of Agriculture. Researchers surveyed federal analysts
and agricultural researchers about their use of the tool, and found that 57%
of the users had positive feedback on the tool.

14.2.2 AI assurance in precision agriculture

The earliest study on AI assurance in agriculture is from 2017, demon-
strating just how new this field is to the agricultural realm. The differ-
ential evolution-based cooperative and competing learning of compact
rule-based models, or DECO3RUM, is a Mamdani fuzzy rule-based system
for modeling problems which follows the genetic cooperative competitive
learning approach using the differential evolution algorithm for its learn-
ing algorithm. An overview of DECO3RUM is in Fig. 14.4. DECO3RUM was
tested with a local soil spectral library. Using 50 soil samples collected in
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FIGURE 14.4 High level overview of DECO3RUM (Tsakiridis et al., 2017).

Central Macedonia, Greece, the system was used to predict the soil organic
matter, electrical conductivity, and concentration of magnesium cations
from its spectral signatures as compared to the predictions from using the
partial least squares regression (PLSR) algorithm. DECO3RUM was able to
generate statistically better results as compared to PLSR. Researchers im-
proved the DECO3RUM system to be more amendable to hyperspectral
data. These changes included using the Mahalanobis distance in the k-nn
algorithm distance metric to optimize principal component space, using a
feature alignment mechanism to facilitate the use of a smaller number of
wavelengths in the premise part of the rules and having the predictions of
the model corrected by using known errors that were discovered in the cal-
ibration set (Tsakiridis et al., 2019).

This improved system was tested on the LUCAS topsoil database, a
database of 19,036 soil samples from 23 EU countries. DECO3RUM was
used to predict soil properties from the spectral signature of the samples.
As compared to soil science industry standard algorithms, the system was
able to either statistically outperform or produce statistically equivalent
results. Though this second study mentions how the system provides “an
enhanced interpretability degree for the experts” over black box models, the
researchers do not define who they are referring to as “experts” (Tsakiridis
et al., 2019). These researchers do build on this omission in their next study,
where they explicitly design a system with an agricultural expert in mind.
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FIGURE 14.5 Overview of the Vital system (Tsakiridis et al., 2020).

With the increase use of opaque decision systems making decisions in
precision agriculture, there is an increase need to understand the underly-
ing AI mechanics by the end-users in the field. Tsakiridis et al. (2020) built
an explainable AI (XAI) system called Vital for this purpose. It uses low-cost
sensors, data store, and an explainable AI decision support system to out-
put a fuzzy rule-base. Vital uses a web application as the main user inter-
face of the XAI system, where users can visualize the inner manifestations of
the rule-based system, thus making the model transparent and trustworthy
(Tsakiridis et al., 2020). In one of the pilot studies, the researchers inte-
grated their system with existing (legacy) network stations to demonstrate
that Vital was capable of replacing aging or malfunctioning technologies.
The integration of environmental sensors at Lake Koronia was success-
ful. An additional study was conducted at the Farm School, the Aristotle
University of Thessaloniki, with a precision irrigation for an olive tree or-
chard, where the fuzzy knowledge base was preselected by an agronomist
using the linguistic description of the input variables to demonstrate that
non-computer science experts could develop an AI-based model. The XAI
system with the agronomist input was able to save more water than the
control, irrigation manually by an agronomist (Tsakiridis et al., 2020). An
overview of the Vital system is depicted in Fig. 14.5.

Gandhi et al. (2021) builds off the Vital system to build a fuzzy-rule-
based system to predict the crop yield in a simulation. Using a rule-base
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FIGURE 14.6 Screenshot of Gandhi et al. (2021)’s system for predicting crop yield.

system, the researchers aimed to simulate crop yield for cotton, wheat,
paddy, barley, and maize using temperature, soil moisture, humidity, ni-
trogen, phosphorous, and soil type. Their models were able to generate
predictions comparable to ministry of agriculture and farmers welfare. A
screenshot of the system is in Fig. 14.6. Though the researchers discussed
farmers using their system, the current study did not have any agricultural
workers testing their system, unlike the next study in this section, where the
system was built for and with agricultural workers.

Rojo et al. (2021) developed the Augmented by Human Model Selection
(AHMoSe) system to explicitly address XAI in agriculture. The system was
built to aid domain experts to better understand and compare different
regression models. The system was validated by viticulture experts to aid
in the selection of prediction models for grape quality. Though many XAI
systems seek to make the algorithms more explainable to machine learn-
ing experts, not many systems focus on transparency and explainability for
users who are experts in their domain and not necessarily ML experts (Rojo
et al., 2021). The backbone of the AHMoSe system is the SHAP framework
as it has been found to be more intuitive and is a good fit for users who will
be comparing the system’s explanations with their domain knowledge. An
overview of the AHMoSe system is depicted in Fig. 14.7, and the user inter-
face is in Fig. 14.8.
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FIGURE 14.7 An overview of the flow of data in the AHMoSe ecosystem from Rojo et al.
(2021).

FIGURE 14.8 The AHMoSe interface: a) the sidebar controls to select the use case, intervals,
models, and features to be visualized, b) the scatter plots highlight the comparisons be-
tween models’ predictions (orange and blue (gray and dark gray in print version) dots)
and domain expert knowledge (green (light gray in print version) rectangles), c) the
Marimekko charts indicate the importance of each feature according to the given model,
and the agreement between the model and domain expert knowledge (Rojo et al., 2021).

While designing the system, researchers interviewed viticulture experts
about what questions they have when choosing a machine learning model
for their data:
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• Should I use this model with this data?
• Why should I trust this ML model?
• Which model should I select? (Rojo et al., 2021)

Using these questions as a guide, the researchers then defined the fol-
lowing tasks for the AHMoSe system:

• Understand model explanations
• Identify model bias
• Compare two different model explanations
• Identify a model (Rojo et al., 2021)

The AHMoSe interface and system underwent a user evaluation with viti-
culture experts. Thematic analysis demonstrated 4 main themes:

• Potential use cases
• Trust
• Usability
• Understandability (Rojo et al., 2021)

Viticulture experts expressed different potential use cases for the system,
including detecting anomalies in data and quality assurance. The visualiza-
tions of the system helped domain experts to trust the model and increase
their likelihood of using it in their work. As much as the system inspired
trust, domain experts still relied on the explanations from the researchers
to understand the visualizations and the logic behind the models. As the
system is now, it is not a standalone system, and improvements are needed
for it to be used independently by viticulturalists. The understandability of
the system could also use some improvements, with domain experts ask-
ing for a success rate of each model, instead of the root-mean-square error
(RMSE), which does require some ML background to interpret (Rojo et al.,
2021). A summary of the AI assurance examples in agriculture are in Ta-
ble 14.1.

The current state of AI assurance in agriculture is small. While in other
domains, XAI and AI assurance have been focused on making ML mod-
els understandable to ML experts, such as the Vital system. What would
be more useful in agriculture is for XAI to be focused on the end users, as
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Table 14.1 Summary of AI Assurance in Agriculture Studies.
Author System Test

Conditions
End Users Models/

Algorithms
Results

Rojo et al.
(2021)

AHMoSe choosing ML model
to predict grape
quality

viticultural-
ists

knowledge-
based fuzzy
inference
system

viticulturalists using
AHMoSe were able to
select a model with
better performance
than an AutoML
system did

Gandhi et
al. (2021)

N/A simulating crop
yield for cotton,
wheat, paddy,
barley, and maize
using temperature,
soil moisture,
humidity, nitrogen,
phosphorous and
soil type

not specified fuzzy-rule
based system

the predicted ideal
crop conditions and
soil types for
maximum yield were
comparable to
conditions provided by
the Ministry of
Agriculture and
Farmers Welfare

Tsakiridis
et al.
(2020)

Vital replacing legacy
technologies: a set
of environmental
sensors in Lake
Koronia

not specified fuzzy-rule
based system

integration successful

Tsakiridis
et al.
(2020)

Vital precision irrigation
for young olive tree
orchard

agronomists fuzzy-rule
based system

using Vital with an
expert was not as
effective at conserving
water as using Vital
alone

Tsakiridis
et al.
(2019)

DECO3RUM LUCAS topsoil
database

unspecified
experts

Mamdani
fuzzy
rule-based
system

DECO3RUM
statistically
out-performed global
models

Tsakiridis
et al.
(2017)

DECO3RUM to predict soil
properties in
samples from
Central Macedonia,
Greece

unspecified
experts

Mamdani
fuzzy
rule-based
System

DECO3RUM
statistically
out-performed the
partial least squares
regression algorithm

Batarseh
and Yang
(2017)

Intelligent
Federal Data
Management
Tool,
Intelligent
Federal Math
Engine, and
Validation
Engine

suite of engines and
tools at the US
Department of
Agriculture to
manage, validate,
calculate and
stream data

federal
analysts and
agricultural
researchers

knowledge-
based system
and data
mining
methods

57% of analysts gave
the system positive
feedback
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demonstrated by AHMoSe. It is not enough to have a few select industry
trained experts to understand the models; socially responsible AI assurance
is about making the entire process transparent and accessible to farmers,
and with their input in design. How this omission has overreaching effects
beyond the immediate concerns in the field are discussed in the next sec-
tion.

14.3 Agricultural policy
End-user agreements (EULAs) employed by ATPs require farmers to sign
contracts to use PA technologies (Bronson, 2018; Carbonell, 2016). The pur-
pose of these agreements is to gain farmer’s trust. However, it allows farmers
to relinquish their control and access to their farm data and autonomy
(Fraser, 2019; Carbonell, 2016). These EULAs are not sufficient to ensure
that farmers’ privacy is protected, as there are tools that can foster ma-
nipulation and control by ATPs and third-party agents, who gain access
to farmers’ information (Wiseman et al., 2019). Weaknesses in EULAs has
motivated organizations such as Ag Data Coalition in the United States to
purpose that farmers play a role in how big data should be managed.

Outside of the United States, the European General Data Protection Reg-
ulation (GDPR) has set a legal framework to protect personal data similar to
the federal trade commissions that oversee how data is collected in health
and financial sectors. These frameworks serve to oversee the unfair prac-
tices that might be associated with data use and collection, and assign ex-
clusive privileges to producers of data (Ferris, 2017). However, these frame-
works fall short of protecting farm data, such as soil yields and weather
conditions, as they are not considered personal data (Atik and Martens,
2020). The present data privacy and security legislation in the United States
remain inadequate to secure and protect data generated by farmers. Hence
agricultural farm data might require some level of federal and state legisla-
tion to be protected.

The lack of clear regulatory frameworks for non-personalized agricul-
tural data is perceived as a shortcoming of state regulation by industry and
private sector actors (Atik and Martens, 2020). The private sector has ini-
tialized voluntary rules and principles, in which industry actors, such as
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farmers and technology innovators, need to ensure that agricultural data
collection needs to follow certain codes and practices, such as consent,
transparency, and disclosure, to improve how data generated from farms
through PA technologies ought to be collected and utilized. These codes
of practices sit alongside and complement higher government legislations
(Sykuta, 2016; Sanderson et al., 2018). As a result of regulatory inadequacies,
we provide suggestion on how PA might be more reassuring for farmers in
the next section.

14.4 AI assurance in agriculture recommendations
Going back to the working definition of AI assurance:

“A process that is applied at all stages of the AI engineering lifecycle en-
suring that any intelligent system is producing outcomes that are valid,
verified, data-driven, trustworthy and explainable to a layman, ethical
in the context of its deployment, unbiased in its learning, and fair to its
users” (Batarseh et al., 2021)

it is clear that current practices in agriculture are not meeting this standard.
Of the few studies emerging in this subfield, only a couple had explicitly
designed their systems for laymen end users. And of those studies, none of
them utilized industry-standard usability evaluation methods. In this sec-
tion, we propose approaches and considerations for AI assurance systems
in agriculture moving forward.

14.4.1 Participatory design from the start

The notion of responsible innovation (RI) is gaining ground, charting a
direction for technological innovation development and how stakehold-
ers should engage consciously and responsibly in an innovation process.
Hence RI has become an essential tool for science, research, and innova-
tion policy. RI builds on a governance and innovation assessment approach
with the ambition to integrate ethical, societal values, and norms from
the beginning of technology development. RI focuses on democratizing
the process of innovation development built on engaging both public and
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stakeholders in the process of innovation development (Owen et al., 2012;
Stilgoe et al., 2013). Technology stakeholders and end-users engage in a de-
liberative process to innovate, while anticipating the innovation process’s
possible consequences. Engaging stakeholders from the early stage of inno-
vation development can help understand the collective responsibilities that
ensure that innovation is ethical, acceptable, and socially plausible (Von
Schomberg, 2012). These deliberative processes can enhance innovation
adoption and ensure that society adequately benefits from these innova-
tions (Ribeiro et al., 2017; Von Schomberg, 2012), while mitigating existing
societal challenges or creating new challenges. RI has been defined by Stil-
goe et al. (2013) as “taking care of the future through collective stewardship
of science and innovation in the present.” In this way, agricultural stake-
holders can work together to build technologies that can include societal
values and ethics in the design of these technologies.

There is evidence to support the use of participatory design or user-
centered design in agriculture to improve the use of technologies and data
interpretation in the field. It has been shown that data support systems
(DSS) support farmers as they strive for sustainable development. However,
current DSS systems on the market fall short in fully supporting the farmer
in their goals. Lindblom et al. blame this failure on the design of the DSS
systems, which incorporate data that scientists thought was important for
the farmer, and did not include farmer’s actual needs in the design process.
This failure, along with poor user interface design and their perceived prob-
lem of complexity has contributed to the “gap of relevance,” which can be
bridged by user-centered design (Lindblom et al., 2017). Ferrández-Pastor
et al. discuss this in their study as well where they proposed a structure
to include the expertise of the farmer in the design process (Ferrández-
Pastor et al., 2018, 2017). An overview of the proposed process is depicted
in Fig. 14.9.

Zaks and Kucharik have also discussed the importance of including end-
users in the development of agroecological monitoring infrastructure. In
their paper reviewing the design of these infrastructures, they noted that
the poor data interpretation of the user was not because of the sensor tech-
nology itself, but the lack of integration into the agricultural management
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FIGURE 14.9 Design for user centered design in agriculture (Ferrández-Pastor et al., 2017).

tools end-users were familiar with, which would present the output data in
a familiar format for the farmer. If the end-users could interpret the data
more easily, then it would be easier to make decisions that mitigate the
negative impacts of agriculture on the environment (Zaks and Kucharik,
2011). They acknowledged that to make the most robust systems possible, it
will take collaboration with the end-users, policymakers, and researchers to
achieve our environmental and agricultural goals with these technologies.

14.4.2 XAI for agricultural end users

Moving forward, the recommendations for AI assurance in agriculture must
take into account the end user. XAI cannot only be for ML experts, but also
be understandable to end users in the field (Glomsrud et al., 2019). XAI sys-
tems must also take into account the various cultural and environmental
needs of the end users. As explained by Heldreth et al., trust is the most
critical element for the success of AI tools (Heldreth et al., 2021). To achieve
this, practitioners need to adopt these practices:

• Help users understand AI’s capabilities.
• Be transparent about data and privacy.
• Recognize that many recommendations are high stakes.
• Leverage existing trusted resources (Heldreth et al., 2021).

The first practice can be achieved through the participatory design prac-
tices explained earlier in this section. Instead of only focusing on develop-
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ing the algorithms, programmers need to also take into consideration how
these systems will be used in the field by the end users. Addressing concerns
about big data privacy and security described earlier in this chapter, devel-
opers should adopt the practice of soliciting informed consent from farm-
ers before accessing and using their data. Developers need to be realistic
about what their AI systems can actually deliver in the field; overpromising
the capabilities of the systems leads to the mistrust of researchers in this in-
dustry, but is also detrimental to the end users, who ultimately pay the price
for over-relaying on a system that ultimately does not live up to the abilities
touted by the developer. Lastly, programmers need to work with the experts
already plugged into the farming community: extension agents, input sup-
pliers, and cooperatives. These experts have worked with the community,
understand the needs, and can promote the adoption of trustworthy and
transparent systems (Heldreth et al., 2021). Rural electric cooperatives are
another trusted organization that can assist in bringing connected agri-
culture technologies to farmers. This is especially important for farmers
in minority or under-served communities, where the advantages of con-
nected agriculture can have an even higher payoff. Adopting the framework
of “connected ag as a service” (CAAAS) can also help small farmers take ad-
vantage of the capabilities of data through data cooperatives. These can be
further leveraged to support and promote the use of data in ways that more
directly support the local community (Rayi et al., 2021).

To develop more farmer-centered AI assurance systems, Heldreth et al.
also describes barriers that practitioners need to be aware of:

• Common hardware and data constraints
• Build for diverse literacies and multiple languages
• Co-design with smallholder farmers and intermediaries (Heldreth et al.,

2021)

Peters et al. discusses the need for more human-guided ML to be inte-
grated into AI technologies in agriculture (Peters et al., 2020). Glomsrud et
al. recommend that different explainable AI models should be developed
for different users:

• Developer
• Assurance
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• End-user
• External (Glomsrud et al., 2019)

In agriculture, the developer and assurance users are typically researchers
at ATPs or universities. In general, AI assurance models already serve these
users. More AI assurance systems are needed, which focus their service on
the agricultural end-user, who can be farmers, ranchers, agronomists, viti-
culturists, soil scientists, or citizen scientists. Examples of external users in
agriculture include policymakers and consumers. Each of these users will
have different data needs and have different preference for XAI user inter-
faces. Studies in AI assurance in agriculture need to be explicit about which
user they are building for and include these users in the design. Following
in the model of Rojo et al., XAI systems developed for agriculture should
also be evaluated for usability using user-centered design principles to fur-
ther ensure these systems are meeting the needs of end-users (Rojo et al.,
2021).

In designing for each of these user types, Alikhademi et al. (2021) have
developed a rubric for XAI systems:

• Does the XAI tool clearly identify its target audience and their expecta-
tions for the tool?

• Is the presentation of explanations sufficient for the target audience to
gain insight and improve upon their model?

• Does the XAI tool provide a variety of types of explanations? (Alikhademi
et al., 2021)

Addressing these questions will not only ensure the system is under-
standable for the specified user, but will also aid in the usability of the
system. Batarseh et al. (2018) have also developed a list of usability recom-
mendations as well, based on their own study of an AI assurance system for
federal analysts. Their best practices include

• User access roles
• Data entry validation
• Multithreading
• Application integration (Batarseh et al., 2018)
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Different users will need different levels of access to the data, and these
roles need to be clearly defined and assigned to the appropriate users.
There needs to be a system to ensure that only technical federal users are
imputing data and nontechnical federal users are restricted from making
changes to the data. Because federal analysts’ work involves running multi-
ple processes at once, there needs to be a capacity to execute multithread-
ing. Lastly, the system needs to integrate well with the other applications
heavily used by federal analysts (Microsoft Excel, Outlook, R, and internet
browsers) (Batarseh et al., 2018).

14.5 Conclusion

The improvement of AI assurance in agriculture will not only impact the
end-users who operate in the agriculture field, but also the policymakers
who rely on transparent, trustworthy, and valid data to complete their work.
With a focus on developing AI assurance models with the end-user in mind
using participatory design and user-centered design principles, computer
scientists can vastly improve the quality of work in the agricultural field.
By working within communities, researchers can build to their immediate
needs and create more trustworthy and transparent systems. This will al-
low for more socially responsible precision agriculture that responds to the
needs of stakeholders and works for them. This change has rippling effects
throughout the rest of the stakeholders, including consumers of agricul-
tural products. For these studies to be effective, interdisciplinary teams will
be needed and experts from social science, AI, human-computer interac-
tion, agronomy, precision agriculture, and policy will need to collaborate to
develop robust systems that meet the needs of the field.
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Abstract

Agricultural policy has traditionally been conducted in an ad hoc manner, gen-
erally, by responding to natural disasters instinctively or managing unavoidable
causes through the implementation of short term financial compensations or
long-term loan and insurance programs at farms. The presented model, namely
AI2Farm, provides farmers with predictions during conventional and uncon-
ventional times to compensate for the little to no guidance that policies, such
as the Farm Bill, provide for spur-of-the-moment decisions needed to be made
that arise from outlier events.
Farmers are an integral part of our economy due to their ability to manage
market supply and demand expectations that solidify the nation’s food secu-
rity. Therefore it’s important that farmers have access to the most up-to-date
technology to make sound decisions that are in the best interest of rural and
urban communities. Machine learning (ML) models measure associations, cor-
relations, and causations of global and domestic events via commonplace finan-
cial indices with the production, consumption, and pricing of global agricul-
tural commodities in the United States. Consequently, a deeper understanding
of changes in behavior displayed by farmers as a result of outlier events aid in
the ability to determine how precision agriculture can best assist farmers in the
decision-making process. This entire set of information is lastly applied to the
analysis of farms in the state of Virginia with smart tools and equipment that
can benefit from models such as AI2Farm; the model and its results are presented
and discussed.

Keywords

Outlier detection, economic indices, precision agriculture, smart farms

Highlights

• Artificial Intelligence (AI) systems are deployed to enable precision farming activities

• Data from economic indices such as the Chicago Board Options Exchange’s CBOE

Volatility Index (VIX), Gold, Oil, S&P 500, Dow Jones (DOWIA), as well as commodity

data from the United States Department of Agriculture (USDA) are used

• Conventional and outlier-based predictions are presented as two alternative

scenarios, where the farmer can choose from both scenarios depending on their

current context

• Outlier events considered include: political, financial, environmental, health-related,

global, and domestic events
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• While most precision agriculture tools present localized recommendations that are

disconnected from the world’s state-of-affairs, the presented method provides a

conventional recommendation, as well as one depending on events and their effect

on farming

15.1 Introduction
The field of Precision Agriculture uses a variety of technologies, such as
sensing, information technologies, and mechanical systems, to manage dif-
ferent parts of a field separately (USDA, 2018). The act of adopting such
practice and applying it to day-to-day farm procedures is known as Pre-
cision Farming. Precision Farming provides some sense of stability amidst
conditions such as weather and market demands that are natural actors
within agriculture at the local and global level; protecting one’s commodi-
ties and maximizing economic yield in the long run. Although farmers grow
accustom to such conditions, there are instances where outlier events oc-
cur that overwhelm current monitoring and forecasting tools; prohibiting
farmers from making sound decisions.

Formal acknowledgment of economic fluctuations are not merely enough
to form an understanding as to how and why the extremities of outlier
events vary and occur. What is required, rather, for precision agriculture,
is the intersection of policy and economics to enable data scientists and
public policymakers to make more informed decisions.

It is known that political events directly or indirectly affect the economy
and VIX (Shaikh, 2019). COVID-19, which began at the end of 2019, is an
outlier event resulting in vast disruption on the United States economy and
financial markets; all of which was unforeseeable for many (Brown et al.,
2021). The United States is a country that values individualism over collec-
tivism; one where individuals are reluctant to participate in a cause if it’s an
inconvenience or burden to themselves despite the protection that it may
provide to their neighbors (Vandello and Cohen, 1999). In turn, the notion
of individualism further exacerbated the issue of COVID-19.

The manner in which the formal announcement of COVID-19 within the
United States unfolded left little room for any current intelligent algorithm
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to be of use. Food insecurity became an immediate concern and reality for
families across the nation. Consumer consumption increased as states were
advised to go into lockdown, which strained retailers across the nation. The
relationship between agriculture and this particular outlier event will be a
reoccurring example throughout this chapter, because, for many, this ob-
scure event is the most relevant and well known outlier in recent memory.

This research is concerned with the effects of an outlier event, such as
the pandemic, on the commodities of animal products within the United
States. The pandemic is multifaceted in the sense that it can be categorized
as a global and political event, which had a direct impact on the produc-
tion of goods. The distribution of vaccinations, a more recent development
to offset the spread of the coronavirus, for example, had a direct relation to
the health of farms. The Purdue food and agriculture vulnerability index es-
timates nationwide, “over 496,000 agriculture workers have tested positive
for coronavirus, with over 3000 in New York State alone” (Purdue, 2020). The
management of their fields and crop production was jeopardized alongside
their health.

The Purdue food and agriculture vulnerability index in collaboration
with Microsoft served as a baseline in terms of establishing the scholarly
work that is already available, and identifying what can be improved upon.
Purdue University “combined data on the number of Covid-19 cases in
each U.S. county with the county’s total population, the U.S. Department
of Agriculture data on the number of farmers and hired farm workers in
each county, data on agricultural production of each county, and lastly was
able to estimate the share of agricultural production at risk” (Purdue, 2020).
The visualization of loss of production within various states was useful in
developing a deeper understanding of the struggles within the agriculture
industry, more specifically during an outlier event. Though the loss of pro-
duction impact for a given commodity is an aspect of agriculture research,
it’s unable to be useful for prediction of the other outlier events consid-
ered in this work as well as their relationship with economic indices. In this
sense, we’re able to distinguish this research from Purdue University and
other existing scholarly work.
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FIGURE 15.1 The AI2Farm method.

15.2 AI for smart farms

Beginning on the far right corner and continuing left in Fig. 15.1 of the
AI2Farm model, the commodity of interest is observed alongside the six
chosen economic indices to understand their relationship when fluctua-
tion occurs. An outlier detection technique develops through the use of
ML algorithms (i.e., isolation forest, autoencoder, K-means clustering, sup-
port vector machine) to detect unusual/outlier points on VIX, S&P500, gold,
DOWIA, and crude oil indices. By properly labeling outlier data points, we’re
able to predict future outliers as well from the models. Definitions of outlier
events for mentioned data are any anomalous dataset that behaves abnor-
mally among the rest of the population, which in turn indicates particu-
lar events in the real world that cause the datasets to behave abnormally.
Successful detection of outlier events deepens one’s understanding of the
effect of social/political impacts on smart farms. Both supervised and un-
supervised learning models are used when comparing each of the model’s
performance matrices.

As it relates to the desire to centrally focus on AI for econ and interna-
tional outlier events, for the purposes of technology and science policy,
we’re inclined to ask the following:
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(a) can policy scenarios be built to validate and optimize outcomes of differ-
ent data-driven policies?

(b) can an economic causality model define the causes and effects of global
outlier events using learning (from economic indices) and assured AI?

(c) can AI models factor outlier events into economic predictions to sup-
port farming decisions differently during outlier events vs. “conventional
times”?

The three questions above differentiate our research from current stand-
ing studies that merely focus on COVID-19 or another singular outlier event
for that manner (Gruère and Brooks, 2021; Elleby et al., 2020). It is here
we shift our focus towards weather; an outlier event that has been docu-
mented for centuries. Weather conditions, such as temperature, rain, hu-
midity, moisture, and wind speed all impact yield production. Although
documentation of such conditions through the USDA weather archives re-
main in use by farmers, rise in temperature caused by global warming will
result in more persistent weather anomalies that will increase the need
of better weather forecasting and question the use of traditional farming
methods (D’Agostino and Schlenker, 2016). The urgency to implement a
new form of predictive modeling pertains only to weather, just one out-
lier of many, all the while farmers are still subject to the impacts of supply
and demand and market prices. This scenario illustrates that focusing on
just one outlier event is not enough, because, in reality, farmers have to ex-
plore multiple avenues to make the best decision for their commodities.
The aforementioned is why programs such as the USDA’s Natural Resources
Conservation Service and the National Water and Climate Center (NWCC),
as traditional as it may be, might be losing their value (D’Agostino and
Schlenker, 2016). Solely remaining responsible for producing and dissemi-
nating accurate and reliable forecasts and other climatic datum are trivial
if it isn’t specific towards a particular commodity or does not address other
worldly events. Additionally, the manner in which they are collected and
distributed to farmers is not of use. Generating forecasts in near real-time
is the desired result of new and up incoming models, such as the AI2Farm
model that is presented in this chapter.
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The cost of production forecasts for US major field crops, for instance,
is centered upon projecting net returns at the national level. The pro-
jected costs are based upon the previous year’s production costs and pro-
jected changes in the coming year’s indexes of prices paid for farm inputs
(Knoema, 2021). Although the long-term baseline projections are in a sense
reliable, they fail to provide an explanation as to why the fluctuation in
prices occurred to begin with. The inclusion of economic indices is a start-
ing point, but the lack of awareness surrounding outlier events and their
impacts is lacking, and an area in which this research expounds. Conversely,
research by the International Production Assessment Division (IPAD) of the
USDA’s Foreign Agricultural Service (FAS) does take outlier events into con-
sideration. The primary mission of IPAD is to produce the most objective
and accurate assessment of global agricultural production and the condi-
tions affecting food security around the world (Becker-Reshef et al., 2010).
Outcomes of the IPAD are monthly crop production estimates and early
warnings of crop disasters. Though the outcome is similar in terms of early
warning of crop disaster through the detection of weather outlier events,
the method of collecting data is different in that it only focuses on one out-
lier event (weather) and doesn’t concern economic indices. What continues
to distinguish this research is that we have identified a new relationship that
has not been studied before; considering the impact of both economic in-
dices and outlier events. Observing one without the other is what separates
research pertaining to localized versus global knowledge.

15.2.1 Correlation of economic indices and various
commodities

The creation of the AI2Farm model begins with identifying the relation-
ship between commodity production and the six economic indices. When
evaluating economic indices and commodity data, it’s imperative to under-
stand the relationship between the two variables to determine whether or
not correlation should be the basis of the decision-making process for a
farmer. With the statistical knowledge that correlation does not equal cau-
sation, we run each causal and correlation value instead of one per produc-
tion dataset. The process entails evaluating the highest causation, running
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the model, and then evaluating the highest correlation and running the
model again to see which one has the strongest fit of the data. The Pear-
son’s correlation coefficient is as follows:

r =
∑

(xi − x) (yi − y)√∑
(xi − x)2

∑
(yi − y)2

(15.1)

Pearson’s correlation coefficient measures the following: if its p-value is
less than the α setting (typically .05), we deem there to be a meaningful
association, and the r value tells us whether the correlation is positive or
negative.

As indicated in Fig. 15.2, the highest correlation goes to 1 and the lowest
to 0; positive correlation is positive 1 at the highest point and the negative
correlation is at −1 at the lowest point. For negative one as VIX goes up, beef
will go down (exactly its opposite).

As indicated within Fig. 15.3, the x axis is the commodity, and the y axis
are the indices. This is another form of representing how data are affecting
one another. The correlation between the indices and the fluctuation of the
commodities is indicated by either a strong positive linear correlation, as
with cheese, or a nonlinear negative correlation as with beef.

15.2.2 Causation of economic indices and various
commodities

Determining causality (a.k.a. causation), is the next logical sequence. In do-
ing so, we hope to identify the causal score for the impact of each index on
the production to inform farmers to use causation when possible, but when
the strength is weak, to defer to correlation to determine which economic
index they would like to focus on for each production.

DoWhy, an open-source Python library, is utilized to address the causal
question in this research. DoWhy is unique in its ability to expand upon
causal inference estimation methods, such as Python and R, that test sta-
tistical significance without the confirmation that the foundation in which
it acted upon is in fact solid. Essentially, DoWhy minimizes the expectation
of an analyst to not only provide their own causal model and checks for as-
sumptions, but to provide it correctly in a manner fit for causal inference.
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FIGURE 15.2 Correlation model between economic indices and commodities.

To relieve this burden, and to ensure that the steps prior to the estimation

step were done correctly, DoWhy added an additional three steps to their

pipeline, as shown in Fig. 15.4.

The four-step analysis pipeline includes the following: model, identify,

estimate, and refute. Model causal mechanisms, identify the target esti-

mated, estimate causal effect, and refute the estimate. This end-to-end li-
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FIGURE 15.3 Commodity Production pair plot for (a) beef and (b) cheese.

FIGURE 15.4 The four-step analysis pipeline in DoWhy (Sharma and Kiciman, 2020).

brary for causal inference provided the certainty necessary to estimate the
causal effect.

Table 15.1 includes the results gathered using DoWhy. Shown above are
five columns of the commodities and economic indices and eighteen rows
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Table 15.1 Scores processed by DoWhy for causation between each commodity and
economic indicators.

Crude Oil Open Gold Open DOWIA Open S&P500 Open VIX Open
Beef 0.226021 −0.23521 1.608905 −1.42056 0.28295
Butter −0.01532 0.477177 0.154803 0.145163 0.090398
Cheese −0.05527 0.406332 0.239261 0.367241 0.110741
Chickens 0.10447 0.165347 0.305438 0.169931 0.044098
Ducks −0.02345 −0.15335 −0.53592 1.017804 −0.21246
Eggs −0.04621 0.043418 0.544103 0.186939 0.020712
Ice cream 0.02511 −0.12444 0.209716 −0.46338 −0.24881
Lamb and mutton −0.0291 −0.45765 0.293928 −0.43749 0.064549
Milk 0.017964 0.4296 0.0652 0.43674 0.0775
Other poultry −0.20287 −0.14632 −0.16872 0.058221 0.179605
Pork 0.015955 0.235899 0.84366 −0.28956 0.275482
Sherbet 0.271992 −0.40333 0.401844 −0.60832 −0.20088
Total poultry 0.121128 0.140361 0.444497 0.037026 0.079839
Total red meat and
poultry

0.120495 0.089676 0.892369 −0.41871 0.192183

Total red meat 0.119753 0.030156 1.418313 −0.95388 0.32411
Turkeys 0.28781 −0.06445 0.502205 −0.25064 0.291053
Veal 0.024031 −0.47032 0.558691 −1.09531 0.070137
Water ices 0.037014 −0.04263 0.23056 −0.189 −0.2337

of the production datasets (crop/animal data). Linear regression is a sta-
tistical process to model the relationship between two variable; a method
used within the third step of the pipeline to estimate the causal effect.
Through the use of linear regression, DoWhy isolates one independent vari-
able from the other independent variables to observe the effect of one
thing, whilst ignoring the effects of others.

In the causal model, the arrows are reflective of indices and their “associ-
ated” production. The thought process behind using causation is to isolate
one index and its effect on individual commodities: in this instance, beef.
With the awareness that all five indices may have an effect on the commod-
ity of choice, isolating all of the independent variables that we do not have
control of results in more control groups. The result is a better understand-
ing of which economic index is best to focus on for measuring production,
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and therefore helping with decisions on the farm. The data normalization

formula used is as follows (Loukas, 2021):

X scaled = x − xmin

xmax
− xmin (15.2)

The min-max scaler is used to normalize all stock price data in the range

of 0 to 1 for each stock. Without this structure, it’s a comparison between a

large and complex index to a smaller index, which results in data bias issues
further down the line.

15.2.3 Scoring outlier events for the model and finding
anomalies

The AI application begins with the introduction of outlier events; one from

a generated algorithm and another from real world events. Both are cho-

sen to ensure that the identification of outlier events isn’t limited to the
scope of the generated data, rather it is to the scope of that data and beyond

with the real world events (a comprehensive list is manually collected). The

unsupervised algorithm of choice is isolation forest or iForest to detect ab-
normal behavior within the economic dataset. This model-based method

is the preference over existing distance- and density-based methods due

to its ability to handle larger datasets and identify anomalies at a quicker
rate. The concept of an isolation forest is as follows (Liu et al., 2012) (see

Fig. 15.5):

“In a data induced random tree, partitioning of instances are re-
peated recursively until all instances are isolated. This random par-
titioning produces noticeable shorter paths for anomalies since (a)
fewer instances of anomalies result in a smaller number of partitions-
shorter paths in a tree structure, and (b) instances with distinguishable
attribute-values are more likely to be separated in early partitioning.
Hence, when a forest of random trees are collectively producing shorter
path lengths for some particular points, then they are highly likely to be
anomalies”.
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FIGURE 15.5 Statistical method: (a) 2D dataset of normally distributed points where Xo is
an outlier point (Liu et al., 2012) and (b) interquartile rang (IQR) (Galarnyk, 2020).

Model design: Sklearn is used for model design; in addition to the iso-
lation forest algorithm. Both libraries enable the research to encompass
the contamination rate; the percentage of an outlier that can be approxi-
mately guessed out of total data points. The contaminate rate is determined
through the use of the IQR, or interquartile range, as a measure of how
widely varying a univariate dataset is. It’s the distance between the .25-
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quantile and the .75-quantile; also known as “upper” and “lower” quartiles.
We consider the middle data segment as normal data points, whereas be-
yond this range lies outlier points. The IQR method is used on preprocessed
economic data (crude oil, DOWIA, S&P 500, gold, and VIX) to collect the
contamination rate both in the daily and monthly economic index dataset.

Following the collection of scores and anomalies, red anomalistic points
are displayed from the generated isolation forest algorithm. Red anomalis-
tic points are represented by an “x” in Fig. 15.6. The model performance is
further tested to reveal a >90% accuracy in terms of labeling the points as
the model is supposed to isolate the outliers. See Figs. 15.6 and 15.7.

The graph indicates the anomaly data point distribution from economic
indices and major global events with regard to trade/international affairs.
Determining the distribution is the act of putting all of the values in a
straight line and being able to determine which value has the most den-
sity. For instance, the value for VIX open is (0.1), which is approximately the
median of the distribution. With one peak, VIX open would be considered
univariate, while Gold Open, which contains two peaks instead of one, is
multivariate.

15.2.4 Outlier classification and labeling

Interpreting the red anomalistic points at face value would lead one to be-
lieve that those points are the only outlier events within that given year.
That observation would be mistaken since the red anomalistic points are
only reflective of outliers within that dataset. The purpose of the gener-
ated algorithm is to have accuracy in labeling the points as an outlier event,
which it accomplished. Ensuring that the outlier events that could not be
reflected within the dataset are being captured is the next logical step in this
process. To accomplish this, we classify different timeframes as outliers and
non-outliers separate from the generated model.

Fig. 15.8 is an illustration of labeled outlier events collected outside of the
generated model during the year of 2001. The identification of the outlier
events within the figure is not swayed by the time frame per se that the red
anomalistic points provide (high peaks and clusters in one area). Rather, the
entire year is looked at holistically and all months are considered regard-
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FIGURE 15.6 Anomalistic data points: (a) DOWIA, (b) crude oil, (c) S&P500, (d) gold, (e) VIX.
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FIGURE 15.6 continued

less if there is a peak of high activity indicated in the generated algorithm
beforehand. For instance, the early 2000s recession and 911 attacks are con-
sistent with the generated algorithm, but the trade status shift with China
is certainly one that did not fall within the algorithm. The process of going
through each year once more to ensure that all possible outlier events are
accounted for is repeated for each year.

Afterwards, the outlier events are filtered and classified into one of the
following categorization ID’s (Financial=1, Global=2, Pandemic=3, Polit-
ical =4, Weather=5). The act of classifying an outlier event broadens the
narrow scope of weather that agriculture is accustomed to. When this infor-
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FIGURE 15.7 Distribution of indices.

FIGURE 15.8 Labeled outlier events.

mation coincides with fluctuation input from economic indices, it places

farmers in a better position to make better decisions. In that sense, the

AI2Farm model appeals to the liking of Verdouw et al. (2015) who depicted

the following management functions:

1) analysis and decision-making: comparing measurements with the norms

that specify the desired performance (system objectives concerning e.g.,
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quantity, quality, and lead time aspects), signaling deviations, and decid-
ing on the appropriate intervention to remove the signaled disturbances.

2) intervention: planning and implementing the chosen intervention to
correct the farm processes’ performance.

15.3 Insight into data driven farming
The intent of each site visit is to develop a better understanding of fac-
tors that are a hindrance to yield production and efficiency on farms across
the Virginia Tech network as a whole. Variance in opinion occurred due to
each farm specializing in a different aspect of agriculture from one another.
Kentland Farm focused on (crops, breeding, plants), McCormick Farm fo-
cused on (cattle, feed, Animal Science), and the dairy complex focused
on (Dairy Science). While in attendance, we observe what technology is
already in use as well as what technology could be put in place to im-
prove upon the current conditions. We then generalize responses as quali-
tative data to complement the preexisting categorization ID’s (Financial=1,
Global=2, Pandemic=3, Political =4, Weather=5).

For instance, a small grain breeder at Virginia Tech shared an example
of a severe weather event example during the visit. In Virginia, wheat and
barley are planted in the fall, go dormant over the winter, and come back in
the spring to produce grain. When maturity happens, weather has an effect
on whether or not it can be pulled out of the field in time or if they have
the quality that’s necessary to be a viable crop. Once grains are mature, bar-
ley specifically, the grain dries down and becomes ready to become a seed,
carrying a certain level of dormancy with it. However, if they are rained on
within the field, then they’ll rehydrate and sprout within the field, while
they’re still in the grain head, which reduces the quality of the product.
This severe weather event example added validity to the need of supporting
smart farm initiatives to integrate new technologies into farming practices.

15.3.1 Kentland and dairy farm

Crop Management through the use of AI is actively being used at Kentland
Farm. The method of crop management entailed; pre-mapping of land and
crops, drone calibration, and navigation using GPS (Global Positioning Sys-
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FIGURE 15.9 Prepared farm via vertical and horizontal lines for drone calibration.

tem). The quality of soil is ever so important for managing crop yields (Ge et
al., 2011). To have an accurate depiction of the quality of the soil within the
field, the farm is separated into equal boxes. Vertical and horizontal lines
are then constructed for drones to be able to detect areas within the farm to
know where the end and the beginning is and to provide data in that spe-
cific area. The farm is then prepared for the drone to fly above it and be able
to take images and read every piece of land separately.

Figs. 15.9–15.13 are sample images from Smart Farms at Virginia Tech.

15.3.2 Shenandoah Valley Agricultural Research and
Extension Center (SVAREC)

The Shenandoah Valley Agricultural Research and Extension Center
(SVAREC) conducts pasture system research and beef cattle production
within the confines of over 900 acres of owned and leased land. Cattle are
used for breeding and various projects based upon (artificial insemination,
weight, body condition scores, hip height, pregnancy checks, sex of the fe-
tus, weight of the calf, etc.).
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FIGURE 15.10 Wide-angle view of weather stations at SVAREC.

FIGURE 15.11 (a) SmartScale and (b) mechanical feeder at McCormick farms.

FIGURE 15.12 Interconnected outlier event.

The large overlay of the farm includes the weather station at the top
right corner as its focal point. Weather stations are a common piece of
technology on farms used primarily for measurements of precipitation, air
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FIGURE 15.13 Dairy machinery installed at the farm: (a) DeLaval and (b) Afimilk.

temperature, dew point temperature, wind speed & direction, barometric
pressure, soil temperature & moisture, and solar radiation. Additionally, vir-
tual fencing accompanies this large area of land. Virtual Fencing “contains
cattle by providing audio and electrical signals via a neckband device and
assists in measuring activity, health variables, weight, location, movement
towards water, and feed management. Animals are restricted in a specified
area via receiving stimulatory cues, rather than through the presence of a
physical fence enabling remote animal monitoring and movement control”
(Keshavarzi et al., 2020). Enhanced mobility of cattle is an area in which
farmers at Kentland are keen to continue to expand upon, which will be a
part of future research.

Cattle control, having agency over cattle to produce a desired outcome
or act in a desirable manner, is currently functioning as intended due to the
following two technologies in place. The mechanical feeder is in use out-
side of the traditional sense during the pandemic to slow feed for slower
slaughtering dips in consumption or national demand (top left) and the
SmartScale is used for weight management. Data collected from such mea-
sures include the following: body condition, hip height, age, calving dates,
hay amounts, feed costs, and weather data. All of which is part of economic
analysis for public policy toward the Farm Bill (USDA, 2021). The definition
of SmartScale and virtual fencing is as follows (Producer Smart Scale, year):

“SmartScale is a wireless scale system that captures animal weight, per-
formance, and behavior each time it drinks water. SmartScale is a cloud
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connected, automated scale unit that utilizes existing pen water sup-
plies to provide daily weight and performance for each animal in your
pen. Customizable to fit most existing pen water supplies and integrates
with SmartFeed bunks to provide high-quality, real-time data”.

Supply chain bottleneck is an example once more of how there’s an over-
lapping of outlier events. Supply chain bottleneck is defined as congestion
in the production system due to an increase in demand with limited ca-
pacity. The result, in this case, is supply overstock of cattle at a weight pre-
pared for slaughter at a state too early. Supply chain bottleneck occurred
when some meat processing plants shut down, preventing animals await-
ing slaughter from being processed. Cattle producers had a “12.3% decrease
in the price they receive. Although producer and consumer prices tend to
move in unison, the supply-chain bottleneck caused by Covid-19 has likely
caused a divergence” (Beckman and Countryman, 2021). Hence, why there
was and still is a need for the feed management tool.

With this scenario, one will find that outlier events are overlapping in
four out of the five categories. The pandemic impacted the world, which
in turn negatively impacted the market, which in turn negatively impacted
the farmers in such a way that involvement of the US Department of Justice
(DOJ) was needed.

Although the DOJ has reportedly contacted the four big meatpackers
(Tyson Foods, JBS SA, Cargill, and National Beef) to seek information re-
lated to an investigation into possible antitrust violations, concerns of price
fixing during the pandemic will continue to mount (Johnston, 2020). As
long as there is an imbalance and presence of middlemen in between farm-
ers and consumers, profits will never make it down to small farmers, result-
ing in farmers across the country continuing to not get their fair share. The
notion of living amidst a “broken market” due to anti-competitive practices
and market manipulation by the meat packing industry rings true. This
multifaceted outlier event will continue to impact farmers and constrain
farmers to use technology such as the food monitor to alleviate the supply
chain bottleneck when in fact the financial aspect of the diagram above is
the root cause of the problem.
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Now, that’s not to say that there aren’t outlier events that stand on their

own. The identification of such events, especially outside of the typical

weather outlier event, is equally as important. The ability to understand

outlier events and to view them in this manner will aid in the decision-

making process for farmers during both conventional and unconventional

times. Thus making the AI2Farm model even more justifiable for its use in

the future.

15.3.3 Dairy complex at Virginia Tech’s SmartFarms

The dairy complex processes 2k gallons of milk every two days through

automated milking. The data collected includes herd analysis, daily data

for production, cow’s health, activity tracking, milk quality, and infec-

tions. DeLaval machinery analyzes milk samples from lactating dairy cattle

through somatic cell count (SCC) to monitor udder health and diagnose

subclinical intramammary infection (IMI) in dairy cattle (Kandeel et al.,

2017). The AfiMilk system is versatile and can be of use for their ICAR milk

meter, integrated farm management SW, heat detection system, and milk

analyzer (Berger and Hovav, 2013).

The overall consensus is that the newer technology is solely being uti-

lized on the smart farms due to its function as a test bed for the develop-

ment and testing of technologies; in other words, it’s slower to be adopted

by beef cattle producers outside of the Virginia Tech network. The hesi-

tancy displayed by other farmers is due to a lack of trust. Trust in precision

agriculture is dependent on recommendations that are “reliable, accurate,

transparent, and fair than previous systems” (Gardezi and Stock, 2021). Es-

sentially, requesting farmers to place trust in an algorithm or model which

they are not familiar with and goes against traditional modes of farming

that have been established over the years is bold from the researcher’s

standpoint. Farmers are no longer the sole reserve of experience, as cogni-

tion and decisions have increasingly become distributed between farmers

and intelligent technologies.
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15.4 Larger policy implications
Public policy is a course of government action or inaction taken in re-
sponse to social problems. When written down as laws and directives, it
serves as precedent in future cases to see whether or not the policy was
being upheld or not. The government is a collective since it is not a unilat-
eral decision-making entity (made by one person) and, under a democratic
form of government, is consensual since citizens can elect who has the priv-
ilege of making decisions on their behalf.

The process of public policy begins with agenda setting (prioritization);
how issues get defined as political and worthy of government attention
or action by elected officials. Next is policy formulation, when a piece of
legislation can be introduced as a bill by a certain congressman, through
signature of an executive order by the president, or by bureaucratic enti-
ties. Following this step is policy implementation, the time lapse effects of
such policy being in place. Lastly, policy evaluation uses data to see if the
policy is working as intended.

In the political sphere, efforts to address agricultural issues have been
made in an overarching manner. In The fault lines of farm policy, Coppess
(2018) contended that farm risk is made up of two fundamental matters:
market risks (whether lost export demand or oversupplied markets. These
risks return prices too low to cover cost and profit needs) and weather risks
(the dilemma between good weather that can result in massive crops that
outstrip demand and lower prices and bad weather that can cause dam-
age to crops that leave too little to cover costs and needs) (Coppess, 2018).
Individuals and organizations who advocate on behalf of these concerns
include the Secretary of Agriculture, the USDA, agriculture committees
within Congress, farm lobbyists, and others. Concerns may be vocalized as
a means in which to combat activities perceived as detrimental or an en-
dangerment to society, to protect certain populations and or groups within
society, or to promote certain activities that are deemed important.

Such concerns are expressed over the years and culminate into what is
known as the Farm Bill. United States agricultural policy generally follows a
5-year legislative cycle producing a Farm Bill with the Agricultural Improve-
ment Act of 2018 (Congressional Research Service, 2019) being the most
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FIGURE 15.14 Major legislative actions on farm bills, 2018–1965 (Congressional Research
Service, 2018b).

recent. Historically, there has been a trend of enactment occurring well af-

ter the original expiration dates. The possible consequences of expiration

include “minimal disruption (if the program is able to be continued via ap-

propriations), ceasing new activity (if its authorization to use mandatory

funding expires), or reverting to permanent laws enacted decades ago (for

the farm commodity programs)” (Congressional Research Service, 2018a).

What’s more, is that Farm Bill reauthorization has become more complex

with the process of enacting a new farm bill varying from previous years as

follows (Congressional Research Service, 2018b) (see Fig. 15.14):

“Prior to the expiration of the existing law has become more difficult.
As stakeholders in the farm bill have become more diverse, more peo-
ple are affected by the legislative uncertainty around this process. This
lack of certainty may translate into questions about the availability of
future program benefits, some of which may affect agricultural produc-
tion decisions or market uncertainty for agricultural commodities.”
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In regard to outlier events, the Farm Bill contains support programs for
agricultural disaster assistance, such as Price loss coverage (PLC), Agricul-
ture risk coverage (ARC), and the Marketing assistance loan (MAL) program.
However, federal assistance to recover financially from natural disasters is a
method that occurs after the fact and is not a preventative measure desired
by most farmers. Responding in the manner of federal assistance quali-
fies as a short-run policy (primarily in the coming weeks) over which the
“supply of goods and services can be altered into a better state for essential
goods and services” (The Brookings Institution and Snower, 2020).

Specific efforts to accommodate farmers’ needs during the pandemic in-
cluded funding such as the American rescue plan, the U.S. Department
of Agriculture’s implementation of the Coronavirus Aid, Relief, and Eco-
nomic Security (CARES) Act of 2020, and much more (USDA, 2021). The
pandemic was chosen in large part due to its illustration of how intricate
and interconnected the market is. The global ramifications of the spread
of the coronavirus were evident when policy adjustments were made si-
multaneously across the globe; adversely disrupting market and trade. An
analysis of the distribution of measures undertaken by 54 countries during
the first four months of 2020 provides some early insights into the empha-
sis, scope, and regional diversity of policy responses. The study found that
temporary measures taken by existing countries within the international re-
lations community, had “adverse effects on consumers (import restrictions
or local promotion measures), producers (export restrictions), food chain
actors (market distorting measures), and the environment (regulatory re-
laxations, input subsidies)” (Gruère and Brooks, 2021). In turn, temporary
relief measures as a response to outlier events, is a double edge sword. Lift-
ing measures at the conclusion of such an event not only will send the
market into shock once more, but complicate the relationship of actors in
the future.

Presenting information from the AI2Farm model to policymakers (U.S.
government) would alleviate the need to disperse funding affecting the na-
tional budget on such short notice and lessen the reliance upon loans for
commodities by farmers. Additionally, the data on outlier events could be
used as evidence within cases such as the disparity between packers’ prof-
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its and beef prices which have widened during the pandemic being brought
before the DOJ, quickening the process for policy changes that would most
likely occur before the typical 5-year legislative process.

The Farm Bill is faced with the daunting task of not only improving upon
the bill from previous years, but also navigating uncertainty with the im-
plementation of new procedures in the future. Despite the best effort of a
well written bill, the inevitable zone of uncertainty diminishes the impact
of such policies (Novak et al., 2015). Therefore successful production sea-
son would be simply unattainable if farmers weren’t afforded the flexibility
provided by the AI2Farm model and had to rely heavily on the details stated
within the Farm Bill.

15.5 Conclusion
In this work, we posed the following question that is inverse of the typical
way that agriculture farming is discussed: One should ask not what is the
most efficient way to provide aid to farmers in the form of compensation for
commodity and income losses following an outlier event, but rather what
is the most efficient way to inform farmers about conventional and uncon-
ventional time to alleviate shock to commodity production. The AI2Farm
model provides farmers with the much needed flexibility to persist within
the ever changing environment within society.
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tive process has long been fueled by countless hours of research into the past as
well as predictions of the future. The effort of manual information processing
is positioned to be re-engineered for the information age due to progress made
in big data and Artificial Intelligence (AI). The system presented in this chapter
designated as the “Associated Impact Measure,” or AIM, integrates spatiotempo-
ral data collected from state repositories with technology-related public policy
information into a single dataset. The policies are then compared textually us-
ing natural language processing (NLP) methods and numerically with the use
of environmental descriptors; data are collected on the states themselves. Fi-
nally, these comparisons are utilized by an artificial neural network to learn
and predict the associated impacts that the policies have on trends describing
technology usage for the respective state. The primary struggle of creating legis-
lation is determining how it will affect the state/country. Addressing dark data
as a means of AI assurance, as well as considering the ethics of using AI in the
legislative process are of the utmost concern; in this chapter, they are measured,
experimented, and presented.

Keywords

AI applications, dark data, evidence-based policymaking, artificial neural net-
works, natural language processing, spectral clustering

Highlights

• Using TFIDF and spectral clustering, legislation text is represented numerically, and

similar laws are grouped into meaningful clusters

• An artificial neural network is used to make nonlinear inferences on an atypical

dataset with high accuracy

• Dark data surrounding the policymaking process is incorporated into an AI-enabled

system that produces more accurate predictions of trends in technology usage

• Evidence-based policymaking is benefited by AI-enabled systems that take into

consideration contextual and multidimensional data that are linked together

spatiotemporally

• Ethical considerations in certain AI applications are necessary, especially when the

domain of application is as human-centric as public policy

• This chapter concludes with a discussion about AI’s place in the past, present, and

future of the legislative process
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16.1 Introduction
The legislative process does not operate in a vacuum, but instead at the
intersection of many domains (Klein, 1990). This chapter presents an ex-
planation and demonstration of a method of predictive modeling that
uses cutting-edge practices in many fields, such as engineering, political
science, mathematics, and social sciences. When examining the scope of
public policy, the many phases that the laws at hand go through are re-
search, writing, negotiation, voting, enactment, and enforcement; see Keat-
ing (2016). Throughout this process, existing laws are used to inform the
needs of future laws by identifying gaps or overreaches that they might con-
tain. Measuring and quantifying the impact that a policy has on the world
is a difficult and persistent challenge (Segone, 2008). It is this exercise that
we propose can be assisted and improved using AI. With these primary
considerations, a clear need can be identified for a system that facilitates
technological advancements in policy advocacy.

With the goal of developing an appropriate solution to the aforemen-
tioned problem, data are collected and we develop a pipeline that aggre-
gates the text of public policies related to technology and data collected
from several national sources into one dataset. Through the lens of an ANN,
the dataset is used to support evidence-based policymaking for legislators
by way of providing them with AI-derived insights about the policies they
are interested in.

16.1.1 Background

When establishing a framework for merging data and legislation, several
concerns need to be addressed. AIM is developed in a way that includes
ever-present “dark data” in the legislative research process by expanding
the scope from which information is gathered, which is one of the primary
considerations when addressing the reliability and accuracy of AI systems.
Dark data as a class of information is not readily accessible or stored in
a way that makes it practically invisible to scientists and other potential
users, therefore the information is likely to remain underutilized and even-
tually lost (Heidorn, 2008). As the promise of value from big data grows, and
cloud storage becomes less expensive and more accessible, data are being
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hoarded and stored for every possible topic or subject. The existence of this
information is not causing problems, but the conclusions that intelligent
systems come to without the “dark data” might be, for more information
refer to Grimm (2018).

This is one of the most important concepts related to AIM, because the
purpose of the system is to merge readily available data about technology
usage with public policies and make predictions using that information,
which is directly addressing dark data. To take advantage of the data that are
collected, the developed framework for the project is designed to append
contextual information about when and where the law was passed. Includ-
ing this additional data as inputs to the model makes for a well-informed
and reliable method of predictive modeling.

The overarching goal of the AIM system is to automate and perform pol-
icy advocation. The term “policy advocacy” is used to describe any research
or process that terminates in the direct advocacy of a single policy or a
group of policies (Gordon et al., 1977). It would be possible for human re-
searchers to go through the data available online and identify trends, make
associations, and come to conclusions about future policies; however, this
is a cumbersome and delicate process. The benefits of using AI for this type
of application are that new patterns can be recognized that might not be in-
tuitive or obvious to a human observer, and the computations can be done
in seconds, rather than days or weeks of research by humans. AIM exists at
the intersection of policy monitoring and big data, and should be used as a
tool for political researchers when performing policy evaluation.

16.1.2 Motivation

In the wake of a global pandemic, policymaking has been scrutinized and
public trust in opinion-based policymaking has been diminished (O’Math-
úna et al., 2021; Yaros et al., 2021). It is more important than ever to be-
gin integrating intelligent systems into the policy evaluation and advocacy
process. Evidence-based approaches facilitate policymaking in a manner
that is more respective of the scientific method (Nutley et al., 2002), be-
ginning with initial hypotheses and evaluating them based on experimen-
tation and research. On the contrary, opinion-based policymaking is typ-
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FIGURE 16.1 Dynamics of Policy Making: There is overlap between each type of political
process, with each succeeding process having increased technical influence. Adapted from
Segone (2008).

ically based on limited and selective use of evidence or untested views of
individuals or groups, based on ideology, prejudice, or speculative conjec-
ture. Fig. 16.1 illustrates that there is a spectrum of policymaking dynamics,
and that evidence-based politics is only possible with an increased techni-
cal capacity, which AIM is positioned to support. The original figure, see
Segone (2008), has three dynamics: opinion-based, evidence-influenced,
and evidence-based. We see fit that evidence-based dynamics can be bro-
ken into two distinct policy dynamics, data-driven and AI influenced.

Each policy-making dynamic has a technical capacity that is low in to-
tally nontechnical processes, and high in very technical processes. As the
technical capacity of a dynamic increases, so does the amount of abstrac-
tion between evidence and policy decisions. Opinion-based can be thought
of as no level of abstraction between a lawmaker’s experiences and opin-
ions, and their policy decision. An evidence-influenced process incorpo-
rates some amount of evidence outside personal experience in the logic
of the process. The data-driven process expands the “evidence” further to
include historical trends, data visualizations, and statistical analysis of met-
rics to inform a policy decision. Where AIM falls on this spectrum is under
the AI influenced category, because there is a middle-man between the data
and the policymaker, providing an additional level of abstraction necessary
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for such complex and large datasets, and that middle-man is the AI algo-
rithm itself.

AI research is a broad term that can mean several different things, es-
pecially when comparing its usage across industries (Batarseh et al., 2021).
The breadth of applications of AI is constantly expanding, and AI for public
policy is on the frontier of that expansion. Many companies and institutions
involved with AI are putting in place frameworks and guidelines that can
direct these new developments in safe and human-centric ways (Thierer et
al., 2019). One of the most prominent groups dedicated to exploring the use
of AI systems in policymaking processes is the Alan Turing Institute, where
their Public Policy research program states their mission as “Working with
policymakers on data-driven public services and innovation to solve pol-
icy problems, and developing ethical foundations for data science and AI
policy-making” (Leslie et al., 2021). It is initiatives like this that inspire and
encourage the research done in this chapter, because it becomes clear that
there is an interest and demand for high-quality AI-powered systems that
can be used to elevate the policymaking process for the good of all.

16.1.3 The AIM pipeline

As a prerequisite to discussing any individual component of the AIM sys-
tem, it is important to understand the overall flow of information and how
it is transformed and combined. The pipeline adheres to a traditional su-
pervised machine learning structure, using features and labels to train a
model, and then predicts the labels based on unseen features. In this case,
the input features are a combination of two types of data: individual poli-
cies and environmental descriptors. Environmental descriptors numeric
features describe the “environment” that the law was passed in; this will
be explained further in Section 16.2.4. These features are then married to
labels, which are metrics of interest that are tracked over space and time
(state and year). Each datapoint’s feature set describes the text of the law
as well as the circumstances of its enactment, each set of labels represents
an associated impact on a given metric of interest; this will be explained
further in Section 16.2.2. The neural network is trained on this data and pre-
dicts those labels for new policies, and these predictions are used to better



Chapter 16 • Bringing dark data to light with AI 537

understand the effect that upcoming or proposed policies will have on the
world around them. The white boxes in the diagram represent transforma-
tions in the data, which are necessary when combining data that come from
different sources and are different data types.

16.2 The dataset for AIM
The foundation of any AI system is a dataset architecture that allows for in-
ference and understanding, and that was a primary consideration for the
development of AIM. Data are collected from many different sources, rang-
ing from state websites to government agencies. Having a diverse pool of
information poses both challenges and opportunities that are based on the
quality of the connection between data. One of the primary concerns that
arose from the data collection process was answering the following ques-
tion: How will the data be connected? To find out, a paradigm had to be
developed that could join together data describing technology usage, legis-
lation, and state information.

16.2.1 Dataset paradigm

The AIM system starts with unstructured, unlabeled data. Three types of
data that come from numerous sources are hard to link among a common
dimension, especially one that makes sense in the context of the prob-
lem. Using AI for policy recommendation, this connection needs to be a
significant one. For this reason, we decided to connect the data spatiotem-
porally. This common thread is visualized in Fig. 16.3, showing the three
categories of data and examples of their respective dimensions. Technology
usage metrics and state information are tracked regularly over time, and
each state is tracked separately. Each individual policy includes the corre-
sponding state and the year it was passed in. Therefore the commonality is
that these data are connected in space and time, being year and state. This
allows the specificity of each metric value to be assigned to specific laws,
for example, a law passed in 2017 for the state of Virginia will have environ-
mental descriptor and technology metric values specific to that state and
year.
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FIGURE 16.2 AIM pipeline diagram – Colors represent data types.

FIGURE 16.3 Technology Policy Data Venn Diagram: The common feature in the data is
that all variables are associated with a state and a year.

In Fig. 16.2 and Fig. 16.3, data categories are represented graphically.
Orange-colored (mid gray in print version) sections are metrics of interest
or the labels for the data and are used to assess the impacts laws had on
the world; green-colored (light gray in print version) sections are legislation
texts and are how laws are represented; blue-colored (gray in print version)
sections are features for the data, which are engineered to be used as inputs
to an algorithm, and the purple-colored (dark gray in print version) section
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is environmental descriptors, which are additional inputs that address dark

data.

16.2.2 Metrics of interest

Metrics of interest are data that describe how people use technology across

the United States. The purpose of using this information is to understand

trends in technology usage and how things change over time, and how peo-

ple use technology differently in different parts of the country. Table 16.1

provides an exhaustive list of all of the metrics of interest used for train-

ing and prediction with AIM. One example might be that people in Mary-

land might use the internet to work remotely more than people who live in

Washington, DC. By predicting these metrics for upcoming policies, policy-

makers can be informed on the potential impact their law might be asso-

ciated with for key metrics that they deem important to their constituent’s

interest.

As a means of determining policy efficacy, metrics of interest can be used

on their own or in conjunction with AIM to make future predictions about

how metrics of interest might be impacted by a piece of legislation. For ex-

ample, a state legislator in Vermont might be interested in passing a bill

that would increase the proportion of citizens that have access to broad-

band internet, and AIM’s analysis would be able to tell that legislator that

the law they give as an input is predicted to increase that metric by 50,000;

this would be a positive indicator for the policy’s potential. Each metric has

a minimum temporal resolution of 1 year and is available for all 50 states

and Washington, DC.

In total 47 metrics of interest are all tracked over many years and for each

of the 50 states. The overall theme of the metrics is that they can reveal pat-

terns in the ways that people use technology, which is what we suspect the

laws will have an influence on, because all of the laws are related to technol-

ogy. If a change in the metric spatiotemporally coincides with the passing of

a policy, and this happens consistently with similar policies, then it would

be an important insight to lawmakers and is the bedrock of this project.
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Table 16.1 List of Tracked Metrics of Interest: Sourced from US federal census survey
responses.
Metrics of Interest

Device Use: Universe: Ages 3+ Civilian Persons

• The Number of Civilians That Use a Desktop Computer
• The Number of Civilians That Use a Laptop
• The Number of Civilians That Use a Tablet or An E-Book
• The Number of Civilians That Use a Smart Tv or A TV - Connected Device
• The Number of Civilians That Wear Smart Watches, etc

Internet Use: Universe: Ages 3+ Civilian Persons

• The Number of Internet Users That Are Ages 3 And Up
• The Number of Adult Internet Users That Are Ages 15 And Up
• The Number of Civilians Who Use the Internet at Home
• The Number of Civilians Who Use the Internet at Work
• The Number of Civilians Who Use the Internet at School
• The Number of Civilians Who Use Internet at Coffee Shop or Other Business
• The Number of Civilians Who Use the Internet While Traveling Between Places
• The Number of Civilians Who Use the Internet While in A Public Place (Library, Community

Center, etc)
• The Number of Households That Has Anyone in The House to Use the Internet at Any Loca-

tion
• The Number of Households That Use Home Internet While at Home
• The Number of Households That Have No Home Internet Use by Anyone Member in The

House

Non-Use of the Internet at Home: Universe: Households Without Any Home Internet
Users

• The Number of Offline Households That Had Prior Home Internet Use by Anyone in House
• The Number of Offline Households Whose Main Reason for Offline Is No Need or Interest
• The Number of Offline Households Whose Main Reason for Offline Is Internet Is Too Expen-

sive
• The Number of Offline Households Whose Main Reason for Being Offline Is No Computer
• The Number of Offline Households Whose Main Reason for Being Offline Is They Use Internet

Elsewhere
• The Number of Offline Households Whose Main Reason for Being Offline Is Privacy and

Security Reasons
• The Number of Offline Households Whose Main Reason for Being Offline Is Not Available

Where They Live

continued on next page
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Table 16.1 (continued)
Metrics of Interest
Types of Internet Service: Universe: Households With Home Internet Use, Unless Oth-
erwise Stated Below

• The Number of Households That Has At Least One Person to Use Mobile Data for Internet
Access

• Universe: Households With At Least One Internet User from Any Location
• The Number of Households That Use Wired High Speed Technology to Access the Internet
• The Number of Households That Use Satellite Technology to Access the Internet
• The Number of Households That Use Dialup Technology to Access the Internet
• The Number of Households That Buy Home Internet from A Company
• The Number of Households That Buy Home Internet from A Public Agency, Non-Profit or

Corporation
• Number Of Households Where Home Internet Is Provided by Building/Condo, And Included

Housing Costs
• Number Of Households That Have Home Internet Publicly at No Charge

Online Activities: Universe: Civilians ages 15+ that use the internet

• The Number of Civilians Who Use the Internet for Email
• The Number of Civilians Who Use the Internet to Text, or Instant Message
• The Number of Civilians Who Use Social Networking
• The Number of Civilians Who Publish or Upload Blog Posts, Videos, or Other Content
• The Number of Civilians Who Use the Internet for Voice/Video Calls or Conferences
• The Number of Civilians That Use the Internet to Watch Videos Online
• The Number of Civilians That Use the Internet to Stream/Download Music, Radio, Or Pod-

casts
• The Number of Civilians That Work Remotely
• The Number of Civilians That Use the Internet to Look for A Job
• The Number of Civilians That Take Online Classes or Participate in Online Job Training
• The Number of Civilians That Use Online Financial Services (Banking, Investing, Paying Bills)
• The Number of Civilians That Shop, Make Reservations, Or Use Other Consumer Services on

The Internet
• The Number of Civilians That Sell Goods Over the Internet
• The Number of Civilians That Offer Services for Sale Over the Internet
• The Number of Civilians That Interact with Household Devices That Use the Internet

16.2.3 Legislation data

The legislation data in this project is from a single source: Pew Charita-
ble Trusts (2021), which is an independent non-governmental organization
with a stated mission of “improving public policy, informing the public, and
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Table 16.2 Policy Datapoint: An example of what policy data are read in as.
Policy Header 2019 Md. Laws, Chap. 14

Code Title Local Government Infrastructure Fund (Fund - Broadband)

Year 2019

State Maryland

State Code Text Local Government Infrastructure Fund. Provide funds to provide grants
and loans to local governments and private providers for improvements
to broadband Internet access, provided that the Office of Rural Broadband
shall award grants and loans to local governments in a competitively and
technologically neutral fashion, provide for fixed and mobile broadband,
and target funds to unserved and underserved areas of the State. Further
provided that grants and loans may be used for all necessary capital ex-
penses associated with construction or upgrading broadband networks,
including but not limited to switches, transmitters, equipment shelters,
transport, routers, access points, or network interface devices. Funds shall
not be used for operating expenses, including but not limited to leases and
customer devices such as handsets, laptops, and tablets . . . $9,680,000

invigorating civic life” (Pew Charitable Trusts, 2021). This source compiles

data on public policies that are separable by regulatory discipline; in the

case of AIM, policies that impact technology usage were chosen to be the

subject. The data downloaded from The Pew Trusts site include the header,

the code title, the year the code was passed, the respective state, the state

code, and summaries written by Pew researchers. To make the system as

reproducible as possible, the summaries were excluded from the data. See

Table 16.2.

The data has dimensions including official policy header, the title of the

code, the year the policy was enacted, the state the policy was enacted in,

and the complete text of the state code. The state code data are the di-

rect wording of each policy. This information is rich with keywords and

motivations, which would be a significant challenge for natural language

processing (NLP) to make serious inference from, so we chose to use a sim-

ple approach to abstracting the text data into a numeric feature that could

be used as an input to the model. This is accomplished using term fre-

quency inverse document frequency (TFIDF) and spectral clustering to put
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laws into clusters based on similarities in the text of the state code. This
approach is described in more detail in Section 16.3.2 of this chapter.

16.2.4 Environmental descriptors

Environmental descriptors are a way to enrich the physical location infor-
mation encoded in the data. By adding numeric features that describe the
environment, hence the name environmental descriptors, the model learns
more than just the name of the state that the law is passed in. When dealing
with technology such as broadband, for example, an important considera-
tion to lawmakers would be the size of a state. The policies that work for
Maryland and Delaware likely wouldn’t have the same impact on states
such as Texas and Montana, simply because there are very different con-
siderations for that technology in states with lower population densities
and more funding per person towards technology initiatives. State funds
and federal funds of technology research were one environmental descrip-
tor that we chose to use, because the amount of funding a state has for tech
research and development from the government likely differentiates states
that have good infrastructure from those that don’t. Table 16.3 lists all of
the environmental descriptors collected for this project, most of which are
used to describe the socioeconomic properties of the state, but some vari-
ables have political significance, such as the number of legislators which
serve to inform the political side of the problem.

Environmental descriptors provide a means to address the concept of
dark data, discussed many times throughout this chapter. By filling in
the dataset with the added dimensionality of environmental descriptors, a
more complete and detailed dataset provides researchers with more possi-
ble trends to correlate with metrics of interest, increases the breadth of data
trends for ML algorithms to identify, and makes the predictions of the AIM
system less dependent on a single source or type of data, thus increasing
the robustness of the algorithm.

16.3 Feature creation
In the case of policies considered in this study, raw data are a string con-
taining a state, year, title, and state code text. In the case of technology
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Table 16.3 List of Environmental Descriptors: Tracking physical and socioeconomic de-
scriptors of the states that are used to inform the AIM algorithm on multiple aspects
that can be used to compare states.
Environmental Descriptors

• Population
• The Amount of Funding for State Government
• The Amount of Funding State Government Received from Federal Government
• Total Funding (Sum of Federal and State)
• Per Capita Funding (Total Funding Over Population)
• Monthly Unemployment Rate
• Median Household Income
• Gross Domestic Product by State (Millions of Current Dollars)
• Gross Domestic Product Per Capita By State
• Percent Of 4-Year-olds Enrolled in State-Funded Pre-K
• Percent Of People 25 Years and Over Who Have Completed High School (Includes Equiva-

lency)
• Percent Of People 25 Years and Over Who Have Completed a Bachelor’s Degree
• Percent Of All Bridges Structurally Deficient
• Total Number of Traffic Fatalities
• Total Renewable Energy Net Generation (Thousand Kilowatt-hours)
• Violent Crime Rate Per 100,000 Population
• Total Expenditures for Public Elementary and Secondary Education (In Thousands of Dollars)
• Degree Granting Higher Education Institutions: All Public Institutions
• Elementary And Secondary Education Expenditures (In Millions of Dollars): Total
• Alternative Fuel Vehicles in Use
• State Intergovernmental Expenditures: Total (In Thousands of Dollars)
• State Intergovernmental Revenue: Total (in Thousands of Dollars)
• Federal Government Expenditures: Total (in Millions of Dollars)
• State Government Tax Revenue: Total (in Thousands of Dollars)
• State Debt Outstanding at End of Fiscal Year (in thousands of dollars): Total
• State Statistics: Number of Representatives in Congress
• Number of Legislators: Total in Senate
• Voting Statistics for Presidential Elections: Number Voting
• Top 1% Income Share

metrics, raw data are web-based tables of survey numbers, counts, dollar
amounts, and percentages all separated by state and year. To convert these
data into a format that can be mathematically manipulated and made sense
of by a machine learning algorithm, several transformations need to first
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occur. Data need to be made numerical and standardized, text needs to be
processed using natural language processing, and connections need to be
made around the central axis of the dataset; in this case, space and time.
Whether the variable is state code, population, or the number of house-
holds using wired internet, all of the data are bound to a state and year from
which it was recorded. This allows us to manipulate the data in such a way
that is intuitive from an interpretation point of view.

16.3.1 Policies as data

One manipulation that may not be immediately obvious is “how do you
represent a piece of legislation numerically?” There are not many examples
of this exact problem available in literature. However, there is a very vast
knowledge base of NLP tools that have been developed over the past 10
years. Using any single method would be difficult to justify for the purpose
of evaluating policies, so using the principle of Occam’s razor, a very sim-
ple method was chosen. To keep the AIM pipeline modular and adaptable
for future developments, the preprocessing of data through NLP and TFIDF
can be removed from the pipeline and replaced with other methods of rep-
resenting the policies in the future.

16.3.2 NLP in AIM

To represent the laws and compare them to one another, numerical repre-
sentation of text is needed before any further processing can be performed.
Natural language processing is a growing and demanding field of AI, so to
keep the focus of this project on the AIM system for policymaking, term fre-
quency inverse document frequency (TFIDF) was selected as a straightfor-
ward implementation method for transforming the textual data to numeric
data. TFIDF is a text vectorization method that is commonly used in ma-
chine learning to convert text into a numerical representation. There are
two parts to the TFIDF algorithm: the first (Eq. (16.1)) is the term frequency
component, where a count of word appearances in the body of text is cal-
culated, and because there are going to be documents of varying length,
the count is normalized by dividing all counts by the length of the docu-
ment. The second (Eq. (16.2)) is the inverse document frequency, or how
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FIGURE 16.4 Similarity Plot: Cosine similarity of TFIDF vectorizations of state codes.

rare a word is in the set of documents. Putting both parts together results
in the TFIDF algorithm (Eq. (16.3)), and outputs a vector representation of
any body of text.

tf (t, d) = log(1 + f req (t, d)) (16.1)

idf (t,D) = log(
N

count (d ∈ D : t ∈ d)
) (16.2)

tf idf (t, d,D) = tf (t, d) .idf (t,D) (16.3)

The TFIDF vectorization for each policy was calculated using the equations
above, and then a similarity matrix was calculated based on the vector rep-
resentations of each policy using cosine similarity. Similarity values range
from 0 to 1, with 1 meaning identical and 0 meaning no similarity. By visual-
izing the matrix as a heat map in Fig. 16.4, the entire matrix with all 693,889
connections is presented with a line of 1’s for self-similarity and other highs
and lows in the plot. There is no discernable pattern, because the policies
are sorted alphabetically by state, which is identifiably not associated with
the content of the laws.

The similarity matrix is the next step in converting the laws into a mean-
ingful clustered representation that can be used as an input to the neural
network.
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Table 16.4 Clustering Sizes: Laws grouped by TFIDF vector-
ization similarities.
Cluster 1 2 3 4 5 6 7 8 9 10
Size (n) 93 74 145 59 44 63 40 83 77 55

16.3.3 Spectral clustering of laws

Using the similarity matrix visualized in Fig. 16.4, similarity values can
be transformed into clusters using a variety of techniques, one of which
is called spectral clustering. Spectral clustering in general encompasses a
class of clustering algorithms that produce high-quality clusters on small
datasets. With a computational complexity of O(n3), the dataset that this
project is concerned with is small enough to be practical, with less than
1000 data points. However, expanding by orders of magnitude in the future
may require a rethinking of this procedure (Yan et al., 2009). With a selected
number of clusters equal to 10, very even groups were able to be generated
as seen in Table 16.4. This number of groups was also ideal, because con-
verting into a one-hot encoded format and using that as the input to the
neural network was not a cumbersome process.

16.3.4 Technology usage as data

To represent changes in the technology metrics that would be useful to pre-
dict, a first-order derivative labeling schema was employed to transform the
data from static points to velocity indicators. For a given year i, the metric
value xi is used as a baseline, and the next valid year is used to find the dif-
ference. If the value in the next valid year sees an increase in the metric,
then the function returns the positive difference divided by the number of
years, indicating an upward trend and a positive slope. If the value in the
next valid year sees a decrease in the metric, then the function returns the
negative difference divided by the number of years, indicating a downward
trend and a negative slope.

f (X, i) = xi+�i − xi

�i
(16.4)
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The resulting data are used as labels for the neural network to train on and
predict for new data points. By predicting changes in the metrics of interest,
AIM is able to predict the associated impact on each of the 47 metrics. The
word associated is chosen, because there is no definite correlation or cau-
sation between the change in the metric and the passing of the law, and the
word impact is chosen, because the change in the metric is a representation
of the impact on the lives of constituents who were surveyed or studied as
sources of the data.

16.4 Learning the trends
As an AI-enabled system, the learning method is very important and was
carefully chosen for a project involving a topic as sensitive and susceptible
to criticism as political advocacy. A few of the criteria for the algorithm that
would learn the trends were the following: it must be explainable, it must be
transparent (as opposed to black box), and it must be accurate in making
predictions.

16.4.1 Neural network predicting AIMs

Neural networks are biologically inspired mathematical functions that have
individual layers of nodes, each node in a layer being connected to every
node in the subsequent layer with learned weighted connections and used
to generate output values (of any dimension) based on input values (of any
dimension). This last property was particularly important to this project,
having 47 output values and 40 input values, because not all algorithms or
structures of neural networks are as flexible.

The network used for AIM has 3 hidden layers, all of which are linear,
with varying numbers of nodes in each layer. The objective of predicting
the associated impact measures is fulfilled by training and deploying the
model shown in Fig. 16.5. Referring to the pipeline in Fig. 16.2, the model is
the endpoint of the AIM system backend and the starting point for the AIM
system frontend, where new laws can be predicted upon to assist policy
researchers and data scientists.

Fig. 16.5 is a visual representation of the ANN used in the AIM pipeline.
The color and opacity of connections between nodes are reflective of the
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FIGURE 16.5 Artificial Neural Network: Visualization of weights and layers in the neural
network.

weight generated using an open-source online tool. Creating visual repre-
sentations of neural networks (LeNail, 2019) is a step towards greater ex-
plainability in AI, one of the core pillars of AI assurance.

16.4.2 Training metrics

Training a neural network requires a number of decisions to be made of the
programmer building the algorithm. The first is the loss function; this value
is what the algorithm is seeking to minimize and will train accordingly to
produce the lowest allowable loss value. In AIM we implement the mean
squared error loss function, which adheres to the format of Eqs. (16.5) and
(16.6).

� (x, y) = mean (L) (16.5)

L = {l1, . . . , lN }�, ln = (xn − yn)
2 (16.6)
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FIGURE 16.6 Model Evaluation Plot: High cost initially, with training the model becomes
more accurate.

Observing the loss as training proceeds in Fig. 16.6, the algorithm performs
well, beginning relatively high for normalized data at 0.14 (which is ex-
pected) and decreasing drastically and consistently after training multiple
epochs.

With a train-test split of 80% train and 20% test, the data are segregated
and ready to evaluate. The final loss for the training dataset was 0.0009, and
the loss for the test set was 0.0036. As seen in Fig. 16.6, the cost over epoch
plot of training the neural network shows a major improvement (decrease)
in loss over the first 50 epochs before leveling out near 0. These results pro-
vide high confidence in the ability for the model to accurately predict the
associated impact on metrics of interest, the primary objective of AIM.

16.4.3 Prediction results

For an upcoming piece of legislation, the input to AIM consists of a state,
a year, and a state code. Through the processing established in the sys-
tem, environmental descriptors are automatically appended, a cluster is
assigned based on the text of the policy, and the trained neural network
predicts the change in the technology metrics. Below is an example of what
the system outputs given a piece of legislation; importantly, the state code
itself is used to assign a data point to a similarity cluster and not any third-
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Table 16.5 Colorado Legislation Input: Datapoint from the test set of the data, “Colo.
Rev. Stat. 29-27.401” shows the typical input to the system.
Policy Header Colo. Rev. Stat. 29-27-401

Code Title Legislative declaration

State Colorado

Year 2017

State Code Text (1) The general assembly finds and declares that: (a) The permitting, con-
struction, modification, maintenance, and operation of broadband facilities
are critical to ensuring that all citizens in the state have true access to
advanced technology and information; (b) These facilities are critical to en-
suring that businesses and schools throughout the state remain competitive
in the global economy; and (c) The permitting, construction, modification,
maintenance, and operation of these facilities, to the extent specifically ad-
dressed in this part 4, are declared to be matters of statewide concern and
interest. (2) The general assembly further finds and declares that: (a) Small
cell facilities often may be deployed most effectively in the public rights-
of-way; and (b) Access to local government structures is essential to the
construction and maintenance of wireless service facilities or broadband
facilities.

party generated summaries, making the system more robust and generally
applicable.

With the prediction results displayed as a table, interpretation of the pre-
dictions can be made by an expert as to whether the results reflect positively
or negatively on the proposed law. What Table 16.6 shows is annualized
changes in the individual metrics. So, for instance, the law in Table 16.5
specifically states that building internet infrastructure is critical to the mis-
sion of the state and making Colorado competitive in a global economy.
It would benefit researchers to know what the expected impact would be
associated with a law like this regarding broadband access and internet ac-
cessibility. By looking at the variables that correspond to trends related to
broadband access and internet accessibility, we can see what AIM delivers
and how it can be used to inform policy researchers.

The results from Table 16.6 describe that Colorado citizens with internet
at their home is predicted to increase by 196,542, and the number of citi-
zens who don’t have internet at home because it is too expensive decreases
by 45,220. This example uses a law that is from the test set. However, the sys-
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Table 16.6 Predicted Metrics: AIM produces a prediction for every metric by using
the input in Table 16.5 and the trained neural network from Fig. 16.5.
Metrics of Interest Predictions for

“Colo. Rev. Stat.
29-27-401”

Metrics of Interest (2) Predictions for
“Colo. Rev. Stat.
29-27-401” (2)

desktop_use +13589.0 useIntElsewhere +3069.0

laptop_use +275224.0 unavailableInt +1115.0

tablet_use +42265.5 mobileDataUsers +168515.0

mobile_use +374395.5 wiredHigh-

SpeedUsers

+212822.0

smartTV_use +292803.0 satelliteUsers -25186.5

wearable_use +225967.0 dialUpUsers -13540.0

intUsers_above3 +440629.5 intPrivateISP +190382.5

intUsers_above15 +358238.0 intPublicISP +2152.5

homeIntUsers +467141.5 intIncluded +15166.0

workIntUsers +150907.0 intPublicFree +2028.0

schoolIntUsers +72093.0 emailUsers +276797.0

cafeIntUsers +106189.5 textIMUsers +293107.5

altHomeIntUsers +181263.0 socialNetUsers +147679.0

travelIntUsers +371278.5 publishUsers +111882.0

publicIntUsers +51240.0 onlineConfUsers +152372.0

anyHomeIntUsers +16158.5 videoUsers +199706.5

intAtHome +196542.0 teleworkUsers +118745.5

noIntAtHome -155053.5 jobSearchUsers +27160.5

homeEverOnline -67682.5 onlineClassUsers +18923.0

noNeedInt -74163.5 financeUsers +217197.5

noExpensiveInt -45220.0 eCommerceUsers +257499.5

noComputerInt -10388.5 sellingGoodsUsers -4515.0

noPrivSecInt +1680.5 iotUsers +191678.5

tem could perform this prediction for laws that are currently in the writing

process to evaluate potential effectiveness. This is a perfect example of how

policies can be associated with impacts on metrics of interest, and though

the relationship is not causal or even measurably correlated, the trends can

still be used to inform policymakers in directing their investigations, while

performing policy monitoring and policy advocacy activities.
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16.5 Discussions and future directions
The AIM system is a proof of concept that AI-enabled tools, in conjunc-
tion with big data and cloud computing services, are ready to enter the
legislative arena. Methods presented in this chapter demonstrate the abil-
ity to collect and utilize different types of data, unify them into a single
format, and make predictions with a neural network for the purpose of
making the legislative process better informed. Addressing dark data is a
primary goal of this project, and in doing so we found that though no artifi-
cial system will be as naturally intuitive as a human policy researcher, it can
be extremely useful at delivering accurate measurements very quickly, and
in political situations that the United States finds itself in today, accuracy,
transparency, and accountability, are very valuable characteristics.

16.5.1 Feasible applications

As mentioned, many times in this chapter, AIM is a tool that is meant to as-
sist lawmakers and policy researchers in doing their due diligence when it
comes to evaluating technology policies. Should it be deemed necessary,
changing the datasets to be more inclusive of domains other than tech-
nology, for example, economics or transportation or foreign policy, this
application architecture could be applied to much more complicated and
critical areas of politics. One issue with raising the stakes of the AIM system
is that the algorithm needs to be more accurate, more robust, and much
less susceptible to making mistakes. There are many methods described in
this book that can be used to achieve all of these properties. AI assurance
is a critical domain for computer science, mathematics, cybersecurity, and
with this application, politics. There is no doubt that as the computational
domain exits the control of its human operators in the future; artificially
intelligent systems will be what dictates many areas of decision-making.
Therefore it is of the utmost importance that AI now is developed in a safe,
explainable, predictable, and human-centric fashion.

16.5.2 Future directions

Many aspects of the AIM architecture deserve to be scrutinized and im-
proved upon. For example, the environmental descriptors used in the data
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could be expanded upon to make the feature set of the ML algorithm more
detailed and less ignorant of dark data. It will never be possible to be fully
inclusive of all information that exists, but the pursuit of that inclusivity will
drive the improvement of accuracy and efficiency of AI systems for years to
come. With constant advancements in the development of AI algorithms
specifically; it is also undoubtedly true that newer and more computation-
ally extensive methods of learning the trends in the data could in the future
replace the neural network used for this system.

16.6 Ethics of AI in public policy
Ethics is a monumental consideration when incorporating any technology
into a human-centric process. This is no different (from an AI assurance
perspective) when making robots in a factory than it is when making infer-
ences on big datasets for policymaking. This section discusses some of the
ethical considerations surrounding the implementation of AI in policy re-
search and what can be done to ensure safe, predictable, and useful results.

16.6.1 Data in the legislative process

With the combination of big data being collected and AI used to interpret it,
the influence of intelligent algorithms will only grow (McNeely and Hahm,
2014). The portion of the legislative process that AI seems best fit to im-
prove is the research and evaluation processes. These make up a significant
amount of the research that is dedicated to policy advocacy—an ongoing
process for any piece of legislation—and therefore any benefits from AI-
enabled systems, such as AIM would be quickly identifiable and measur-
able. This kind of implementation, acting more as an AI-assist, offers much
less risk than fully automated AI applications with the same fundamental
operations underneath (Pencheva et al., 2020). With AI-assisted processes,
the benefits of AI integration can be observed without compromising the
integrity or interpretability of the outcomes.

16.6.2 AI and bias

Bias in the legislative process is an extremely serious concern that tran-
scends mathematics and algorithms and enters the domain of sociology
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and history. There are examples of geographic, racial, age, and gender-
based bias across all subjects of law (Levinson and Smith, 2012; Peller, 1992)
and to protect the progress that has been made to creating inclusive and
constitutionally sound laws in the US, the introduction of AI algorithms
must be ensured not to return to a legal system riddled with discrimina-
tion and prejudice. Bias in AI is defined mathematically in the context of
different algorithms or processes; however, we also consider bias in terms
of results in predictions and inference on different groups of people. One
way that analytical tools in general have become a source for bias in legal
systems is through risk assessment. There is a tendency for actuarial risk as-
sessment to produce a “ratchet effect” on members of high-risk categories,
with detrimental effects on employment, educational, familial, and social
outcomes; also see Harcourt (2015). The use of mathematics and technol-
ogy for evaluating people in the past has failed to overcome the lingering
grasp of racism for instance, and it would be shortsighted to think that AI
could inherently be immune to that same fate. Bias of all kinds is one of
the greatest concerns when using AI-enabled technologies for public pol-
icy advocacy, because the goal is to produce legislation that better governs
the people, and governments that better represent the constituents.

16.6.3 AI assurance and the law

This chapter discusses the use of AI to better inform the process of creating
new policies and laws. Though the topic of AI for policy is not a rare one, it
typically is in the manner of creating regulations for AI systems themselves,
and not the other way around. It is important to develop, implement, and
introduce AI in ways that are safe and responsible, and with this in mind,
governments have recently started to define AI legally and begun to lay the
foundations for future regulations on the technology.

The European Union has become one of the first government bodies
to propose a regulatory framework on the use and deployment of artifi-
cially intelligent systems (Artificial Intelligence Act, 2021). The proposal is
fundamentally broad as any foundational policy must be to allow for de-
velopment and innovation to continue. To establish the beginning of the
framework, the proposal distinguishes between low-risk, high-risk, and un-
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acceptable risks to the safety of AI users. Examples of unacceptable risk
to AI users are systems that could “manipulate vulnerabilities of specific
groups of people” and give them a “social score.” There are already sys-
tems that are in place to measure, track, and evaluate people in a manner
as described in this risk category so it is a very important topic to ad-
dress concerning AI (Wong and Dobson, 2019). AI applications must be
distinguished from high-risk to unacceptable, because some of the most
powerful uses for AI could be very risky and require strict oversight, how-
ever, should not be unacceptable. Not all AI applications are as dystopian,
though. The proposal expands to infrastructure implementations and crit-
ical services defining them as high-risk and requires rigorous documen-
tation and risk management for all companies that use AI in these areas.
Then low-risk applications, such as photo-filters, emotion detection, all
must comply with transparency obligations so that users know when they
are interacting with AI-based technology (Yaros et al., 2021).

A system of legal advocacy based on AI interpretations should be clas-
sified as low-risk when there is still a human filter between the results and
the legislative decision. If that filter is to be removed, it would be certainly a
high-risk application that requires trustworthiness, security, explainability,
and above all, assurance.

Through the use of methods presented in this book, AI algorithms can
be made more fair, trustworthy, explainable, ethical, safe, and secure while
maintaining their ability to inform and improve processes and systems in
all domains.
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