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Water Distribution Systems (WDSs) leverage the recent technological advancements in sensor technologies and
Cyber-Physical Systems (CPSs) for better processing, distribution, and delivery of clean water. Given the digital
nature of CPSs, they can be vulnerable to different kinds of cyber threats, especially in cases where adversaries
can conceal the state of the attack. If an adversary (state or non-state actor) successfully compromises a WDS,
that could result in major destructive consequences to water quality, public health, and agricultural irrigation.
This paper presents empirical Artificial Intelligence (Al)-based methods for detecting such concealed attacks in
WDS. We present two Deep Learning (DL) models: Temporal Graph Convolutional Network (TGCN) with
Attention, a supervised learning model, and High Confidence Auto-Encoder (HCAE), an unsupervised learning
model. TGCN adopts Attention and Robust Mahalanobis Distance (RMD) metrics for robust and generalizable
forecasting performance. HCAE uses customized hidden layers to improve classification performance compared
to state-of-the-art approaches. Experiments are performed to evaluate the proposed models using the BATtle of
the Attack Detection ALgorithms (BATADAL) dataset; founded on a Supervisory Control And Data Acquisition
(SCADA) infrastructure. Additionally, we assess the performance of the two models against synthetically
poisoned data generated from a Generative Adversarial Network (GAN). Both attack detection models show
superior accuracy with attack detection, localization, and overall robustness against data poisoning. The results
suggest that both the supervised and unsupervised models perform better attack detection with a ranking score of
0.845 and 0.933, respectively. Results also indicate that, among the two models, the unsupervised model per-
forms better in detecting poisoned data (accuracy: 0.992) and has better generalizability. Experimental results
are recorded, evaluated, and discussed.

1. Introduction

Recent unprecedented Al and sensor technology advancements are
transforming all domains, including WDSs. With industrial revolution
4.0, WDS [1] is undergoing a significant digital transformation to enable
data-driven monitoring and utility operations control. The addition of
cyber elements aims to make these (CPSs) systems more effective.
However, that comes with a trade-off, systems become increasingly
vulnerable to security and safety threats [2,4]. For instance, the recent
targeting of infrastructure in Ukraine reminds us of the risk of attacks on
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critical infrastructure, including cyberattacks on WDSs. According to
UNICEF, as of May, 1.4 million people in eastern Ukraine were without
access to safe water from public water systems.! Another example, in
2013, hackers seized control of a small Florida dam that released un-
processed water to nearby communities [4]. Besides that, on February
5th, 2021, a Florida water treatment plant (in Oldsmar, FL) was
compromised. The hacker altered the levels of sodium hydroxide in the
water - a chemical that would severely damage any human tissue it
touches [5]. This event suggests that current WDS control utility oper-
ations are mainly exposed and continuously vulnerable to attackers,
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requiring sophisticated learning algorithms that can estimate the sys-
tem's state, detect inconsistencies and outliers, and mitigate the harm
done by such events.

Al has numerous advantages for detecting anomalies in WDSs,
including those caused by cyberattacks which are harder for humans to
detect than kinetic attacks. WDS human observers cannot detect all
anomalies, and even when they become aware of an anomaly, they often
misinterpret it. The frailties of human beings in interpreting data from
complex systems have been cataloged by sociologist Charles Perrow in
an important book [6] about the causes of nuclear accidents. The same
kinds of human shortcomings in interpreting complex data are evident
in after-action reports about the Deepwater Horizon oil spill, which,
among other things, recommend increased use of Al to prevent future
spills [7]. Humans have created systems that are too complex for them to
monitor effectively, and they need help from Al But the potential ap-
plications of the technologies that the authors describe are not limited to
cyberattacks and WDSs. Many sewage spills result from leaks in anti-
quated underground systems that can go undetected. For example, in
July 2020, an old pipe broke in New Haven, Connecticut. No one noticed
until a citizen saw raw sewage on the street the next morning and called
the authorities. Two million gallons of untreated sewage spilled into
Long Island Sound over the next several days.”

1.1. Motivation

WDSs are a critical infrastructure that ought to be safe, secure, and
reliable in delivering water for all intended purposes. Despite the sto-
chastic nature of the WDSs operational processes, many Artificial In-
telligence (AI) algorithms can help with early attack prediction or
anomaly detection [8].

Attack detection models using Al require data representing the
physical structure and the temporal behaviors of the WDSs. A WDS
consists of a network of reservoirs, pumps, storage tanks, pipes, junc-
tions, valves, and taps; usually spread across a geographical dimension.

In most cases, the models are developed using data streams from
SCADA systems to classify if the system is running safely or not. SCADA
collects real-time distributed field data measurements, including water
flow rates, pump status, and pressure sensor readings, then transmits
them (measurements) to a central server. Because of the complex in-
terdependencies among different nodes, DL models are better suited to
computationally represent the system [9]. Machine Learning (ML)
models, including ensemble learning models, are a good choice for small
and simple networks [10], however the increasing number of nodes in a
network (such as in WDSs) creates non-linear relationships among them.
According to Sikder et al. [10], DL models can capture non-linear re-
lationships in a distributed network system more effectively when
compared to ML models. Therefore, our work aims to address the se-
curity of WDSs by building robust and generalized DL models.

Despite the recent advancements in computing technology, WDS has
security flaws because of its dependency on decade-old network devices.
Therefore, an attacker can easily eavesdrop on the communication be-
tween the network and the central control system. Additionally, ad-
versaries can send malicious attacks by spoofing sensor measurements,
concealing the intended attacks from the operators' sight [11] - these
attacks are also known as concealed attacks. Fortunately, such attacks
have a digital and physical footprint in the network, such as sensor value
deviation from the norm or water flow rate changes during high-demand
hours. Statistically, these abnormal events can be considered anomalies,
which a suitable learning algorithm can detect. For instance, what if the
attacker conceals these anomalies or sensor measurements by sending
replay attacks? A replay attack [12] occurs when a cyber criminal
eavesdrops on secure network communication, intercept, and delay
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signals to misdirect the receiver. In stealthy attacks [13], since attackers
conceal the physical layer, it becomes difficult to detect these attacks by
using anomaly detection-based models. For example, Taormina et al.
[14] presented difficulties associated with ML algorithms to detect
concealed attacks in (WDSs) in comparison with DL algorithms. DL al-
gorithms are key for estimations in such complex ecosystems. The
BATADAL data that we use here consist of a WDS operator for C-Town
Public Utility (CPU) with anomalous low or overflowing tank levels
showing up during stealthy attacks [8].

1.2. Background of cybersecurity in WDS

Advanced WDSs constitute tens or hundreds of Internet of Things
(IoTs) devices, including sensors and actuators; this complex connec-
tivity makes the system vulnerable to malicious cyberattacks [15].
Cyberattacks are becoming increasingly sophisticated via minimally
perturbed signals that go unnoticed to a human operator or a traditional
expert system [15]. Therefore, intelligent algorithms (such as DL) are
deemed necessary for detecting cyberattacks [16].

Cyber-attacks on water distribution systems can take many forms.
According to a survey paper [3], one type is data poisoning, in which an
attacker alters or corrupts data in a system to cause it to malfunction or
present incorrect outcomes. Another type is ransomware, in which an
attacker encrypts a system's data and demands a ransom payment in
exchange for the decryption key. Other types of attacks on water dis-
tribution systems include denial-of-service attacks (i.e. an attacker
floods a system with traffic to prevent legitimate users from accessing
it), and unauthorized access (where an attacker gains access to a system
without permission). These attacks can have serious consequences on
water treatment and supply, including contamination, disruption of
service, and financial loss to the WDS.

DL algorithms can be trained on large amounts of data to identify
patterns and anomalies that may indicate a cyber-attack. For example,
an Al algorithm can be trained to recognize network traffic patterns
typical of a denial-of-service attack and then use this information to
block similar traffic in the future [17]. Al-based intrusion detection
systems (IDS) are also used to detect and prevent cyber-attacks on water
distribution systems. These systems can use a combination of Al algo-
rithms and rule-based systems to detect unusual activity in the network.
Moreover, Al can be used to optimize the security of water distribution
systems by automating many of the tasks that are currently performed
manually. For example, Al-based systems can automatically update se-
curity configurations and patch vulnerabilities, reducing the risk of
successful attacks [3].

It is important to note that the use of Al in cybersecurity research for
water distribution systems is still in its early stages [3], and more
research is needed to understand these technologies' capabilities and
limitations fully. However, Al's potential to enhance these systems' se-
curity is significant, and it is expected that the use of Al in cybersecurity
for water distribution systems will continue to grow.

1.3. Our contribution

DL models make decisions based on either a black-box environment
or a non-deterministic approach. Without assessing robustness and
generalizability, DL models' deployment stage becomes unreliable. We
address these two key components:, robustness and generalizability, and
present the Deep HoO framework that consists of two models: TGCN
with attention, a supervised model, and HCAE, an unsupervised model.
Key contributions are the following:

e The study uses TGCN with attention and HCAE models to identify
cybersecurity threats in WDS, considering both time-sequential and
non-sequential aspects.

e TGCN with attention captures spatial correlations in graph data and
global temporal dynamics, understands complex interdependencies
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among sensor readings, and leverages Graph Convolutional Network
(GCN) [18] [19], Gated Recurrent Unit (GRU) [20], attention
mechanism [21,22,19], and Robust Manalanobis Distance (RMD)
[23] for anomaly detection. TGCN with attention provided better
performance than the baseline TGCN model.
e HCAE uses a dimensionality reduction technique, ANN-based DL
architecture, custom hidden layers, and constraints for a robust and
well-generalized model that achieves an improved attack classifica-
tion performance when compared to baseline AE models.
The study assesses both models using original and synthetically
generated samples, compares the performance of the supervised and
unsupervised models, and justifies which model is better during a
cyber-physical attack in a WDS.
To check for generalizability and robustness, a synthetic test dataset
is generated using GAN [24].

In the manuscript, we introduce the following three research
hypotheses:

1. Research Question 1 (AI Assurance): How do AI assurance [25]
constraints, such as layer customization, attention, and RMD,
improve models' performance?

2. Research Question 2 (Data Poisoning): Can models' generalizability
in WDSs be tested using poisoned data generated by GANs?

3. Research Question 3 (Feature Localization): How can the two models
localize features based on embedded and learned representations in a
given feature space (i.e., in a water system)?

Our study presents a novel approach for detecting cyber-physical
attacks in WDS using TGCN with attention and HCAE models. We
incorporate Al assurance methods [26] and constraints to improve the
performance of these models. We also evaluate the models on both
original and synthetic datasets and compare their performance using
various evaluation metrics such as: F1-score, precision, recall, and time-
to-detection. Our results show that both models can detect attacks in a
WDS with high accuracy and efficiency. TGCN with attention and HCAE
models can be promising approaches for detecting cyber-physical at-
tacks in WDS. We also explain attack localization by identifying the
attacked node during “ATTACK” windows in a time-efficient manner.

The rest of the paper is structured as follows: we present related
works in Section 2, we introduce methods in Section 3, specifically
TGCN with attention, and then HCAE. Then we describe our experi-
mental design for the study in Section 4. Section 5 provides results and
explanations. Finally, Section 6 presents our concluding remarks.

2. Related work

Given the constantly growing use of CPSs, the uses of Al in CPSs in
various applications also grow [27,28,29]. This section discusses the
related DL approaches for CPSs, especially multivariate time series data.
We provide related works for supervised and unsupervised models in
CPSs and present adversarial data generation approaches using GANs.
Finally, we present WDS security works using Al methods.

2.1. Temporal graph convolutional network

TGCN architecture was first designed and developed by Zhao et al.
[30] for traffic prediction in 2018. The model helps to capture spatial
and temporal relationships in feature space. It consists of GCNs and
GRUs, which allow it to learn complex topological structures to capture
spatial dependencies and the dynamic changes in the data to capture
temporal dependencies. In 2020, Zhu et al. [31] proposed architecture
on top of TGCN with an attention mechanism. This attention mechanism
improves prediction accuracy by adjusting the importance of different
time points and assembling global temporal information. We transfer
this knowledge from their study and adopt an attention mechanism in
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the WDSs to improve forecasting. To our best knowledge, neither Zhao
et al.'s [30], nor Zhu et al.'s [31] architecture has been applied to WDS
before.

In another study, Covert et al. [32] succeeded in creating a different
architecture of TGCN in 2019 for automatic seizure detection. Unlike the
TGCN architecture proposed by Zhao et al. [30], their approach consists
of several Spatio-Temporal Convolutional (STC) layers. The STC layer
does not contain any GRU but a 1-dimensional convolution to each of its
input sequences [32]. STC layer operates on the input sequences in a
way that allows the graph topology to be maintained at each layer. It
then refers to the adjacency matrix of structural time series to aggregate
neighboring features [32]. This architecture is then applied for cyber-
physical attack detection on the BATADAL dataset [33] with good re-
sults compared to the benchmark values. Tsiami et al. [33] proposed a
one-stage prediction-based algorithm that uses Covert et al.'s TGCN for
sensor prediction and MD for anomaly detection. Although the results
are promising, the model can still be potentially improved by replacing
the MD metric with the RMD metric.

2.2. Autoencoder

The use of DL methods for anomaly detection has recently achieved
improvements in learning high-dimensional datasets [34]. To eliminate
outliers and noise without prior knowledge, a deep AE can be a helpful
model [35]. A book [36] on outlier detection discusses how AEs are a
natural choice for outlier detection since they are often used to reduce
multidimensional datasets. The AE model presented at [35] discovers
high-quality nonlinear features. This approach includes splitting the
input data into two sets to increase the robustness of the model. The
work results show good performance since they distinguish between
random anomalies and other structured corruptions in CPS data. Sun
et al. [37] proposed a novel sparse representation framework that learns
dictionaries based on the latent space of Variational AutoEncoder (VAE).
This framework addresses the limitation of most existing algorithms that
can handle large-scale and high-dimensional data. Their proposed
model can obtain hidden information and extract more high-level fea-
tures by playing the role of dimensionality reduction.

Another work [38] addresses unsupervised anomaly detection on
high-dimensional data. This work aims to address the limitation in
existing unsupervised anomaly detection approaches that suffer from
decoupled model learning with conflicting optimization goals. This
paper presented a Deep Autoencoding Gaussian Model (DAGMM) for
unsupervised anomaly detection. DAGMM optimizes the deep autoen-
coder and mixture model parameters jointly to help with the parameter
learning of the mixture model. This joint optimization helps the
autoencoder further reduce reconstruction errors. Our study focuses on
AE reconstruction error reduction and attack detection performance
maximization.

2.3. Generative adversarial networks

Generative models, including GANs, provide a way to learn deep
representations without extensively annotating training data [24]. The
inspiration for this idea comes from the two-player sum game between
neural networks, where they balance each other out with gains and
losses. GAN consists of a generator and discriminator. The generator
captures the potential distribution of real samples to generate new
samples, and the discriminator determines which samples are fake by
discriminating which of the generated samples are real samples as
accurately as possible [39]. GAN models are necessary for many DL
applications, such as security, data augmentation, and privacy preser-
vation. One work [39] stated that generative models understand data
perspective, using real data to fit the distribution parameters and pro-
duce new data using the learned distribution. Another paper [40]
explained the GAN framework by applying a range of benchmark
datasets. They used noise merely on the bottom layer of the generator
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network. They claimed the samples resulting from their estimation
method have somewhat high variance and produce competitive samples
compared to the generative models in the literature. Their work did not
require interference during the learning, allowing them to incorporate
various functions into the model. However, the model has disadvan-
tages. The discriminator must be synchronized well with the generator
to avoid the probability of placing the generator in a small area of data
space.

Furthermore, Zhou [41] introduced GAN on the BATADAL datasets
to create a virtual testbed for WDSs. Their approach computes the
membership distance between the dimensions and then divides the di-
mensions with a small distance into a group. Then, they obtained a
larger quantity of attack sample control data by expanding the attack
sample. Another paper, [42] addresses the imbalanced and missing
sample data used for Intrusion Detection Systems (IDSs) to defend
against CPS attacks. They proposed to generate synthetic samples using
GANSs so the IDS gets trained using them as well as the originals. Their
results showed improvements in attack detection and model stabiliza-
tion; however, they did not provide any direction for balancing data
classes. In our study, we generate synthetic balanced data using GAN for
testing our models' generalizability.

2.4. Security for WDSs

The security aspects of water distribution have a wide variety of
potential solutions. Kadosh et al. [43] presented a one-classifier
approach to detect attacks in WDSs. Their approach uses a Support
Vector Data Description (SVDD) algorithm to classify normal vs.
anomalous behavior. Min et al. [44] proposed an ANN-based DL algo-
rithm to detect cyber attacks. Taormina et al. [14] developed an
approach that uses AEs to detect and localize intrusion attacks in a WD.
Zou et al. [45] proposed an event detection model to detect and mitigate
water contamination. In their approach, they proposed a hybrid model
that comprises an ANN and a Support Vector Machine (SVM) to detect
the contamination events. Bagherzadeh et al. [46] evaluated the effects
of different feature selection methods on enhancing the model predic-
tion performance of total nitrogen in wastewater treatment plants.
Furthermore, they analyzed the importance of different characteristics,
namely time, climate, hydraulic flow, and wastewater characteristics, in
predicting energy consumption [47]. Their study suggested that the
Gradient Boosting Machine algorithm exhibits a better performance in
forecasting energy consumption when compared to other ML algo-
rithms. Mehrani et al. [48] proposed a hybrid model that combines a
mechanistic model and ML model to predict the liquid N20 concentra-
tions; their results suggest that a hybrid model that combines a mech-
anistic model and an Artificial Neural Network (ANN) model performs
better with limited availability of data. Additionally, a significant
amount of work has been reported on approaches to detect attacks in
CPS used in water treatment plants [49].

Furthermore, Yoong et al. [50] designed an ML framework that can
detect physical and software-generated anomalies in continuous water
treatment plants without false alarms. Adepu et al. [15] designed and
developed an expert system, Distributed Attack Detection (DAD), that
detects physical anomalies of a plant in real-time operations. This study
is a succession of a prior work of Adepu et al. [51] where they developed
an anomaly detection framework based on physical invariants derived
for each stage of the plant design. Macas et al. [52] claimed that present
water treatment plants are complex, and their spatio-temporal relations
need to be explored further. The authors presented an unsupervised
framework for anomaly detection called Attention-based Convolutional
LSTM Encoder-Decoder (ConvLSTM-ED) to capture temporal de-
pendencies. In another study, Zizzo et al. [53] developed an adversarial
attacker model that can compromise a subset of sensors and validate
existing anomaly detection models. In their study, the attacker manip-
ulates the detector by hiding its presence. Similarly, Anthi et al. [54]
generated adversarial samples using the Jacobian-based Saliency Map
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attack and explored how adversarial learning can target the supervised
models. Testing anomaly detection performance using an adversarial
attacker model is a popular approach in WDSs; however, based on our
search, applying GANs as adversaries for testing the generalizability of
the attack detection models in WDSs is a novel study.

3. Deep H20

Deep H>0 (Fig. 1) consists of two main parts, (1) TGCN with atten-
tion and (2) HCAE. The supervised model, TGCN with attention, per-
forms well with time series samples and offers contextual anomaly
detection; it is more aligned with the BATADAL case study, where sensor
relations in the distribution system require comprehensive monitoring.
Additionally, we expect that a WDS end-user (i.e., operator) might
require Al models that consider the data samples as non-time series for
specific application requirements (for example, missing data). Thus, we
propose HCAE, an unsupervised model that works well with non-
sequential data samples.

This section presents the design of TGCN with attention and HCAE
models; discusses concealed attack detection in a WDS. We discuss the
design choice of GAN to generate poisoned data. Fig. 1 presents the high-
level overview of our proposed Deep H»0 framework that contains all
the models together. We present all three models consecutively and their
respective outcome selection processes.

3.1. C-town data description: BATADAL case study

The BATADAL competition simulates an intrusion attack in a
fictional C-Town (Fig. 2a). The WDS in C-Town experiences anomalous
behavior (concealed attacks) in its hydraulic components. The WDS in C-
Town consists of 429 pipes, 388 junctions, 7 storage tanks, 11 pumps, 5
valves, and a reservoir. Participants from the competition developed
algorithms that detect attacks in the shortest time possible. The algo-
rithms aim to accurately detect true attacks (i.e., fewer false alarms) and
locate nodes when the system has been altered during an attack [8]. In
C-Town, the seven tanks guarantee water distribution and storage across
the nodes (T1-T7). C-Town's WDS does not have abnormalities due to
seasonal changes, resulting in a fixed rate of water consumption. A
SCADA system collects data from the components of C-Town and work
cohesively. Anomalous behaviors are shown using labeled physical ab-
normalities (Tables A.5 and B.6) that lead to harmful behaviors in the
WDS (such as an overflow of a tank). Spotting these anomalies as quickly
as possible will ensure the WDS does not suffer from preventable
damage.

The water levels of the seven water tanks determine the operations of
components in the five pumping stations (S1-S5), where one valve and
eleven pumps are distributed. Also, nine Programmable Logic Control-
lers (PLCs) are located near their control components. These PLCs can
send information about their statuses such as “ON” or “OFF”; the flow
rate information passes through them as well as suctions and discharges
pressures to the SCADA system since they are connected to the water
level sensors, valves, and pumps. However, most PLCs receive infor-
mation from other PLCs instead of being connected to the water level
sensors and components directly involved with the control logic.

BATADAL simulation consists of three datasets. All the used data and
model codes are available in the following GitHub repository".

e Dataset 1: Dataset 1 consists of time-series samples over a period of
12 months. The instances in this dataset are recorded during normal
operation hours with no attacks. It has 44 features with 8,762
samples.

e Dataset 2: Table A.5 consists of samples recorded over a period of
three months (April to June 2016). The samples in Dataset 2 have 44

3 github.com/AI-VTRG/DeepH20.
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Fig. 1. Deep H,0 framework for cyber attack detection in WDSs.
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Fig. 2. WDS nodes representation [8] - Figure (a): Nodes layout of C-Town's distribution network; Figure (b): Graph data representation of reduced nodes (31 nodes)

of C-Town.

features; the dataset consists of 4178 instances including the normal
and attack samples.

e Dataset 3: This dataset also has 44 features, including the attack
labels with 2090 samples. From Tables A.5 and B.6, it is evident that
both Dataset 2 and Dataset 3 contains a different type of attack
samples. Table B.6 contains three months of data from January 2017
to April 2017.

3.2. Supervised deep learning: TGCN with attention

This section explains the mechanism of TGCN with attention, RMD,
and the attack detection topology. Tsiami et al. [33] proposed TGCN for
the BATADAL competition. Since their model is not publicly available,
we developed our baseline TGCN model, influenced by Tsiami's model
architecture. We discuss the hyper-parameter choices in the design
Section 4.2.1: Supervised Model Design. Next, we apply TGCN with
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attention as a supervised prediction-based algorithm, where RMD is
used for detecting outliers.

3.2.1. Attention temporal graph convolutional network

A structural WDS multivariate time series dataset has a form (X,A)
when XeRM*P contains N-dimensional observation for P different se-
quences and X; denotes the systems' values at time i. We use a static
graph technique since the number of dimensions N (N is the number of
nodes) does not change over time. A {0, 1} *? is the adjacency matrix of
the P sequences. In TGCN with attention, we apply GCN and GRU to
capture spatial and temporal dependencies, respectively, presented in
the form of graph data. Furthermore, we apply an attention mechanism
to capture global variation in the structural data. Fig. 3 shows the high-
level architecture of TGCN with the attention mechanism. Each method
working principle is discussed in the following subsections.

Spatial Dependence Modeling: We consider WDS as structural
graph data where we consider each pump as a node and water flow rates
as edges between nodes. GCNs are semi-supervised models that can
process graph structure and capture spatial dependencies in the WDS
graph structure. Recent works have shown that GCNs have achieved
significant progress in applications such as image classification [18],
fraud detection [55], and social analysis [56]. GCNs have spectrum and
spatial domain convolutions [18,19]. Details about GCN can be found in
Tsiami's [33] paper.

Temporal Dependence Modeling: The BATADAL dataset is
considered a set of time-series samples for supervised modeling. A DL
technique is introduced, such as GRU [20] for temporal dependence
modeling. There exist other popular techniques for capturing temporal
data, such as Recurrent Neural Network (RNN) and Long Short Term
Memory (LSTM) [57]. RNN is simple and effective for time series
modeling, but it has limitations in long-term forecasting due to gradient
vanishing or gradient explosion [58]. LSTM and GRU are both proved
[57] to be more efficient than RNN in long-term memory modeling.
They use similar gated mechanisms, which allows them to perform
similar tasks [59]. However, GRU has a simpler architecture than LSTM;
GRU is more light-weighted (fewer gates than LSTM) and trains faster
than LSTM [19]. Further details about GRU can be found in Zhu's [19].

Global Variation Modeling: Attention mechanism has been proven
to be successful in image capturing generation [21], and
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recommendation systems [22]. It is applied because the supervised
model is expected to capture the global variation trends for better ac-
curate forecasting. It can learn the importance of sensors' values infor-
mation at every time-stamp [19]. Here, we use a context vector to
express the global variation trends of sensors' values for future sensors'
values prediction.

Given a time series x;(i = 1,2, ...,n) where n is the length of the time
series, the attention technique process the data in four steps. Firstly, the
hidden states h;(i = 1,2, ...,n) at different moment are calculated using
GRUs and expressed as H = hy, hy, ..., h,. Next, we introduce a multilayer
perceptron as “attention score model” to weigh the importance of each
hidden state [19]. Later, the attention function calculates the context
vector C(t), which can express the global sensors' variation information.
Lastly, output results are obtained using the context vector. We present
the Egs. (1)-(3) of the attention mechanism as follows:

€ =W (W(I)H+b1 ) +b(2) (1)
exple))
A= 2)
i expler)
Ct = 21,1:1 ai% hi (3)

The attention mechanism feeds hidden state (h;) at each timestamp
(also known as weight calculation) and calculates outputs after two
hidden layers. A Softmax() function calculates the logits (a;) using Eq.
(1), where (way and b1)) and (w(2) and b2)) are the weight and bias pairs
of the first layer the second layer, respectively [19]. Egs. (2) and (3)
show the calculation of the global sensor's variation values of the context
vector.

Combining these three methods, we arrive at the TGCN with atten-
tion framework, which can be represented as follows, Egs. (4)-(7):

u, = o(W," [GC(A, X,) 1] +by) )]
r=0o(W," [GC(A,X,) | hy ] +b,) (5)
¢, = tanh(W,[GC(A, X,)], (. h1)] +b.) (6)
he=u by +(1—u) ¢ )
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Fig. 3. TGCN with attention for WDSs cyber-physical attack detection.
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Where, n sensors data are inputted into the TGCN with attention
model to obtain n hidden state (h) that covered spatio-temporal char-
acteristics: hy_p, ..., hy_1, hg u; and r; represent update and reset gates at
time t in Egs. (4) and (5), respectively. c; is the stored content at the
current moment in Eq. (6). h; is the output state at moment t, and W and
b are the weight and deviation in the training process in Eq. (7). The
hidden states are inputted into the attention mechanism to determine
the context vector that represents the global distribution variation in-
formation for a given WDS. The weights of each hidden state h are
calculated via Softmax() using a multilayer perceptron. Then the fore-
casting results are processed using a fully connected layer.

GCN has to ability to encode the topological structures, including
pump and water flow information, by determining the relationship be-
tween a node sensor to its surrounding sensors [33]. Additionally, GRU
determines sensors' values at the current time-stamp by using the hidden
state at the previous time-stamp and the sensor's values at the current
time-stamp as input. Finally, the attention mechanism re-weighs the
influence of historical time series object states and captures the global
variation trends of WDSs states for accurate forecasting.

3.2.2. Attack detection stage

TGCN with attention is capable of classifying whether a WDS is
under “ATTACK” or “NO ATTACK.” Our study presents the WDS
network dataset as a graph with nodes (tanks, junctions, and pumps)
linked with edges (pipes). Then the recorded readings are defined as
structural time series that has the form (X, A) when Xe¢R"* contains N-
dimensional observation for P different sequences, and X; denotes the
systems' values at time i. Ae{0,1}"" is the adjacency matrix of the P
sequences. By representing the input dataset in such a form, the model
learns while capturing the spatio-temporal dependence among the
feature space.

We develop the attack detection algorithm (Algorithm 1) in two
stages. First, we train the model to predict the SCADA measurement
under normal (“NO ATTACK”) conditions. Then, we calculate the RMD
distance metric and calibrate the model to classify all samples as “NO
ATTACK” or “ATTACK.”

3.2.3. AI assurance methods for supervised deep learning

For this stage, we explore Al assurance methods such as attention
and RMD to improve the performance of the base model TGCN. TGCN
can capture the spatio-temporal of the time series objects; however, the
history of the data points is re-weighted with the addition of attention.
Hence, this attention mechanism can capture the global variation trends
of time series values for better forecasting accuracy.

Algorithm 1. TGCN/TGCN with attention Training and Testing.

Inputs: Dataset (X) and Model Arguments including nl, nH, cf,
activation.

Execute: Robust Concealed Attack Detection and Localization.

1 Initialize the TGCN/TGCN with attention with pre-processed
dataset X.

2 for k = 1,2,3,4,.... Nrpqin in Training set do.

3 Pass sample through Encoding, Latent representation, and
Decoding layers (Egs. (10), (11), (12)).

4 Use Adam Optimizer to minimize loss function (Eq. (13)).

5 return AE parameters 0.

6 Select threshold 6y,

7 for k = 1,2,3,4,.... N in Testing set do.

8 Pass sample through encoding, latent representation, and decoding
layers (Egs. (10), (11), (12))

9 return reconstructions errors Eg.

10 Apply threshold @7presnolq ON reconstructions errors Eg for anomaly
detection and localization

Next, we apply the outlier detection metric for the WDS system.
Many distance metrics are available for outlier detection in multivariate
time-series datasets, including Euclidean distance, MD, and RMD. MD is
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more effective than Euclidean distance due to the use of a covariance
matrix to calculate the distance between data points and the center
while detecting outliers according to the distribution pattern of the data
points [10,60]. In brief, the covariance matrix in MD indicates how
variables vary together. On the other hand, Euclidean distance does
consider the data points' distribution pattern, which may assign some
abnormal points as outliers and vice versa. MD carries two desired
characteristics: it incorporates the dependencies between the prediction
error at each sensor, which is helpful for combined unusual prediction
errors, and it allows developers to tune a single global anomaly
threshold instead of an individual threshold [33]. Given a Gaussian
distributed data, the squared MD between data x; to the center of the
distribution is, Eq. (8):

dus(x) =@ — 0 T (& — (8)

where u is the mean and X is the covariance matrix of the data points.
One drawback of MD is that its covariance matrix is highly sensitive to
outliers, which is not preferable if the data is noisy. The Minimum
Covariance Determinant (MCD) estimator proposed by P.J.Rousseuw
was introduced as a more robust covariance estimator [61]. The idea
behind MCD is to find the data points in which empirical covariance has
the smallest determinant, thus giving a “pure” subset of data points from
which to compute standards estimates of the mean and the covariance
matrix [61]. The application of MCD to MD generates the RMD, which
assures an improved concise outlier detection. Hence, we calculate the
RMD measure for multivariate time series outlier detection.

3.2.4. Prediction and calibration of supervised deep learning

We divide the supervised DL model's attack detection and calibration
processes [33] into three stages (Fig. 4). In the first stage, we preprocess
and normalize data and train the TGCN with attention model with the
normal training dataset labeled as “NO ATTACK,” given the recorded
SCADA measurements of n prior time-steps. A window of a fixed size n +
1 rolls over the time series dataset with a step size of 1. Each window's
first n measurements are the input to TGCN with attention, while the
final n + 1 data points are the target outputs.

Next stage, after training TGCN with attention, we pass the valida-

tion set X, through the model for prediction 17,,(11. Since we pick normal
samples for the training and the validation set, we assume that the

prediction errors (E = Y— Y) at each sensor are roughly Gaussian
distributed. Hence, we apply the squared MD (Eq. (8)). Afterward, we
estimate the robust covariance matrix to calculate the RMD values. The
squared MD is essentially the sum of p independent standard normal
variables; thus, it follows a chi-squared distribution with p degrees of
freedom [23]. During this stage, the predicted errors from the normal
training dataset have lower RMD values (when compared to the
threshold as in Eq. (9)) than the anomalous ones. The anomalies are
detected at timestep i when:

d(l‘-):) (xi)z,‘,]_i >TH )]

Here, d(ﬂ‘g) (xi)z
and TH is the cut-off threshold. The calibration process is required to
obtain the concise threshold TH and l. We select the thresholds by testing
different values for the two parameters in a holdout set with few
“ATTACK” data points and calculate the algorithm's performance with
the S function (Eq. (27)).

In the third and final stage, we select parameter values such that it
maximizes the rank S function on an unseen testing dataset. Finally, we
localize attacked features such as pumps, sensors, and valves after
classifying the timestamps that contain “ATTACK” data points.

is the mean squared RMD in a window of length [;

i-Li

3.3. Unsupervised deep learning: HCAE

This section discusses the unsupervised WDSs attack detection
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Fig. 4. TGCN with attention model development and attacks detection workflow [33].

framework, the mechanism of AE, and its revised version, HCAE. We
apply AE as a reconstruction-based algorithm that performs dimen-
sionality reduction and reconstructs the original input. The outcome
from AE and HCAE are reconstruction errors (difference between output
and input data), which identify physical anomalies from the feature
space. Fig. 5 shows a fully connected ANN-based AE and its components.
WDS data are fed to the AE and HCAE models. The models classify the
inputs as either normal or anomalous samples based on a threshold.

3.3.1. Auto encoder

AEs have been a widely adopted DL method for the last couple of
decades for both dimensionality reduction, and feature engineering
[62]. We develop our baseline AE model by adopting Taormina's [14]
AE model. Additional information about the design of our baseline AE
model is discussed in the Unsupervised Model Design, Section 4.2.2.

The network is divided into two parts: an encoder function h = f(X)
and a decoder function x’ = g(f(x)). AEs can be generalized as stochastic
mappings of Pencoder = (h|x) and Pgecoder = (x| h), where h is a hidden
layer h = f(x) that presents a code and is used to characterize the input.

________________ Encoded
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Multi-Layer Perceptrons(MLP) [63] form AEs with an input layer, an
output layer, and multiple hidden layers. Mathematically an encoder
and decoder can be written as Egs. (10)—(12):

¢ X—>T (10)
v F->Z an

& 12

oy = argmin | 7~y 7
W

where, Egs. (10) and (11) represent encoder and decoder functionality
respectively; Eq. (12) represents loss of the AE.

Input data 7" is transformed into a compressed representation & and
reconstructed as 2” again. The objective of an AE is to minimize the
reconstruction errors (Egs. (13) and (14)), which yields a better recon-
struction of the input set 2.

2(x,x) =[x x|’ (13
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Fig. 5. Fully connected ANN-based Autoencoder for WDS cyber-physical attack detection.
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2(x,X) = ||x— ¢ (W (s(Wx+b))+b) |’ (14)

Reconstruction errors are usually minimized using Stochastic
Gradient Descent (SGD) [64], a potent optimization tool for many DL
applications. However, our study applies the Adam optimizer, another
powerful stochastic optimization method that outperforms SGD [65].

An anomaly detection system is expected to produce minimal false
alarms, as false alarms are associated with expensive maintenance op-
erations. Fig. 5 represents an ANN-based AE. Despite having fine-tuned
hyper-parameters, AE suffers from non-determinism during training,
resulting in a higher reconstruction error. A higher reconstruction error
can result in an increased number of false positives, thus affecting the
detector's performance [66]. As AE algorithms automatically learn fea-
tures by performing feature engineering for dimensionality reduction,
they tend to learn different features at each time [62]. This pattern of
learning is suitable for systems where feature importance is unknown
(for instance, thousands of sensor values in a water distribution system,
complex and difficult feature space to human perception). However,
such a non-deterministic learning pattern might not be suitable for a
WDS. We expect a WDS model to provide, if possible, zero false alarms
because of expensive maintenance operations. To address these issues,
we revise AE architecture and form HCAE, thus solving the non-
determinism problem of AE by further reducing reconstruction errors
and improving attack detection performance by reducing false positives.

3.3.2. High confidence AutoEncoder (HCAE)

HCAE is a modified version of baseline AE; We developed HCAE by
applying assurance methods (Egs. (15)-(18)) to AE; improving the
attack detection performance compared to the AE (baseline). We use
HCAE to represent input features in a manifold space that generates
minimum reconstruction errors while decoding and recreating the input
features.

To minimize the reconstruction errors, the practitioners currently
follow a trial-and-error based-method and optimize hyperparameters
over multiple iterations. This approach is empirical; reducing the
reconstruction errors is time-consuming and computationally expensive
in a complex WDS. We apply a combination of neural network layer
constraints for the model and achieve deterministic learning, which
results in a manifold representation that yields minimum reconstruction
errors. This strategy ensures learning a set of expected features from the
training data each time. Resulted reconstruction errors yield better
feature representation and attack detection performance [67]. We pre-
sent our experimental results in the context of a WDS: how a set of
constraints yields minimal reconstruction errors and robust attack
detection. Algorithm 2 presents both algorithms, including baseline AE
and HCAE training steps for attack detection in water systems.

3.3.3. Al assurance constraints for the auto encoder

Recent advancements in DL APIs, including Keras,” Tensorflow,’ and
Pythorch,® expedite AEs development more than ever. Nevertheless, a
lack of a clear understanding of the fundamental properties of dimen-
sionality reduction leads to a complex and inferior model. Thus, it is
crucial to understand and adopt the basic properties of dimensionality
reduction in AEs. We present multiple custom layer constraints and
apply them to facilitate dimensionality reduction in a WDS. HCAE is
effective for tuning and optimizing hyperparameters.

Algorithm 2. Baseline AE and HCAE Training and Testing.
Inputs:Dataset (X), Model Arguments including nl, nH, cf, activation
and customized layers.
Execute:Robust Concealed Attack Detection and Localization.
1 Initialize AE/HCAE with pre-processed dataset X.

4 github.com/fchollet/keras
5 github.com/tensorflow
6 github.com/pytorch/pytorch
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2 (This step is applicable for HCAE) Apply constraints on Encoder
and Decoder layers using a combination of Tied Weights (Eq. (15)),
Orthogonal Weights (Eq. (16)), Uncorrelated Features (Eq. (17)), Unit
Norm (Eq. (18)).

3 For k = 1,2,3,4,.... Ny in Training set do.

4 Pass sample through Encoding, Latent representation, and
Decoding layers (Egs. (10), (11), (12)).

5 Use Adam Optimizer to minimize loss function (Eq. (13)).

6 Return AE parameters params-

7 Select threshold 0.

8 For k = 1,2,3,4,.... Ny in Testing set do.

9 Pass sample through Encoding, Latent representation, and
Decoding layers (Egs. (10), (11), (12)).

10 Return reconstructions errors Eg.

11 Apply threshold 6 on reconstructions errors Eg for anomaly
detection and localization.

In order to improve the AEs detection performance, we apply the
following set of constraints.

1. Tied Weights: Tied Weights [68] ensure equal weights for both
encoder and decoder. This constraint also ensures easy learning,
especially PCA-like dimensionality reduction and regularization.
However, they do not always perform well on complex non-linear
models. Again, tied weight constraint is not always necessary to
continually improve the representation. If reconstruction errors are
reasonable, the coding generates orthogonal latent features for given
data. Such representation is helpful in dimensionality reduction and,
eventually, for anomaly detection. In a multi-layer AE, weights
vectors of layer 1 from an encoder and a decoder are transposed as Eq.
(15).

W= W', as)

2. Orthogonal Weights: Each weight vector is independent; therefore,
the weights of each encoding layer are orthogonal. The orthogonality
constraints [69] act as regularization for the AE. Mathematically
orthogonality condition for AE can be presented as,

WT

encoder

Wencoder =1 (16)

On applying, this constraint penalizes non-orthogonal weights.
Depending on the dataset, the user can choose either orthogonal or non-
orthogonal weights. Thus, the application of this constraint is condi-
tioned on regularization.

3. Uncorrelated Features: If the output of the encoder is orthogonal,
latent representations must be uncorrelated [70]. Hence, the output
of the AE must have (Eq. (17)):

correlation (Oencuder, 5 Oencoderj) =0li #j a7)

4. Unit Norm: The weights of each layer must have unit norms [71].
This property helps to control exploding and vanishing gradients.
Unit norm constraint (Eq. (18)) must be allied to all the layers of the

p
dowi=li=1,..k (18)

These four constraints (Egs. (15)-(18)), during model development,
ensure the model does not create a sub-optimal decision boundary. They
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ensure the creation of a well-posed AE while constructing a high We ensure the model always yields minimum reconstruction errors and
confident WDS model. maximum binary classification performance (F1 score) by observing the

Unit norm and orthogonality solve regularization problems, espe- model performance on multiple hyperparameter sets. Later in stage two,
cially for AEs, when AE learns from a training set but does not represent data are preprocessed and normalized to have the maximal absolute
a test set well. Also, tide weight can reduce the number of parameters as value of each attribute, applied to all three provided datasets. After that,
a regularization technique. Here, the unit norm constraint addresses we train the HCAE model with the normal training dataset labeled “NO
exploding gradients issue by bounding gradients into a finite value. ATTACK.” We split the training dataset into training (Xergin, Yerain) and
Additionally, orthogonality resolves the vanishing gradients problem by validation (X,q, Yyq) set. We apply early stopping, a regularization
assigning fewer nonzero weights, so only informative weights stand out. scheme when the model converges and starts to over-fit on the training
Thus, only these nonzero weights flow information during back- dataset.
propagation and resolve the vanishing gradient issue [68], [69], [70], During each epoch, we compute loss (Eq. (15)), the squared of the
[71]. reconstruction errors r, = | x — x’|; minimize them using Adam opti-

When we apply these four constraints (Egs. (15)-(18)) while mizer. After both AE and HCAE models are well-trained, we select
designing HCAE, we hypothesize the model will not converge to a threshold 6y in an empirical fashion. For that, the range of average
suboptimal point. To test our hypothesis, we compare the results before reconstruction errors among all features in a sample is observed and
and after using these four constraints; observe if attack detection per- summed up. Then we set the threshold based on the final range esti-
formance (F1 score) is improved from the baseline AE [14]. We use the mation, as shown in the following Eq. (19).
BATADAL dataset for training and testing our models. ‘

Later in the manuscript, we present adversarial testing using a GAN 6, = max { 700 : le — x| FOTN,yaning samptes } (19)
to observe if the model can detect attacks from synthetically generated o m

oisoned datasets (previously unseen data with a different distribution). . . . . .
P (P Y ) The calibration process is crucial to derive a concise threshold 6y, for

testing the model on new samples. If a test object is classified as
“ATTACK,” we localize the features associated with attacked attributes,
such as pumps, sensors, and valves, using reconstruction errors.

For the HCAE model, we select hyperparameters that result in the
best model's performance (F1-score). Our objective is to compare the
performance of HCAE (AE with constraints) with the AE model (without
constraints). To facilitate a fair comparison between HCAE and AE
models, we retrain Taormina's AE model using the same hyper-
parameters of the HCAE model. We refer to the retrained AE model as
the baseline AE model.

3.3.4. Attack detection and calibration stages of HCAE

HCAE is capable of classifying whether the WDSs are under
“ATTACK” or “NO ATTACK” by investigating each sample. Nonetheless,
the direct classification technique becomes erroneous with a small and
imbalanced dataset because AE requires a large dataset to learn the
representation. However, with HCAE's deterministic learning, we hy-
pothesize the HCAE can detect attacks with minimum false positives. We
test our hypothesis by training both AE and HCAE with the same
imbalanced data and evaluate with total false positives for each model.

Unlike the supervised algorithm (TGCN with attention), we present
data streams with non-sequential representation. Next, (X) is defined as

XeRN*™ which contains N-dimensional observation for m different 3.4. Synthetic WDSs attack data generation
features; and X; denotes the systems' values at time i.

The attack detection process is divided into two stages (Fig. 6). In Unlike other DL-based attack detection approaches that require sig-
stage one, we create custom HCAE layers by following Egs. (15)-(18). nificant domain knowledge and passive awareness of the attacked model

[72], GANs are proven to be effective in generating realistic attack
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Fig. 6. HCAE model development and attack detection workflow.
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samples (poisoned data) [73] with minimal information about either the
domain or the DL. model. We use GAN [40] for synthetic data generation.
GAN network learns feature statistics of a given dataset for generating a
new set of synthetic data. A generator produces the synthetic samples in
the GAN network, and a discriminator evaluates them. The generator
learns by mapping latent feature space to a data distribution of partic-
ular interest. Discriminator maximizes its objective by learning how to
distinguish original samples from the generated fake samples. The
generator aims to minimize the discriminator's objective by fooling it
into thinking otherwise (fake samples as real ones). For instance, while
generating a synthetic image set, GAN keeps the similar statistics of
generated images set from the training set; hence, those generated im-
ages look superficially similar to human perception. During the training
phase, both generator and discriminator play a minimax game where a
bi-level optimization is performed to train the GAN network.

In our study, the generator learns the distribution of training samples
X and maps data space as G(z; 0), where G is differentiable with respect
to parameters ;. Then discriminator investigates if the data comes from
the training samples and not from the generator itself. We train the
discriminator to specify between original and generated samples from
the generator correctly. Both the discriminator and the generator take
participation in a minimax game which is represented as a value func-
tion as V(G,D), as Eq. (20):

mcinmng(D, G) = Exnpuu)[108D(x) | + Ervp o [log (1 — D(G(2) ) )] (20

Here, the generator is trained to maximize logD(x) and minimize log
(1 — D(G(®))) in a numerical and iterable fashion. This GAN approach
generates synthetic poisoned data for the WDSs system. We assess both
supervised and unsupervised models on these synthetic data for gener-
alization study.

4. Experimental design

This section presents the three research questions, and discusses the
selection of hyperparameters and metrics used in our experiments.

In our experiments, supervised learning models are trained using two
datasets: Dataset 1 and Dataset 2. As unsupervised learning requires “NO
ATTACK” samples for training, the unsupervised models are trained
with Dataset 1(“NO ATTACK” samples). Both the supervised and the
unsupervised models are evaluated using Dataset 3. We use total of 492
“ATTACK” samples from Dataset 3 to train the GAN model for synthetic
data generation. Experiments are conducted to answer the following
three research questions presented in Section 1.2.

4.1. Experimental models design

This section discusses the hyperparameter settings for TGCN, TGCN
with attention, HCAE, AE, and GAN. This section presents the optimized
hyperparameters set to train and evaluate the models. We also list all
alternative hyperparameter values that are used to randomly search for
the best models in appendix C, Table C.7.

4.1.1. Supervised model design

We pre-process the time series data as graph data and normalize
them; during normalization, we perform standard minimum maximum
scaling ranges from O to 1. The graph data can be represented as an
adjacency matrix along with node data. Fig. 2b illustrates the node's
information and locations in C-Town's WDS network. The adjacency
matrix is constructed of the provided 31 nodes. Note that only one type
of attribute is reported for each node in the network, except the pump
nodes that have two different measurements: status and flow of water.
We keep a single attribute for each node and exclude the binary pump
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status, where the numerical flow rate is preserved.

The supervised models: TGCN (baseline) and TGCN with attention,
are implemented using PyTorch and Scikit-learn APL.” The models are
trained on a CPU with Intel core i5 10th gen.

We have tested both models with multiple iterations with different
hyperparameter sets to obtain one. For TGCN, we choose an Adam
optimizer algorithm with a learning rate of 0.01; for TGCN with atten-
tion, we choose an Adam optimizer learning rate of 0.005. Then, we
utilize Rectified Linear Unit (ReLu) as an activation function for both
models. The batch size selected for both models is 16 and 128, respec-
tively. From each batch, we take sequences of length n (n = 8 hours)
from the training inputs Xgqin and targets Yiqin. We use the optimizer to
minimize the mean squared error (MSE) loss. While selecting optimal
hyperparameters, we focus on maximizing performance metrics,
including precision, recall, F1 score, accuracy, and specificity.

To train both TGCN and TGCN with attention models, we use the
“NO ATTACK” samples (Dataset 1) and split them into training and
validation sets with a 75:25 ratio. Then, we train both models for 10
times with 1000 epochs each time. A threshold (TH) is fine-tuned using
the holdout set, Dataset 2, to maximize the ranking S score on the
holdout set.

4.1.2. Unsupervised model design

We pre-process the data before inputting them to the AE and the
HCAE. The pre-processing step includes normalization and removing
null samples from the data. For normalization, we perform standard
minimum maximum scaling ranges from O to 1. Both AE (baseline) and
HCAE models are implemented using Scikit-learn API and are trained on
a CPU with Intel core i5 10th gen. We use Adam Optimizer with learning
rate = 0.0001, a decay factor of 0.5, and (1, f2) = (0.9, 0.99). Addi-
tionally, 500 epochs are selected with a minibatch size of 32. The design
of HCAE differs from baseline AE in the design of the hidden layer
definition. Early stopping is applied with patience = 3 for better regu-
larization. Here, the patience parameter ensures convergence, when the
training loss and validation loss don't change for three consecutive
epochs and the training, is marked complete. We are compressing input
features using an under-complete autoencoder architecture and both
models' compression factor is selected as 2.5. Thus, we get the number of
neurons in each layer as following: encoder layers: [y, L, [o] = [43, 34,
25]; bottleneck layer: [I3] = [17]; and decoder layer as: [ly, Is, Is] = [25,
34, 43].

Egs. (15)-(18) represent Al assurance constraints, including Tide
Weights, Orthogonal Weights, Uncorrelated Features, and Unit Norms
constraints, which are applied to the AE. We pick a combination of these
constraints and apply them to the hidden layers. Our goal is to obtain a
meaningful and uncorrelated latent representation, a prerequisite for
dimensionality reduction. We empirically select optimal hyper-
parameters for the AE and the HCAE models and maximize binary
classification performance scores, including precision, recall, F1 score,
accuracy, and specificity. Dataset 1 is used during model training, and
Dataset 3 is used for model testing. Finally, we select threshold 61y by
following an empirical approach. We plot the F1 scores for baseline AE
and HCAE models for Dataset 3 against a threshold range from 96 %
percentile to 100 % percentile of their average reconstruction errors
(Fig. 7). We observe that both models reach a maximum F1 score at 98.5
% percentile. Hence, we choose 1y = 0.985 as the model's threshold.

4.1.3. GAN model settings

A GAN [24] is used to generate poisoned data in our experiments. All
492 “ATTACK” samples from the test dataset (Dataset 3) are provided as
input to the GAN network. For training the generator, the prior noise
dimension is set as 32. The prior noise dimension and class labels are
mapped into hidden layers (layer dimension 128) with a rectified linear

7 github.com/scikit-learn/scikit-learn.
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Fig. 7. F1 Score obtained on Dataset 3 for different Thresholds 6.

unit (ReLU) activation function. For output, a sigmoid function is
selected as the last activation layer for the discriminator unit. We choose
an Adam optimizer to minimize the loss function of the generator with a
learning rate of 1e-5. Additionally, we pick a minibatch of size 128 and
200 epochs and set (f1, f2) = (0.5, 0.9) for the optimizer. The poisoned
dataset is generated by synthesizing only the “ATTACK” samples from
the test set (Dataset 3). Then the generated samples are randomly placed
in the same test set (Dataset 3) again. The synthetic dataset is condi-
tioned to balance the number of samples in both classes. Testing a model
with a balanced dataset helps us to evaluate the DL model's general-
ization ability. Hence, the poisoned dataset used in our experiments
consists of 984 samples with 492 “ATTACK” samples and 492 “NO
ATTACK” samples.

4.2. Model performance metrics

We use multiple performance metrics from the BATADAL competi-
tion to evaluate the model's ability to detect a threat in the shortest
possible amount of time. In addition to this, we also use additional five
metrics namely accuracy, precision, recall, specificity, and F1-score to
measure the performance of a binary classifier.

4.2.1. Time-to-detection score: Strp
Time-to-detection is the difference between ground truth attack start
time t, (Eq. (21)) and algorithm detection start time tg.

0<Srmp=1t;—1ty <At 21)

The attack is indicated by At. A smaller TTD indicates that an algo-
rithm has an improved detection performance during an ongoing attack.
Additionally, the detection rate is associated with recall (%) or sensi-
tivity which is otherwise referred as the True Positive Rate (TPR) and it
is represented in Eq. (22). Additionally, precision, what proportion of
positive identifications was actually correct is represented in Eq. (23).

TP
Sensitivity = Recall = TPR = ——— 22
ensitivity = Reca TP T EN (22)
TP
Precision = —— 2
recision = 15— (23)

Here, FN is the number of false negatives, and TP is the number of
true positives. TPR is determined by the ratio of the correct attack
classifications and the total number of attacks detected by the algorithm
(including TP and FN). Additionally, we leverage True Negative Rate
(TNR) or specificity metric to check false alarms by the models, and it is
defined as (Eq. (24)),
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TN

Specificity = TNR = ———
pecificity P+ TN

@24

TN is the number of True Negatives, and FP is the number of False
Positives. TNR is determined by the ratio of the number of correct
classifications for safe conditions (without attack) and the number of
total classifications for safe conditions (including FP and TN).

4.2.2. Binary classification metric: F1-score

Egs. (22) and (23) are also known as recall and precision respec-
tively. In addition to accuracy and ranking, we calculate the Fl-score
using Eq. (25) that accounts for both precision and recall,

Precision”Recall

F1 Score =2 ————
core Precision 4 Recall

(25)

Training a DL model with an imbalanced dataset and evaluating its
performance using the accuracy metric can be misleading [74]. In such
cases, an F1-score is preferred over accuracy as the F1-score represents a
harmonic mean of precision and recall.

4.2.3. Classification performance score: Scrr

To compare with the other state-of-the-art detection algorithms, Egs.
(22) and (24) are merged as classification performance score Scrr (Eq.
(26)), the mean of Egs. (22) and (24).

TPR + TNR

2 (26)

ScLr =

This score (Scip) represents detection as well as false-negative
alarms. Additionally, this score is relevant to the F1 score, which is
appropriate for problems with binary classification. The score can result
ina 0 or 1 (where 1 indicates a perfect classification).

4.2.4. Ranking score: S
Time-to-detection Syp and classification performance score Scir
metrics can be merged further into a single ranking score as, Eq. (27):

S =y-Sto+ (1 —7)-Scrr 27)

According to the BATADAL competition, y is set to 0.5 to ensure the
weight of the early detection and the accuracy are equally adjusted [8].

5. Deep H>O results

This section presents the results of the three research questions
presented prior (RQ1 - RQ3).

5.1. RQ1: Al assurance

5.1.1. Supervised detection results

Table 1 presents the attack detection performance of both supervised
and unsupervised models. Among the two supervised models, results
suggest that the TGCN with attention model performs better in attack
detection in WDS. With the introduction of Attention and RMD assur-
ance methods, the TGCN with attention model results in a significant

Table 1
Attack detection performance comparison between baseline and improved
models on BATADAL Dataset 3.

Performance
metrics

Supervised model Unsupervised model

(Dataset 3 2) Tsiami TGCN TGCN with Taormina AE HCAE
attention

Precision 0.843 0.645 0.721 0.881 0.882  0.972

Recall 0.906 0.553 0.774 0.602 0.604  0.865

F1 Score 0.873 0.591 0.746 0.715 0.745  0.873

Accuracy N/A 0.850 0.897 N/A 0.919 0.951

Specificity N/A 0.922 0.927 N/A 0.972  0.983
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improvement in recall and F1 score performance metrics. Out of the five
metrics presented in Table 1, we observe an improvement in precision,
recall, F1 score, and accuracy by 7.6 %, 22.1 %, 15.5 %, and 4.7 %,
respectively. Precision, recall, and specificity metrics improve from
baseline TGCN to TGCN with attention.

In terms of detecting attacks in WDS, results indicate that both the
TGCN model (baseline) and TGCN with attention model successfully
detect all seven attacks. Nevertheless, we notice (Fig. 8a, b, c, d) that the
baseline model (TGCN) has a higher number of false positives compared
to TGCN with attention model. We believe that the introduction of
assurance methods (Attention and RMD) improves the TGCN with
attention model and minimizes the number of false positives; This is also
reflected in the model's performance with an improved F1 and precision
score compared to its baseline. Overall, our results suggest that TGCN
with attention model performs better than TGCN (baseline).

5.1.2. Unsupervised detection results

To study the impact of the assurance constraints (Egs. (15)-(18)) on
HCAE, we present the model performance with and without assurance
constraints in Table 1. Not all four constraints bring optimal perfor-
mance, but a combination of these constraints achieves better classifi-
cation and dimensionality reduction performance than the baseline AE
model. From Table 1, we observe that sensitivity, specificity, accuracy,
and F1 score improve significantly with assurance constraints applied to
the AE. Also, we observe that precision is increased, because HCAE
learns the imbalanced data (BATADAL dataset is unbalanced) better
than AE.

Fig. O presents the attack detection performance of the unsupervised
models. The test dataset (Dataset 3) consists of seven different attacks.
All seven attacks are classified as “ATTACK” by both AE and HCAE
models. Fig. 9a and b present all seven attacks detected by the AE model
and the HCAE model respectively. As Fig. 9a illustrates, in addition to
detecting all SEVEN attacks, the AE model results in 21 sets of false
alarms. On the contrary, the HCAE model results in a single false alarm
(Fig. 9b). The result suggests that HCAE learns the complex
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interdependencies between the features during concealed attacks, hence
performing better than AE in detecting the attacks.

Table 4 presents the performance metrics, including the ranking
score (S). Although both HCAE and AE time-to-detection performance is
identical (94.7 %), the classification performance (Ranking Score S) of
the HCAE has significantly improved than the baseline AE. From the
table, we observe that classification performance has been improved
from 80 % to 92 %. Similarly, TPR also improved from 60.4 % to 86.5 %,
a significant increase. This performance improvement is expected as
HCAE learns the complex relationships between features in a deter-
ministic scheme, whereas AE learns them in a non-deterministic
approach.

5.2. RQ2: Data poisoning

In this sub-section, we present the performance of both supervised
and unsupervised models on poisoned data. Table 2 presents the attack
detection performance on synthetic poisoned data generated using GAN.

Results (Fig. 10a, b, ¢, d) suggest the supervised models perform
poorly with poisoned data. More specifically for TGCN, we observe, by
comparing Tables 1 and 2, that the attack detection performance of the
model is decreased by more than 50 % across all five metrics. Similar to
the baseline model, TGCN with attention model behaves poorly; results
suggest, on average, a 65 % reduction in performance across all five
metrics. The poor performance of supervised models on the poisoned
data can be explained as follows. The TGCN and TGCN with attention
models learn the behavior of a WDS by embedding the spatio-temporal
structure of the WDS. In other words, they learn to detect attacks based
on the sequential information inferred from the dataset during the
training process. As the attacks are randomly distributed across the
poisoned dataset (GAN data), both the supervised models fail to detect
the attacks, resulting in poor performance.

On the contrary to supervised models, we observe that the AE and
HCAE (unsupervised models) perform well (Fig. 11a, b, ¢, d) on the
poisoned data. In some cases, results suggest the performance of both
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Fig. 8. (a) Apply threshold on TGCN (b) TGCN detection results on the test dataset (c) Apply threshold on TGCN with attention (d) TGCN with attention detection

results on test dataset.
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Fig. 9. (a) AE detection results on test dataset (b) HCAE detection results on test dataset.
5.3. RQ3: Feature localization
Table 2

Attack detection performance comparison between baseline and improved
models on GAN generated samples.

Performance metrics Supervised model Unsupervised model

(GAN Samples) TGCN TGCN with attention AE HCAE
Precision 0.310 0.239 0.974 0.984
Recall 0.264 0.252 1 1

F1 Score 0.285 0.245 0.986 0.991
Accuracy 0.365 0.257 0.987 0.992
Specificity 0.458 0.262 0.976 0.985

unsupervised models is better on poisoned data (Table 2) than their
performance on the test dataset (Table 1). This improved performance
can be attributed to the fact that AE and HCAE models treat the training
samples as non-sequential data, and the data are randomly placed with
poisoned samples. Hence, they can detect the randomly distributed at-
tacks from the poisoned dataset effectively.

8000

In this sub-section, we present the model's ability to identify the
features impacted by an attack (feature localization). We perform
feature localization by estimating the deviation of the features from the
“NO ATTACK” dataset distribution.

The results presented so far suggest that the model customized with
Al assurance methods and constraints performs better than their
respective baseline model. Hence, for feature localization, we limit our
evaluation to two models: TGCN with attention and HCAE. Table 3
presents the localization results for supervised and unsupervised
models. The localized feature that matches the ground truth is high-
lighted in bold.

For TGCN with attention model, to localize the impacted features
during an attack, we compare the mean squared error of the network
from the testing set of its corresponding maximum error from the vali-
dation set (25 % of Dataset 1). The supervised model can successfully
localize five attacked nodes among the seven attacks while failing to
localize attacked nodes for Attack 9 and Attack 13.

Next, we present the feature localization performance of the unsu-
pervised model. To localize the impacted features, we select the features
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Fig. 10. (a) Apply threshold on TGCN; (b) TGCN detection results on the poisoned dataset (c) Apply threshold on TGCN with attention; (d) TGCN with attention
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Table 3
Feature localization results of TGCN with attention and HCAE on Dataset 3.

Attacks Real attacks Predicted feature localization
labels description K
TGCN with FP HCAE FP
attention
Attack 8 Alteration of P_J256, L_T3, 3 P_J256, L_T3, 4
L_T3 thresholds P_J289, L. T2 L_Té6, P_J280,
leading to F_PU4, F PU7
underflow
Attack 9 Alteration of P_J289, P_J422, 4 P_J422, P_J289, 9
LT2 P_J300, L_T7 P_J280, P_J300,
L_T6, F PU1,
L.T5,F.V2,1.T7,
LT4
Attack Activation of F_PU3, P_J280, 6 F_PU3, S PU10, 7
10 PU3 L.T7,L.T4, F_PU10, L_T1,
P_J269, F_PU1, P_J269, P_J307,
F_PU9 P_J14, P_J317
Attack Activation of F_PU3, P_J280, 9 L_T1, F_PU3, 6
11 PU3 L.T7, F.PUI, F_PU10, P_J269,
L.T4, L_T6, P_J14, F_PU1,
P_J307, P_J415, F_PU2
F_PU6, P_J289
Attack Alteration of P_J289, P_J300, 2 P_J300, P_J289, 8
12 L_T2 readings L T2 L_T1, P_J280,
leading to F_PU7, L_T5,
overflow L.T6, L T2,
P_J422
Attack Change the L_T7 L.T6 1 P_J307, P_J302, 4
13 thresholds F_PUS, F_PU10,
L_T7, L_Te6,
P_J306
Attack Alteration of L T4, L.T7, 2 P_J415, F PU7, 6
14 L_T4 signal P_J415, L_T6 L.T1,L.T6,
P_J307, F_PU10,
P_J14

with the highest number of deviations from the threshold (8y,) by esti-
mating their mean squared error. During a predicted attack, we pick the
top features for which reconstruction errors deviate most from the
threshold (6).

Overall, the results indicate that the modified models can success-
fully localize various attacks, including alteration of thresholds, signals,
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and meter readings. Furthermore, we observe that TGCN with attention
localizes the attacked features with a minimal number of False Positives
(FP) among the two models. False positives are estimated for each attack
category by subtracting the set of total nodes detected by the model in
that category from the set of ground truths. For example, Consider
Attack 12, in which the readings of L T2 are altered. While both the
models successfully localize the feature (L_T2), the TGCN with attention
model, in addition to identifying L_T2, also identifies two additional
features as potentially attacked. In contrast, HCAE models identify
additional eight nodes within the proximity as potentially attacked
features. This is because, the neighbor nodes show similar behavior
during normal operations, and therefore, during an attack, the model
predicts those neighbor nodes are highly likely to be attacked.

5.4. Deep H20 model sensitivity analysis

In this section, we evaluate the attack detection outcomes of both
supervised and unsupervised models using Shapley values (SHapley
values are the outcome of a game theoretic approach that explain the
output of any ML model). In literature, variance-based sensitivity
analysis is a popular approach that explains black box models; primarily,
Sobol-based methods are gaining traction [75]. However, this approach
has one major limitation: it cannot explain localized observations. In our
work, we are more concerned with local observation explanations than
global ones since the models detect attacks from different nodes and
time points in a WDS. Therefore, we elected to use Deep Explainer,® an
enhanced approach from SHapley Additive exPlanations (SHAP) library
similar to Kernel SHAP. It approximates the conditional expectations of
SHAP values using a selection of background samples.

In this analysis, we provide all seven categories of attack samples
separately, generate SHAP values, and plot the scaled SHAP values
ranging from O to 100 in Fig. 12. This figure represents local feature
importance during the attack detection by the models. From the figure,
we can observe that feature localization (Table 3) and Deep Explainer
provide similar insights about the model's outcome. By observing
Fig. 12, it becomes evident that the model gives less attention to

8 github.com/slundberg/shap.
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Fig. 12. Deep H,0 attack detection local explanations using Shapley values. Ground truths are as follows: (a) Attack 8: Alteration of L_T3 thresholds leading to
underflow, (b) Attack 9: Alteration of L_T2, (c) Attack 10: Activation of PU3, (d) Attack 11: Activation of PU3, (e) Attack 12: Alteration of L_T2 readings leading to
overflow, (f) Attack 13: Change the L_T7 thresholds, (g) Attack 14: Alteration of L_T4 signal.

deactivated nodes from the training set (Dataset 1), including PU3, PUS5,
PU6, PU9, and PU11 while giving much more importance to the flow of
pumps that worked during the training set. Additionally, we observe
that all tanks were given attention during all seven categories because
they are always active in the training set. One shortcoming of both
models is that they could not learn the relationships among junctions
because of the imbalance of the training dataset; most influential junc-
tions got prioritized by the model over less participating ones. There-
fore, model attack localization was incorrect during attacks 9 and 13;

16

L_T2 and L_T7 weren't detected because other junctions got more
“attention”, including P_J280, P_J289, P_J300, when compared to
ground truth nodes V2 and PU10/PU11.

5.5. Comparison with BATADAL models

Next, we compare the attack classification performance of our
models with the top-performing models from the BATADAL competi-
tion. To maintain consistency in our evaluation, all the models are



M.N.K. Sikder et al.

evaluated using the test dataset (Dataset 3). Table 4 presents the com-
parison results, where our models are highlighted in bold. The results
indicate both the unsupervised and supervised model exhibits better
performance. HCAE (unsupervised model), with a ranking score of
0.933, is ranked 3, whereas TGCN, with attention, achieves 0.845 and
ranks eighth among the models from the BATADAL competition.
Although our models do not achieve the highest ranking, they are su-
perior compared to the top two models for the following reasons: 1). The
top-ranked model is physics-based, and hence it is not relevant to
compare with our model, an Al-based model. 2). The second-ranked
model, although an Al-based model, might not perform well (detect-
ing attacks) on previously unseen data. On the contrary, our models are
scalable and demonstrate a better attack detection performance on un-
seen data.

Results indicate that adding the AI assurance methods to the TGCN
model improves its overall performance. Compared to the baseline
model (S =0.754), TGCN with attention model achieves a better score (S
=0.845). Additionally, we observe that the time-to-detection (Strp) has
improved significantly; the baseline model achieves 0.735, whereas the
TGCN with attention model achieves 0.839. A higher Stp is significant
in the context of WDS; an improved Strp score indicates that the TGCN
with attention model can swiftly identify an attack at the earliest
compared to its baseline model.

For unsupervised models, both HCAE and AE (baseline) achieve an
identical score for time-to-detection (Strp = 0.947). However, we
observe that the HCAE model has an improved TPR score (0.865)
compared to its baseline (0.604). This results in the HCAE model
achieving a ranking score (S = 0.933) substantially higher than its
baseline (S = 0.873). Furthermore, a higher TPR indicates that the
model detects most attack samples. Thus, improving the trustworthiness
of the model during deployment.

Both TGCN with attention and HCAE models achieve a better ranking
score compared to their respective baseline models.

6. Discussions
6.1. Water laws and public policy

Environmental and water laws govern our nation's water, air, waste,
and other natural components. Most of the time, and due to the public's
lack of awareness or attention, voters are usually drawn to water and
environmental issues after wide-scale incidents of environmental dam-
age, such as the Flint Water crisis’ and its effects on safe drinking water
in the state. The Clean Water Act (CWA) establishes the basic rules and
benchmarks for regulating quality standards and discharging pollutants
into the waters of the United States. The work presented in this manu-
script aims to provide preventive measures for the health of water
treatment plants against the rising dangers of cyber attacks. Deep H20 is
instrumental in governing cyber components of a water facility,
providing recommendations to WDSs operators on when and where the
attack occurs, and validating against water policies and Environmental
Protection Agency (EPA) regulations. This project continues as a
collaboration with WDSs in Northern Virginia and the District of
Columbia (DC) to deploy Deep H>O at local facilities and aim to expand
it to other WDSs as well. Conclusions and future work items are pre-
sented next.

6.2. Conclusions and future work

This manuscript presents Deep H-0, a novel cyber attack detection
framework for WDSs. Deep H,0 applies Al assurance to two DL archi-
tectures, TGCN with attention and HCAE, and compares their

® https://www.michigan.gov/mdhhs/inside-mdhhs/legal/flint-water-settlem
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performance improvement over their baseline models. For TGCN with
attention model (supervised model), it has been observed that applying
Al assurance, including attention and RMD with TGCN, improves the
model's attack detection accuracy. Similarly, for HCAE (unsupervised
model), applying Al assurance, including tide weights, orthogonality
constraints, and other constraints, improves detection accuracy and F1-
score of the HCAE model compared to AE.

The performance of both supervised and unsupervised models on
poisoned data has been evaluated. For the supervised model, compared
to its performance on the test dataset, it has been observed that most of
the metrics decrease significantly. The supervised model struggles to
perform (i.e., to detect an attack) if there is randomness in the dataset.
Unlike the supervised model that performs poorly on poisoned data, our
result indicates that the predictive performance of the unsupervised
model (HCAE) is similar for the test data and the poisoned GAN data. No
significant drop in the model's performance has been observed. To
explain this phenomenon, the unsupervised model learns uncorrelated
feature representation in the latent dimension and does not learn the
sequential attributes. Hence the model can identify randomness in the
poisoned data.

Result suggests that the HCAE model has better generalizability.
Among the two models, the unsupervised model (HCAE) performs better
in terms of ranking score and time-to-detection score. Also, HCAE is well
generalized and regularized while detecting attacked samples on the
BATADAL test set. This improved classification performance and recall
values make HCAE a better choice for deployment in the WDS.

The study uses multiple performance metrics, including time-to-
detection score, classification score, ranking score, precision, recall,
accuracy, and F1 score, to measure the model's performance. The F1
score improvement is focused on the various metrics because of the
heavily imbalanced BATADAL dataset. Therefore, this particular case,
the F1 score becomes an important metric that considers model attack
prediction errors and accounts for the type of errors by taking the har-
monic mean of precision and recall. That is, only if both precision and
recall values are high the F1 score gets higher; in this study, a higher F1
score indicates higher “ATTACK” and “NO ATTACK” harmonic class
detection. Additionally, the unsupervised model outperforms the su-
pervised model for WDS, including a better F1 score. The unsupervised
model is a one-class classification method that generalizes well regard-
less of the water systems' spatio-temporal structure, making the model
simpler than TGCN with attention. Additionally, the unsupervised
model does not require labeling, an expensive and time-consuming ac-
tivity in the model development process.

The ability of both supervised and unsupervised models in feature
localization has been evaluated. Localizing a feature is tedious for both
models during a concealed attack. Although the results are not highly
accurate, they are promising and vital for WDS. For instance, both
models can identify attacked node(s) or neighboring nodes during an
“ATTACK”. Further refining the model hyper-parameters by applying a
grid search technique can improve the performance and result in better
feature localization results, which is a potential future work. The
sensitivity analysis of two models showed that less important or sensi-
tive variables were inactive in the training set, while active components
were the most influential during a cyber-attack. However, some com-
mon junctions had high sensitivity or importance flags due to imbal-
anced training data.

Additionally, the extension of this work can be the following: 1) The
GAN used in these experiments to generate synthetic data fails to
replicate the time-series information from the original dataset. The
attack samples are generated merely using GAN. Consequently, the next
plan is to use TimeGAN [76], a variant of GAN, to generate sequential
(time-series) synthetic data consisting of both attack and non-attack
samples and test the performance of DL models on the time-series syn-
thetic data. 2) A large metropolitan city can have multiple WDSs across
various locations within the metroplex. A bad actor can start a concealed
attack on one of the WDS and continue to spread the attack across all
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Table 4

Comparison of Al Assured models with BATADAL competition models.
Authors/models No. Of attacks detected Ranking score (S) Time-to-detection (St7p) Classification score (Scrr) TPR TNR
Housh and Ohar 7 0.97 0.965 0.975 0.953 0.997
Abokifa et al. 7 0.949 0.958 0.944 0.921 0.959
HCAE 7 0.933 0.947 0.919 0.865 0.983
Tsiami et al. 7 0.931 0.934 0.928 0.885 0.971
Giacomoni et al. 7 0.927 0.936 0.917 0.838 0.997
Brentan et al. 6 0.894 0.857 0.931 0.889 0.973
AE 7 0.873 0.947 0.800 0.604 0.972
TGCN with attention 7 0.845 0.839 0.851 0.774 0.927
Chandy et al. 7 0.802 0.835 0.768 0.857 0.678
Pasha et al. 7 0.773 0.885 0.66 0.329 0.992
TGCN 7 0.754 0.735 0.773 0.553 0.922
Aghashahi et al. 3 0.534 0.429 0.64 0.396 0.884

locations. To swiftly detect and prevent such attacks, Federated
Learning (FL) techniques [77] can be adapted to learn from the initial
concealed attack and leverage that information to prevent future attacks
(of similar nature) across other WDSs. Furthermore, using the real-time
data collected from the WDSs to retrain the DL model can significantly
improve the detection performance of the model. However, given the
geographically distributed nature of WDSs, it is essential to preserve the
privacy of the real-time data (collected from the WDSs). Therefore, the
plan is to use FL techniques to guarantee data and model privacy. 3)
Training and deploying a DL model across different WDSs is challenging
as the threshold might vary across different WDSs locations. This is
further complicated by a set of different operations across WDSs.
Another interesting idea is to explore Context learning [72] to enable DL
models to be context-aware (such as population and weather) and effi-
ciently detect attacks that vary based on different thresholds. Further-
more, training and evaluation of the Deep H30 framework using real-
world WDS datasets'” such as: Water Distribution (WADI) dataset and
Secure Water Treatment(SWaT) is a future task. Lastly, a plan to develop
approaches that explain the model's outcomes to water plant operators
could be a great study, which would result in higher adoption rates and

increased trustworthiness [25] of such frameworks at water facilities in
the United States.
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Appendix A. First seven attacks set descriptions (C-Town Dataset 2)

Table A.5
Dataset 2 attacks description [8].
Identifier  Starting time Ending time Duration Attack descriptions SCADA concealment Label

(D/M/Y H) (D/M/Y H) (H) (h)

1 13/09/2016 16/09/2016 50 Attacker alters SCADA transmission to PLC9 and changes Replay attack on L_T7 42
23 00 L_T7 thresholds determining when pumps PU10/PU11 are

switched on/off. Low levels in T7.

2 26/09/2016 27/09/2016 24 Like Attack #1. Like Attack #1 but replay attack extended 0
11 10 on PU10/PU11 flow and status.

3 09/10/2016 11/10/2016 60 Attack alters L_T1 readings sent by PLC2 to PLCI, which Polyline to offset L_T1 increase. 60
09 20 reads a constant low level and keeps pumps PU1/PU2 on.

Overflow in T1.

4 29/10/2016 02/11/2016 94 Like Attack #3. Replay attack on L_T1, PU1/PU2 flowand 37

19 16 status, as well as on pressure at pumps
outlet (P_J269).

5 26/11/2016 29/11/2016 60 Working speed of PU7 reduced to 0.9 of nominal speed. 7
17 04 Lower water levels in T4.

6 06/12/2016 10/12/2016 94 Like Attack #5, but speed reduced to 0.7. Replay attack on L_T4. 73
07 04

7 14/12/2016 19/12/2016 110 Like Attack #6. Replay attack on L_T4, as well as on PU6/ 0
15 04 PU7 flow and status.

10 https://itrust.sutd.edu.sg/
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Appendix B. Remaining seven attacks set descriptions (C-Town Dataset 3)

Table B.6

Dataset 3 attacks description [8].

Journal of Water Process Engineering 52 (2023) 103568

Identifier ~ Startingtime  Endingtime  Duration Attack descriptions SCADA concealment
(D/M/Y H) (D/M/Y H) (H)
8 16/01/2017 19/01/ 70 Attacker gains control of PLC3 and changes L_T3 Replay attack on L_T3, as well as on PU4/PU5 flow and
09 2017 06 thresholds determining when pumps PU4/PU5 are status.
switched on/off. Low levels in T3.
9 30/01/2017 02/02/ 65 Attack alters L_T2 readings arriving to PLC3, whichreadsa  Polyline to offset L_T2 increase
08 2017 00 low level and keeps valve V2 OPEN. Attack leads T2 to
overflow
10 09/02/2017 10/02/ 31 Malicious activation of pump PU3
03 2017 09
11 12/02/2017 13/02/ 31 Similar to Attack #10
01 2017 07
12 24/02/2017 28/02/ 100 Similar to Attack #9 Replay attack on L_T2, V2 flow and status, as well as on V2
05 2017 08 inlet and outlet pressure readings (P_J14, P_J422)
13 10/03/2017 13/03/ 80 Attacker gains control of PLC5 and changes the L_T7 Replay attack on L_T7, PU10/ PU11 flow, and status, as
14 2017 21 thresholds determining when pumps PU10/PU11 are well as on pumps inlet and outlet pressure readings (P_J14,
switched on/off. The pumps are forced to switch on/off P_J422). Inlet pressure concealment terminates before that
continuously during attack of other variables.
14 25/03/2017 27/03/ 30 Alteration of T4 signal arriving to PLC6. Overflow in T6.
20 2017 01

Appendix C. Hyper-parameters selection For Deep H;0

Table C.7
Hyperparameters selection using random search (Bold values are the finally selected hyperparameters).

Hyperparameters

Baseline AE HCAE

Baseline TGCN

TGCN with attention

Adam optimizer learning rate
Batch size

0.0001, 0.001, 0.01, 0.1
8, 16, 32, 64, 128, 264

0.0001, 0.001, 0.01, 0.1
8, 16, 32, 64, 128, 264

0.0001, 0.001, 0.005, 0.01, 0.1
8, 16, 32, 64, 128, 264

500, 1000, 2500, 5000

Sequence length N/A N/A 4,8,16,24,32h
Number of epochs 500, 1000, 2500, 5000 500, 1000, 2500, 5000

Number of hidden layers 3,5,7,9,11 3,5,7,9,11 N/A

Hidden dimensions N/A N/A

8, 16, 32, 64, 100, 128

0.0001, 0.001, 0.005, 0.01, 0.1
8, 16, 32, 64, 128, 264
4,8,16,24,32h

500, 1000, 2500, 5000

N/A

8, 16, 32, 64, 100, 128
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