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A B S T R A C T   

Water Distribution Systems (WDSs) leverage the recent technological advancements in sensor technologies and 
Cyber-Physical Systems (CPSs) for better processing, distribution, and delivery of clean water. Given the digital 
nature of CPSs, they can be vulnerable to different kinds of cyber threats, especially in cases where adversaries 
can conceal the state of the attack. If an adversary (state or non-state actor) successfully compromises a WDS, 
that could result in major destructive consequences to water quality, public health, and agricultural irrigation. 
This paper presents empirical Artificial Intelligence (AI)-based methods for detecting such concealed attacks in 
WDS. We present two Deep Learning (DL) models: Temporal Graph Convolutional Network (TGCN) with 
Attention, a supervised learning model, and High Confidence Auto-Encoder (HCAE), an unsupervised learning 
model. TGCN adopts Attention and Robust Mahalanobis Distance (RMD) metrics for robust and generalizable 
forecasting performance. HCAE uses customized hidden layers to improve classification performance compared 
to state-of-the-art approaches. Experiments are performed to evaluate the proposed models using the BATtle of 
the Attack Detection ALgorithms (BATADAL) dataset; founded on a Supervisory Control And Data Acquisition 
(SCADA) infrastructure. Additionally, we assess the performance of the two models against synthetically 
poisoned data generated from a Generative Adversarial Network (GAN). Both attack detection models show 
superior accuracy with attack detection, localization, and overall robustness against data poisoning. The results 
suggest that both the supervised and unsupervised models perform better attack detection with a ranking score of 
0.845 and 0.933, respectively. Results also indicate that, among the two models, the unsupervised model per
forms better in detecting poisoned data (accuracy: 0.992) and has better generalizability. Experimental results 
are recorded, evaluated, and discussed.   

1. Introduction 

Recent unprecedented AI and sensor technology advancements are 
transforming all domains, including WDSs. With industrial revolution 
4.0, WDS [1] is undergoing a significant digital transformation to enable 
data-driven monitoring and utility operations control. The addition of 
cyber elements aims to make these (CPSs) systems more effective. 
However, that comes with a trade-off, systems become increasingly 
vulnerable to security and safety threats [2,4]. For instance, the recent 
targeting of infrastructure in Ukraine reminds us of the risk of attacks on 

critical infrastructure, including cyberattacks on WDSs. According to 
UNICEF, as of May, 1.4 million people in eastern Ukraine were without 
access to safe water from public water systems.1 Another example, in 
2013, hackers seized control of a small Florida dam that released un
processed water to nearby communities [4]. Besides that, on February 
5th, 2021, a Florida water treatment plant (in Oldsmar, FL) was 
compromised. The hacker altered the levels of sodium hydroxide in the 
water - a chemical that would severely damage any human tissue it 
touches [5]. This event suggests that current WDS control utility oper
ations are mainly exposed and continuously vulnerable to attackers, 
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requiring sophisticated learning algorithms that can estimate the sys
tem's state, detect inconsistencies and outliers, and mitigate the harm 
done by such events. 

AI has numerous advantages for detecting anomalies in WDSs, 
including those caused by cyberattacks which are harder for humans to 
detect than kinetic attacks. WDS human observers cannot detect all 
anomalies, and even when they become aware of an anomaly, they often 
misinterpret it. The frailties of human beings in interpreting data from 
complex systems have been cataloged by sociologist Charles Perrow in 
an important book [6] about the causes of nuclear accidents. The same 
kinds of human shortcomings in interpreting complex data are evident 
in after-action reports about the Deepwater Horizon oil spill, which, 
among other things, recommend increased use of AI to prevent future 
spills [7]. Humans have created systems that are too complex for them to 
monitor effectively, and they need help from AI. But the potential ap
plications of the technologies that the authors describe are not limited to 
cyberattacks and WDSs. Many sewage spills result from leaks in anti
quated underground systems that can go undetected. For example, in 
July 2020, an old pipe broke in New Haven, Connecticut. No one noticed 
until a citizen saw raw sewage on the street the next morning and called 
the authorities. Two million gallons of untreated sewage spilled into 
Long Island Sound over the next several days.2 

1.1. Motivation 

WDSs are a critical infrastructure that ought to be safe, secure, and 
reliable in delivering water for all intended purposes. Despite the sto
chastic nature of the WDSs operational processes, many Artificial In
telligence (AI) algorithms can help with early attack prediction or 
anomaly detection [8]. 

Attack detection models using AI require data representing the 
physical structure and the temporal behaviors of the WDSs. A WDS 
consists of a network of reservoirs, pumps, storage tanks, pipes, junc
tions, valves, and taps; usually spread across a geographical dimension. 

In most cases, the models are developed using data streams from 
SCADA systems to classify if the system is running safely or not. SCADA 
collects real-time distributed field data measurements, including water 
flow rates, pump status, and pressure sensor readings, then transmits 
them (measurements) to a central server. Because of the complex in
terdependencies among different nodes, DL models are better suited to 
computationally represent the system [9]. Machine Learning (ML) 
models, including ensemble learning models, are a good choice for small 
and simple networks [10], however the increasing number of nodes in a 
network (such as in WDSs) creates non-linear relationships among them. 
According to Sikder et al. [10], DL models can capture non-linear re
lationships in a distributed network system more effectively when 
compared to ML models. Therefore, our work aims to address the se
curity of WDSs by building robust and generalized DL models. 

Despite the recent advancements in computing technology, WDS has 
security flaws because of its dependency on decade-old network devices. 
Therefore, an attacker can easily eavesdrop on the communication be
tween the network and the central control system. Additionally, ad
versaries can send malicious attacks by spoofing sensor measurements, 
concealing the intended attacks from the operators' sight [11] - these 
attacks are also known as concealed attacks. Fortunately, such attacks 
have a digital and physical footprint in the network, such as sensor value 
deviation from the norm or water flow rate changes during high-demand 
hours. Statistically, these abnormal events can be considered anomalies, 
which a suitable learning algorithm can detect. For instance, what if the 
attacker conceals these anomalies or sensor measurements by sending 
replay attacks? A replay attack [12] occurs when a cyber criminal 
eavesdrops on secure network communication, intercept, and delay 

signals to misdirect the receiver. In stealthy attacks [13], since attackers 
conceal the physical layer, it becomes difficult to detect these attacks by 
using anomaly detection-based models. For example, Taormina et al. 
[14] presented difficulties associated with ML algorithms to detect 
concealed attacks in (WDSs) in comparison with DL algorithms. DL al
gorithms are key for estimations in such complex ecosystems. The 
BATADAL data that we use here consist of a WDS operator for C-Town 
Public Utility (CPU) with anomalous low or overflowing tank levels 
showing up during stealthy attacks [8]. 

1.2. Background of cybersecurity in WDS 

Advanced WDSs constitute tens or hundreds of Internet of Things 
(IoTs) devices, including sensors and actuators; this complex connec
tivity makes the system vulnerable to malicious cyberattacks [15]. 
Cyberattacks are becoming increasingly sophisticated via minimally 
perturbed signals that go unnoticed to a human operator or a traditional 
expert system [15]. Therefore, intelligent algorithms (such as DL) are 
deemed necessary for detecting cyberattacks [16]. 

Cyber-attacks on water distribution systems can take many forms. 
According to a survey paper [3], one type is data poisoning, in which an 
attacker alters or corrupts data in a system to cause it to malfunction or 
present incorrect outcomes. Another type is ransomware, in which an 
attacker encrypts a system's data and demands a ransom payment in 
exchange for the decryption key. Other types of attacks on water dis
tribution systems include denial-of-service attacks (i.e. an attacker 
floods a system with traffic to prevent legitimate users from accessing 
it), and unauthorized access (where an attacker gains access to a system 
without permission). These attacks can have serious consequences on 
water treatment and supply, including contamination, disruption of 
service, and financial loss to the WDS. 

DL algorithms can be trained on large amounts of data to identify 
patterns and anomalies that may indicate a cyber-attack. For example, 
an AI algorithm can be trained to recognize network traffic patterns 
typical of a denial-of-service attack and then use this information to 
block similar traffic in the future [17]. AI-based intrusion detection 
systems (IDS) are also used to detect and prevent cyber-attacks on water 
distribution systems. These systems can use a combination of AI algo
rithms and rule-based systems to detect unusual activity in the network. 
Moreover, AI can be used to optimize the security of water distribution 
systems by automating many of the tasks that are currently performed 
manually. For example, AI-based systems can automatically update se
curity configurations and patch vulnerabilities, reducing the risk of 
successful attacks [3]. 

It is important to note that the use of AI in cybersecurity research for 
water distribution systems is still in its early stages [3], and more 
research is needed to understand these technologies' capabilities and 
limitations fully. However, AI's potential to enhance these systems' se
curity is significant, and it is expected that the use of AI in cybersecurity 
for water distribution systems will continue to grow. 

1.3. Our contribution 

DL models make decisions based on either a black-box environment 
or a non-deterministic approach. Without assessing robustness and 
generalizability, DL models' deployment stage becomes unreliable. We 
address these two key components:, robustness and generalizability, and 
present the Deep H2O framework that consists of two models: TGCN 
with attention, a supervised model, and HCAE, an unsupervised model. 
Key contributions are the following:  

• The study uses TGCN with attention and HCAE models to identify 
cybersecurity threats in WDS, considering both time-sequential and 
non-sequential aspects.  

• TGCN with attention captures spatial correlations in graph data and 
global temporal dynamics, understands complex interdependencies 

2 www.nhregister.com/news/article/Save-the-Sound-investigating-after-153 
96322.php. 

M.N.K. Sikder et al.                                                                                                                                                                                                                            

http://www.nhregister.com/news/article/Save-the-Sound-investigating-after-15396322.php
http://www.nhregister.com/news/article/Save-the-Sound-investigating-after-15396322.php


Journal of Water Process Engineering 52 (2023) 103568

3

among sensor readings, and leverages Graph Convolutional Network 
(GCN) [18] [19], Gated Recurrent Unit (GRU) [20], attention 
mechanism [21,22,19], and Robust Manalanobis Distance (RMD) 
[23] for anomaly detection. TGCN with attention provided better 
performance than the baseline TGCN model.  

• HCAE uses a dimensionality reduction technique, ANN-based DL 
architecture, custom hidden layers, and constraints for a robust and 
well-generalized model that achieves an improved attack classifica
tion performance when compared to baseline AE models.  

• The study assesses both models using original and synthetically 
generated samples, compares the performance of the supervised and 
unsupervised models, and justifies which model is better during a 
cyber-physical attack in a WDS.  

• To check for generalizability and robustness, a synthetic test dataset 
is generated using GAN [24]. 

In the manuscript, we introduce the following three research 
hypotheses:  

1. Research Question 1 (AI Assurance): How do AI assurance [25] 
constraints, such as layer customization, attention, and RMD, 
improve models' performance?  

2. Research Question 2 (Data Poisoning): Can models' generalizability 
in WDSs be tested using poisoned data generated by GANs?  

3. Research Question 3 (Feature Localization): How can the two models 
localize features based on embedded and learned representations in a 
given feature space (i.e., in a water system)? 

Our study presents a novel approach for detecting cyber-physical 
attacks in WDS using TGCN with attention and HCAE models. We 
incorporate AI assurance methods [26] and constraints to improve the 
performance of these models. We also evaluate the models on both 
original and synthetic datasets and compare their performance using 
various evaluation metrics such as: F1-score, precision, recall, and time- 
to-detection. Our results show that both models can detect attacks in a 
WDS with high accuracy and efficiency. TGCN with attention and HCAE 
models can be promising approaches for detecting cyber-physical at
tacks in WDS. We also explain attack localization by identifying the 
attacked node during “ATTACK” windows in a time-efficient manner. 

The rest of the paper is structured as follows: we present related 
works in Section 2, we introduce methods in Section 3, specifically 
TGCN with attention, and then HCAE. Then we describe our experi
mental design for the study in Section 4. Section 5 provides results and 
explanations. Finally, Section 6 presents our concluding remarks. 

2. Related work 

Given the constantly growing use of CPSs, the uses of AI in CPSs in 
various applications also grow [27,28,29]. This section discusses the 
related DL approaches for CPSs, especially multivariate time series data. 
We provide related works for supervised and unsupervised models in 
CPSs and present adversarial data generation approaches using GANs. 
Finally, we present WDS security works using AI methods. 

2.1. Temporal graph convolutional network 

TGCN architecture was first designed and developed by Zhao et al. 
[30] for traffic prediction in 2018. The model helps to capture spatial 
and temporal relationships in feature space. It consists of GCNs and 
GRUs, which allow it to learn complex topological structures to capture 
spatial dependencies and the dynamic changes in the data to capture 
temporal dependencies. In 2020, Zhu et al. [31] proposed architecture 
on top of TGCN with an attention mechanism. This attention mechanism 
improves prediction accuracy by adjusting the importance of different 
time points and assembling global temporal information. We transfer 
this knowledge from their study and adopt an attention mechanism in 

the WDSs to improve forecasting. To our best knowledge, neither Zhao 
et al.'s [30], nor Zhu et al.'s [31] architecture has been applied to WDS 
before. 

In another study, Covert et al. [32] succeeded in creating a different 
architecture of TGCN in 2019 for automatic seizure detection. Unlike the 
TGCN architecture proposed by Zhao et al. [30], their approach consists 
of several Spatio-Temporal Convolutional (STC) layers. The STC layer 
does not contain any GRU but a 1-dimensional convolution to each of its 
input sequences [32]. STC layer operates on the input sequences in a 
way that allows the graph topology to be maintained at each layer. It 
then refers to the adjacency matrix of structural time series to aggregate 
neighboring features [32]. This architecture is then applied for cyber- 
physical attack detection on the BATADAL dataset [33] with good re
sults compared to the benchmark values. Tsiami et al. [33] proposed a 
one-stage prediction-based algorithm that uses Covert et al.'s TGCN for 
sensor prediction and MD for anomaly detection. Although the results 
are promising, the model can still be potentially improved by replacing 
the MD metric with the RMD metric. 

2.2. Autoencoder 

The use of DL methods for anomaly detection has recently achieved 
improvements in learning high-dimensional datasets [34]. To eliminate 
outliers and noise without prior knowledge, a deep AE can be a helpful 
model [35]. A book [36] on outlier detection discusses how AEs are a 
natural choice for outlier detection since they are often used to reduce 
multidimensional datasets. The AE model presented at [35] discovers 
high-quality nonlinear features. This approach includes splitting the 
input data into two sets to increase the robustness of the model. The 
work results show good performance since they distinguish between 
random anomalies and other structured corruptions in CPS data. Sun 
et al. [37] proposed a novel sparse representation framework that learns 
dictionaries based on the latent space of Variational AutoEncoder (VAE). 
This framework addresses the limitation of most existing algorithms that 
can handle large-scale and high-dimensional data. Their proposed 
model can obtain hidden information and extract more high-level fea
tures by playing the role of dimensionality reduction. 

Another work [38] addresses unsupervised anomaly detection on 
high-dimensional data. This work aims to address the limitation in 
existing unsupervised anomaly detection approaches that suffer from 
decoupled model learning with conflicting optimization goals. This 
paper presented a Deep Autoencoding Gaussian Model (DAGMM) for 
unsupervised anomaly detection. DAGMM optimizes the deep autoen
coder and mixture model parameters jointly to help with the parameter 
learning of the mixture model. This joint optimization helps the 
autoencoder further reduce reconstruction errors. Our study focuses on 
AE reconstruction error reduction and attack detection performance 
maximization. 

2.3. Generative adversarial networks 

Generative models, including GANs, provide a way to learn deep 
representations without extensively annotating training data [24]. The 
inspiration for this idea comes from the two-player sum game between 
neural networks, where they balance each other out with gains and 
losses. GAN consists of a generator and discriminator. The generator 
captures the potential distribution of real samples to generate new 
samples, and the discriminator determines which samples are fake by 
discriminating which of the generated samples are real samples as 
accurately as possible [39]. GAN models are necessary for many DL 
applications, such as security, data augmentation, and privacy preser
vation. One work [39] stated that generative models understand data 
perspective, using real data to fit the distribution parameters and pro
duce new data using the learned distribution. Another paper [40] 
explained the GAN framework by applying a range of benchmark 
datasets. They used noise merely on the bottom layer of the generator 
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network. They claimed the samples resulting from their estimation 
method have somewhat high variance and produce competitive samples 
compared to the generative models in the literature. Their work did not 
require interference during the learning, allowing them to incorporate 
various functions into the model. However, the model has disadvan
tages. The discriminator must be synchronized well with the generator 
to avoid the probability of placing the generator in a small area of data 
space. 

Furthermore, Zhou [41] introduced GAN on the BATADAL datasets 
to create a virtual testbed for WDSs. Their approach computes the 
membership distance between the dimensions and then divides the di
mensions with a small distance into a group. Then, they obtained a 
larger quantity of attack sample control data by expanding the attack 
sample. Another paper, [42] addresses the imbalanced and missing 
sample data used for Intrusion Detection Systems (IDSs) to defend 
against CPS attacks. They proposed to generate synthetic samples using 
GANs so the IDS gets trained using them as well as the originals. Their 
results showed improvements in attack detection and model stabiliza
tion; however, they did not provide any direction for balancing data 
classes. In our study, we generate synthetic balanced data using GAN for 
testing our models' generalizability. 

2.4. Security for WDSs 

The security aspects of water distribution have a wide variety of 
potential solutions. Kadosh et al. [43] presented a one-classifier 
approach to detect attacks in WDSs. Their approach uses a Support 
Vector Data Description (SVDD) algorithm to classify normal vs. 
anomalous behavior. Min et al. [44] proposed an ANN-based DL algo
rithm to detect cyber attacks. Taormina et al. [14] developed an 
approach that uses AEs to detect and localize intrusion attacks in a WD. 
Zou et al. [45] proposed an event detection model to detect and mitigate 
water contamination. In their approach, they proposed a hybrid model 
that comprises an ANN and a Support Vector Machine (SVM) to detect 
the contamination events. Bagherzadeh et al. [46] evaluated the effects 
of different feature selection methods on enhancing the model predic
tion performance of total nitrogen in wastewater treatment plants. 
Furthermore, they analyzed the importance of different characteristics, 
namely time, climate, hydraulic flow, and wastewater characteristics, in 
predicting energy consumption [47]. Their study suggested that the 
Gradient Boosting Machine algorithm exhibits a better performance in 
forecasting energy consumption when compared to other ML algo
rithms. Mehrani et al. [48] proposed a hybrid model that combines a 
mechanistic model and ML model to predict the liquid N20 concentra
tions; their results suggest that a hybrid model that combines a mech
anistic model and an Artificial Neural Network (ANN) model performs 
better with limited availability of data. Additionally, a significant 
amount of work has been reported on approaches to detect attacks in 
CPS used in water treatment plants [49]. 

Furthermore, Yoong et al. [50] designed an ML framework that can 
detect physical and software-generated anomalies in continuous water 
treatment plants without false alarms. Adepu et al. [15] designed and 
developed an expert system, Distributed Attack Detection (DAD), that 
detects physical anomalies of a plant in real-time operations. This study 
is a succession of a prior work of Adepu et al. [51] where they developed 
an anomaly detection framework based on physical invariants derived 
for each stage of the plant design. Macas et al. [52] claimed that present 
water treatment plants are complex, and their spatio-temporal relations 
need to be explored further. The authors presented an unsupervised 
framework for anomaly detection called Attention-based Convolutional 
LSTM Encoder-Decoder (ConvLSTM-ED) to capture temporal de
pendencies. In another study, Zizzo et al. [53] developed an adversarial 
attacker model that can compromise a subset of sensors and validate 
existing anomaly detection models. In their study, the attacker manip
ulates the detector by hiding its presence. Similarly, Anthi et al. [54] 
generated adversarial samples using the Jacobian-based Saliency Map 

attack and explored how adversarial learning can target the supervised 
models. Testing anomaly detection performance using an adversarial 
attacker model is a popular approach in WDSs; however, based on our 
search, applying GANs as adversaries for testing the generalizability of 
the attack detection models in WDSs is a novel study. 

3. Deep H2O 

Deep H2O (Fig. 1) consists of two main parts, (1) TGCN with atten
tion and (2) HCAE. The supervised model, TGCN with attention, per
forms well with time series samples and offers contextual anomaly 
detection; it is more aligned with the BATADAL case study, where sensor 
relations in the distribution system require comprehensive monitoring. 
Additionally, we expect that a WDS end-user (i.e., operator) might 
require AI models that consider the data samples as non-time series for 
specific application requirements (for example, missing data). Thus, we 
propose HCAE, an unsupervised model that works well with non- 
sequential data samples. 

This section presents the design of TGCN with attention and HCAE 
models; discusses concealed attack detection in a WDS. We discuss the 
design choice of GAN to generate poisoned data. Fig. 1 presents the high- 
level overview of our proposed Deep H2O framework that contains all 
the models together. We present all three models consecutively and their 
respective outcome selection processes. 

3.1. C-town data description: BATADAL case study 

The BATADAL competition simulates an intrusion attack in a 
fictional C-Town (Fig. 2a). The WDS in C-Town experiences anomalous 
behavior (concealed attacks) in its hydraulic components. The WDS in C- 
Town consists of 429 pipes, 388 junctions, 7 storage tanks, 11 pumps, 5 
valves, and a reservoir. Participants from the competition developed 
algorithms that detect attacks in the shortest time possible. The algo
rithms aim to accurately detect true attacks (i.e., fewer false alarms) and 
locate nodes when the system has been altered during an attack [8]. In 
C-Town, the seven tanks guarantee water distribution and storage across 
the nodes (T1-T7). C-Town's WDS does not have abnormalities due to 
seasonal changes, resulting in a fixed rate of water consumption. A 
SCADA system collects data from the components of C-Town and work 
cohesively. Anomalous behaviors are shown using labeled physical ab
normalities (Tables A.5 and B.6) that lead to harmful behaviors in the 
WDS (such as an overflow of a tank). Spotting these anomalies as quickly 
as possible will ensure the WDS does not suffer from preventable 
damage. 

The water levels of the seven water tanks determine the operations of 
components in the five pumping stations (S1-S5), where one valve and 
eleven pumps are distributed. Also, nine Programmable Logic Control
lers (PLCs) are located near their control components. These PLCs can 
send information about their statuses such as “ON” or “OFF”; the flow 
rate information passes through them as well as suctions and discharges 
pressures to the SCADA system since they are connected to the water 
level sensors, valves, and pumps. However, most PLCs receive infor
mation from other PLCs instead of being connected to the water level 
sensors and components directly involved with the control logic. 

BATADAL simulation consists of three datasets. All the used data and 
model codes are available in the following GitHub repository3.  

• Dataset 1: Dataset 1 consists of time-series samples over a period of 
12 months. The instances in this dataset are recorded during normal 
operation hours with no attacks. It has 44 features with 8,762 
samples.  

• Dataset 2: Table A.5 consists of samples recorded over a period of 
three months (April to June 2016). The samples in Dataset 2 have 44 

3 github.com/AI-VTRC/DeepH2O. 
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features; the dataset consists of 4178 instances including the normal 
and attack samples.  

• Dataset 3: This dataset also has 44 features, including the attack 
labels with 2090 samples. From Tables A.5 and B.6, it is evident that 
both Dataset 2 and Dataset 3 contains a different type of attack 
samples. Table B.6 contains three months of data from January 2017 
to April 2017. 

3.2. Supervised deep learning: TGCN with attention 

This section explains the mechanism of TGCN with attention, RMD, 
and the attack detection topology. Tsiami et al. [33] proposed TGCN for 
the BATADAL competition. Since their model is not publicly available, 
we developed our baseline TGCN model, influenced by Tsiami's model 
architecture. We discuss the hyper-parameter choices in the design 
Section 4.2.1: Supervised Model Design. Next, we apply TGCN with 

Fig. 1. Deep H2O framework for cyber attack detection in WDSs.  

Fig. 2. WDS nodes representation [8] - Figure (a): Nodes layout of C-Town's distribution network; Figure (b): Graph data representation of reduced nodes (31 nodes) 
of C-Town. 
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attention as a supervised prediction-based algorithm, where RMD is 
used for detecting outliers. 

3.2.1. Attention temporal graph convolutional network 
A structural WDS multivariate time series dataset has a form (X,A) 

when XεℝN×P contains N-dimensional observation for P different se
quences and Xi denotes the systems' values at time i. We use a static 
graph technique since the number of dimensions N (N is the number of 
nodes) does not change over time. Aε{0,1}P×P is the adjacency matrix of 
the P sequences. In TGCN with attention, we apply GCN and GRU to 
capture spatial and temporal dependencies, respectively, presented in 
the form of graph data. Furthermore, we apply an attention mechanism 
to capture global variation in the structural data. Fig. 3 shows the high- 
level architecture of TGCN with the attention mechanism. Each method 
working principle is discussed in the following subsections. 

Spatial Dependence Modeling: We consider WDS as structural 
graph data where we consider each pump as a node and water flow rates 
as edges between nodes. GCNs are semi-supervised models that can 
process graph structure and capture spatial dependencies in the WDS 
graph structure. Recent works have shown that GCNs have achieved 
significant progress in applications such as image classification [18], 
fraud detection [55], and social analysis [56]. GCNs have spectrum and 
spatial domain convolutions [18,19]. Details about GCN can be found in 
Tsiami's [33] paper. 

Temporal Dependence Modeling: The BATADAL dataset is 
considered a set of time-series samples for supervised modeling. A DL 
technique is introduced, such as GRU [20] for temporal dependence 
modeling. There exist other popular techniques for capturing temporal 
data, such as Recurrent Neural Network (RNN) and Long Short Term 
Memory (LSTM) [57]. RNN is simple and effective for time series 
modeling, but it has limitations in long-term forecasting due to gradient 
vanishing or gradient explosion [58]. LSTM and GRU are both proved 
[57] to be more efficient than RNN in long-term memory modeling. 
They use similar gated mechanisms, which allows them to perform 
similar tasks [59]. However, GRU has a simpler architecture than LSTM; 
GRU is more light-weighted (fewer gates than LSTM) and trains faster 
than LSTM [19]. Further details about GRU can be found in Zhu's [19]. 

Global Variation Modeling: Attention mechanism has been proven 
to be successful in image capturing generation [21], and 

recommendation systems [22]. It is applied because the supervised 
model is expected to capture the global variation trends for better ac
curate forecasting. It can learn the importance of sensors' values infor
mation at every time-stamp [19]. Here, we use a context vector to 
express the global variation trends of sensors' values for future sensors' 
values prediction. 

Given a time series xi(i = 1,2,…,n) where n is the length of the time 
series, the attention technique process the data in four steps. Firstly, the 
hidden states hi(i = 1,2,…,n) at different moment are calculated using 
GRUs and expressed as H = h1, h2, …, hn. Next, we introduce a multilayer 
perceptron as “attention score model” to weigh the importance of each 
hidden state [19]. Later, the attention function calculates the context 
vector C(t), which can express the global sensors' variation information. 
Lastly, output results are obtained using the context vector. We present 
the Eqs. (1)–(3) of the attention mechanism as follows: 

ei = w(2)
(
w(1) H + b1

)
+ b(2) (1)  

αi =
exp(ei)

Σn
k=1 exp(ek)

(2)  

Ct = Σn
i=1 αi

* hi (3) 

The attention mechanism feeds hidden state (hi) at each timestamp 
(also known as weight calculation) and calculates outputs after two 
hidden layers. A Softmax() function calculates the logits (αi) using Eq. 
(1), where (w(1) and b(1)) and (w(2) and b(2)) are the weight and bias pairs 
of the first layer the second layer, respectively [19]. Eqs. (2) and (3) 
show the calculation of the global sensor's variation values of the context 
vector. 

Combining these three methods, we arrive at the TGCN with atten
tion framework, which can be represented as follows, Eqs. (4)–(7): 

ut = σ (Wu
* [GC(A,Xt) ]ht− 1 ] + bu) (4)  

rt = σ (Wr
* [GC(A,Xt) ]ht− 1 ] + br) (5)  

ct = tanh(Wc [GC(A,Xt) ] , (rt
* ht− 1)]+ bc) (6)  

ht = ut
* ht− 1 +(1 − ut)

* ct (7) 

Fig. 3. TGCN with attention for WDSs cyber-physical attack detection.  
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Where, n sensors data are inputted into the TGCN with attention 
model to obtain n hidden state (h) that covered spatio-temporal char
acteristics: ht− n, …, ht− 1, ht; ut and rt represent update and reset gates at 
time t in Eqs. (4) and (5), respectively. ct is the stored content at the 
current moment in Eq. (6). ht is the output state at moment t, and W and 
b are the weight and deviation in the training process in Eq. (7). The 
hidden states are inputted into the attention mechanism to determine 
the context vector that represents the global distribution variation in
formation for a given WDS. The weights of each hidden state h are 
calculated via Softmax() using a multilayer perceptron. Then the fore
casting results are processed using a fully connected layer. 

GCN has to ability to encode the topological structures, including 
pump and water flow information, by determining the relationship be
tween a node sensor to its surrounding sensors [33]. Additionally, GRU 
determines sensors' values at the current time-stamp by using the hidden 
state at the previous time-stamp and the sensor's values at the current 
time-stamp as input. Finally, the attention mechanism re-weighs the 
influence of historical time series object states and captures the global 
variation trends of WDSs states for accurate forecasting. 

3.2.2. Attack detection stage 
TGCN with attention is capable of classifying whether a WDS is 

under “ATTACK” or “NO ATTACK.” Our study presents the WDS 
network dataset as a graph with nodes (tanks, junctions, and pumps) 
linked with edges (pipes). Then the recorded readings are defined as 
structural time series that has the form (X,A) when XεℝN×P contains N- 
dimensional observation for P different sequences, and Xi denotes the 
systems' values at time i. Aε{0,1}P×P is the adjacency matrix of the P 
sequences. By representing the input dataset in such a form, the model 
learns while capturing the spatio-temporal dependence among the 
feature space. 

We develop the attack detection algorithm (Algorithm 1) in two 
stages. First, we train the model to predict the SCADA measurement 
under normal (“NO ATTACK”) conditions. Then, we calculate the RMD 
distance metric and calibrate the model to classify all samples as “NO 
ATTACK” or “ATTACK.” 

3.2.3. AI assurance methods for supervised deep learning 
For this stage, we explore AI assurance methods such as attention 

and RMD to improve the performance of the base model TGCN. TGCN 
can capture the spatio-temporal of the time series objects; however, the 
history of the data points is re-weighted with the addition of attention. 
Hence, this attention mechanism can capture the global variation trends 
of time series values for better forecasting accuracy. 

Algorithm 1. TGCN/TGCN with attention Training and Testing. 
Inputs: Dataset (X) and Model Arguments including nI, nH, cf, 

activation. 
Execute: Robust Concealed Attack Detection and Localization. 
1 Initialize the TGCN/TGCN with attention with pre-processed 

dataset X. 
2 for k = 1,2,3,4,.... NTrain in Training set do. 
3 Pass sample through Encoding, Latent representation, and 

Decoding layers (Eqs. (10), (11), (12)). 
4 Use Adam Optimizer to minimize loss function (Eq. (13)). 
5 return AE parameters θ. 
6 Select threshold θth 
7 for k = 1,2,3,4,.... NTest in Testing set do. 
8 Pass sample through encoding, latent representation, and decoding 

layers (Eqs. (10), (11), (12)) 
9 return reconstructions errors ER. 
10 Apply threshold θThreshold on reconstructions errors ER for anomaly 

detection and localization 

Next, we apply the outlier detection metric for the WDS system. 
Many distance metrics are available for outlier detection in multivariate 
time-series datasets, including Euclidean distance, MD, and RMD. MD is 

more effective than Euclidean distance due to the use of a covariance 
matrix to calculate the distance between data points and the center 
while detecting outliers according to the distribution pattern of the data 
points [10,60]. In brief, the covariance matrix in MD indicates how 
variables vary together. On the other hand, Euclidean distance does 
consider the data points' distribution pattern, which may assign some 
abnormal points as outliers and vice versa. MD carries two desired 
characteristics: it incorporates the dependencies between the prediction 
error at each sensor, which is helpful for combined unusual prediction 
errors, and it allows developers to tune a single global anomaly 
threshold instead of an individual threshold [33]. Given a Gaussian 
distributed data, the squared MD between data xi to the center of the 
distribution is, Eq. (8): 

d(μ,Σ)(xi)
2

= (xi − μ)T Σ− 1 (xi − μ) (8)  

where μ is the mean and Σ is the covariance matrix of the data points. 
One drawback of MD is that its covariance matrix is highly sensitive to 
outliers, which is not preferable if the data is noisy. The Minimum 
Covariance Determinant (MCD) estimator proposed by P.J.Rousseuw 
was introduced as a more robust covariance estimator [61]. The idea 
behind MCD is to find the data points in which empirical covariance has 
the smallest determinant, thus giving a “pure” subset of data points from 
which to compute standards estimates of the mean and the covariance 
matrix [61]. The application of MCD to MD generates the RMD, which 
assures an improved concise outlier detection. Hence, we calculate the 
RMD measure for multivariate time series outlier detection. 

3.2.4. Prediction and calibration of supervised deep learning 
We divide the supervised DL model's attack detection and calibration 

processes [33] into three stages (Fig. 4). In the first stage, we preprocess 
and normalize data and train the TGCN with attention model with the 
normal training dataset labeled as “NO ATTACK,” given the recorded 
SCADA measurements of n prior time-steps. A window of a fixed size n +
1 rolls over the time series dataset with a step size of 1. Each window's 
first n measurements are the input to TGCN with attention, while the 
final n + 1 data points are the target outputs. 

Next stage, after training TGCN with attention, we pass the valida
tion set Xval through the model for prediction Ŷval. Since we pick normal 
samples for the training and the validation set, we assume that the 
prediction errors (E = Y − Ŷ) at each sensor are roughly Gaussian 
distributed. Hence, we apply the squared MD (Eq. (8)). Afterward, we 
estimate the robust covariance matrix to calculate the RMD values. The 
squared MD is essentially the sum of p independent standard normal 
variables; thus, it follows a chi-squared distribution with p degrees of 
freedom [23]. During this stage, the predicted errors from the normal 
training dataset have lower RMD values (when compared to the 
threshold as in Eq. (9)) than the anomalous ones. The anomalies are 
detected at timestep i when: 

d(μ,Σ)(xi)
2

i− l,i ≥ TH (9) 

Here, d(μ,Σ)(xi)
2

i− l,i is the mean squared RMD in a window of length l; 
and TH is the cut-off threshold. The calibration process is required to 
obtain the concise threshold TH and l. We select the thresholds by testing 
different values for the two parameters in a holdout set with few 
“ATTACK” data points and calculate the algorithm's performance with 
the S function (Eq. (27)). 

In the third and final stage, we select parameter values such that it 
maximizes the rank S function on an unseen testing dataset. Finally, we 
localize attacked features such as pumps, sensors, and valves after 
classifying the timestamps that contain “ATTACK” data points. 

3.3. Unsupervised deep learning: HCAE 

This section discusses the unsupervised WDSs attack detection 
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framework, the mechanism of AE, and its revised version, HCAE. We 
apply AE as a reconstruction-based algorithm that performs dimen
sionality reduction and reconstructs the original input. The outcome 
from AE and HCAE are reconstruction errors (difference between output 
and input data), which identify physical anomalies from the feature 
space. Fig. 5 shows a fully connected ANN-based AE and its components. 
WDS data are fed to the AE and HCAE models. The models classify the 
inputs as either normal or anomalous samples based on a threshold. 

3.3.1. Auto encoder 
AEs have been a widely adopted DL method for the last couple of 

decades for both dimensionality reduction, and feature engineering 
[62]. We develop our baseline AE model by adopting Taormina's [14] 
AE model. Additional information about the design of our baseline AE 
model is discussed in the Unsupervised Model Design, Section 4.2.2. 

The network is divided into two parts: an encoder function h = f(X) 
and a decoder function x′ = g(f(x)). AEs can be generalized as stochastic 
mappings of Pencoder = (h|x) and Pdecoder = (x|h), where h is a hidden 
layer h = f(x) that presents a code and is used to characterize the input. 

Multi-Layer Perceptrons(MLP) [63] form AEs with an input layer, an 
output layer, and multiple hidden layers. Mathematically an encoder 
and decoder can be written as Eqs. (10)–(12): 

ϕ : X →F (10)  

ψ : F →X (11)  

ϕ,ψ = argmin
ϕ,ψ

‖ X − (ψ∘ϕ)X ‖2 (12)  

where, Eqs. (10) and (11) represent encoder and decoder functionality 
respectively; Eq. (12) represents loss of the AE. 

Input data X is transformed into a compressed representation F and 
reconstructed as X again. The objective of an AE is to minimize the 
reconstruction errors (Eqs. (13) and (14)), which yields a better recon
struction of the input set X . 

L (x, x′

) = ‖x − x′

‖
2 (13)  

Fig. 4. TGCN with attention model development and attacks detection workflow [33].  

Fig. 5. Fully connected ANN-based Autoencoder for WDS cyber-physical attack detection.  
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L (x, x′

) = ‖x − σ′

(W′

(σ(Wx + b) ) + b′

) ‖
2 (14) 

Reconstruction errors are usually minimized using Stochastic 
Gradient Descent (SGD) [64], a potent optimization tool for many DL 
applications. However, our study applies the Adam optimizer, another 
powerful stochastic optimization method that outperforms SGD [65]. 

An anomaly detection system is expected to produce minimal false 
alarms, as false alarms are associated with expensive maintenance op
erations. Fig. 5 represents an ANN-based AE. Despite having fine-tuned 
hyper-parameters, AE suffers from non-determinism during training, 
resulting in a higher reconstruction error. A higher reconstruction error 
can result in an increased number of false positives, thus affecting the 
detector's performance [66]. As AE algorithms automatically learn fea
tures by performing feature engineering for dimensionality reduction, 
they tend to learn different features at each time [62]. This pattern of 
learning is suitable for systems where feature importance is unknown 
(for instance, thousands of sensor values in a water distribution system, 
complex and difficult feature space to human perception). However, 
such a non-deterministic learning pattern might not be suitable for a 
WDS. We expect a WDS model to provide, if possible, zero false alarms 
because of expensive maintenance operations. To address these issues, 
we revise AE architecture and form HCAE, thus solving the non- 
determinism problem of AE by further reducing reconstruction errors 
and improving attack detection performance by reducing false positives. 

3.3.2. High confidence AutoEncoder (HCAE) 
HCAE is a modified version of baseline AE; We developed HCAE by 

applying assurance methods (Eqs. (15)–(18)) to AE; improving the 
attack detection performance compared to the AE (baseline). We use 
HCAE to represent input features in a manifold space that generates 
minimum reconstruction errors while decoding and recreating the input 
features. 

To minimize the reconstruction errors, the practitioners currently 
follow a trial-and-error based-method and optimize hyperparameters 
over multiple iterations. This approach is empirical; reducing the 
reconstruction errors is time-consuming and computationally expensive 
in a complex WDS. We apply a combination of neural network layer 
constraints for the model and achieve deterministic learning, which 
results in a manifold representation that yields minimum reconstruction 
errors. This strategy ensures learning a set of expected features from the 
training data each time. Resulted reconstruction errors yield better 
feature representation and attack detection performance [67]. We pre
sent our experimental results in the context of a WDS: how a set of 
constraints yields minimal reconstruction errors and robust attack 
detection. Algorithm 2 presents both algorithms, including baseline AE 
and HCAE training steps for attack detection in water systems. 

3.3.3. AI assurance constraints for the auto encoder 
Recent advancements in DL APIs, including Keras,4 Tensorflow,5 and 

Pythorch,6 expedite AEs development more than ever. Nevertheless, a 
lack of a clear understanding of the fundamental properties of dimen
sionality reduction leads to a complex and inferior model. Thus, it is 
crucial to understand and adopt the basic properties of dimensionality 
reduction in AEs. We present multiple custom layer constraints and 
apply them to facilitate dimensionality reduction in a WDS. HCAE is 
effective for tuning and optimizing hyperparameters. 

Algorithm 2. Baseline AE and HCAE Training and Testing. 
Inputs:Dataset (X), Model Arguments including nI, nH, cf, activation 

and customized layers. 
Execute:Robust Concealed Attack Detection and Localization. 
1 Initialize AE/HCAE with pre-processed dataset X. 

2 (This step is applicable for HCAE) Apply constraints on Encoder 
and Decoder layers using a combination of Tied Weights (Eq. (15)), 
Orthogonal Weights (Eq. (16)), Uncorrelated Features (Eq. (17)), Unit 
Norm (Eq. (18)). 

3 For k = 1,2,3,4,.... NTrain in Training set do. 
4 Pass sample through Encoding, Latent representation, and 

Decoding layers (Eqs. (10), (11), (12)). 
5 Use Adam Optimizer to minimize loss function (Eq. (13)). 
6 Return AE parameters θparams. 
7 Select threshold θth. 
8 For k = 1,2,3,4,.... NTest in Testing set do. 
9 Pass sample through Encoding, Latent representation, and 

Decoding layers (Eqs. (10), (11), (12)). 
10 Return reconstructions errors ER. 
11 Apply threshold θth on reconstructions errors ER for anomaly 

detection and localization. 

In order to improve the AEs detection performance, we apply the 
following set of constraints.  

1. Tied Weights: Tied Weights [68] ensure equal weights for both 
encoder and decoder. This constraint also ensures easy learning, 
especially PCA-like dimensionality reduction and regularization. 
However, they do not always perform well on complex non-linear 
models. Again, tied weight constraint is not always necessary to 
continually improve the representation. If reconstruction errors are 
reasonable, the coding generates orthogonal latent features for given 
data. Such representation is helpful in dimensionality reduction and, 
eventually, for anomaly detection. In a multi-layer AE, weights 
vectors of layer l from an encoder and a decoder are transposed as Eq. 
(15). 

Wl = WT
− l (15)    

2. Orthogonal Weights: Each weight vector is independent; therefore, 
the weights of each encoding layer are orthogonal. The orthogonality 
constraints [69] act as regularization for the AE. Mathematically 
orthogonality condition for AE can be presented as, 

WT
encoderWencoder = I (16)   

On applying, this constraint penalizes non-orthogonal weights. 
Depending on the dataset, the user can choose either orthogonal or non- 
orthogonal weights. Thus, the application of this constraint is condi
tioned on regularization.  

3. Uncorrelated Features: If the output of the encoder is orthogonal, 
latent representations must be uncorrelated [70]. Hence, the output 
of the AE must have (Eq. (17)): 

correlation
(
Oencoderi ,Oencoderj

)
= 0∣i ∕= j (17)    

4. Unit Norm: The weights of each layer must have unit norms [71]. 
This property helps to control exploding and vanishing gradients. 
Unit norm constraint (Eq. (18)) must be allied to all the layers of the 
AE. 

∑p

j=1
w2

ij = 1; i = 1,…, k (18)   

These four constraints (Eqs. (15)–(18)), during model development, 
ensure the model does not create a sub-optimal decision boundary. They 

4 github.com/fchollet/keras  
5 github.com/tensorflow  
6 github.com/pytorch/pytorch 
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ensure the creation of a well-posed AE while constructing a high 
confident WDS model. 

Unit norm and orthogonality solve regularization problems, espe
cially for AEs, when AE learns from a training set but does not represent 
a test set well. Also, tide weight can reduce the number of parameters as 
a regularization technique. Here, the unit norm constraint addresses 
exploding gradients issue by bounding gradients into a finite value. 
Additionally, orthogonality resolves the vanishing gradients problem by 
assigning fewer nonzero weights, so only informative weights stand out. 
Thus, only these nonzero weights flow information during back
propagation and resolve the vanishing gradient issue [68], [69], [70], 
[71]. 

When we apply these four constraints (Eqs. (15)–(18)) while 
designing HCAE, we hypothesize the model will not converge to a 
suboptimal point. To test our hypothesis, we compare the results before 
and after using these four constraints; observe if attack detection per
formance (F1 score) is improved from the baseline AE [14]. We use the 
BATADAL dataset for training and testing our models. 

Later in the manuscript, we present adversarial testing using a GAN 
to observe if the model can detect attacks from synthetically generated 
poisoned datasets (previously unseen data with a different distribution). 

3.3.4. Attack detection and calibration stages of HCAE 
HCAE is capable of classifying whether the WDSs are under 

“ATTACK” or “NO ATTACK” by investigating each sample. Nonetheless, 
the direct classification technique becomes erroneous with a small and 
imbalanced dataset because AE requires a large dataset to learn the 
representation. However, with HCAE's deterministic learning, we hy
pothesize the HCAE can detect attacks with minimum false positives. We 
test our hypothesis by training both AE and HCAE with the same 
imbalanced data and evaluate with total false positives for each model. 

Unlike the supervised algorithm (TGCN with attention), we present 
data streams with non-sequential representation. Next, (X) is defined as 
XεℝN×m which contains N-dimensional observation for m different 
features; and Xi denotes the systems' values at time i. 

The attack detection process is divided into two stages (Fig. 6). In 
stage one, we create custom HCAE layers by following Eqs. (15)–(18). 

We ensure the model always yields minimum reconstruction errors and 
maximum binary classification performance (F1 score) by observing the 
model performance on multiple hyperparameter sets. Later in stage two, 
data are preprocessed and normalized to have the maximal absolute 
value of each attribute, applied to all three provided datasets. After that, 
we train the HCAE model with the normal training dataset labeled “NO 
ATTACK.” We split the training dataset into training (Xtrain,Ytrain) and 
validation (Xval,Yval) set. We apply early stopping, a regularization 
scheme when the model converges and starts to over-fit on the training 
dataset. 

During each epoch, we compute loss (Eq. (15)), the squared of the 
reconstruction errors re = ∣ x − x′∣; minimize them using Adam opti
mizer. After both AE and HCAE models are well-trained, we select 
threshold θth in an empirical fashion. For that, the range of average 
reconstruction errors among all features in a sample is observed and 
summed up. Then we set the threshold based on the final range esti
mation, as shown in the following Eq. (19). 

θth = max

{

f (x) :
∑

m

|x − x'|

m
forNtraining− samples

}

(19) 

The calibration process is crucial to derive a concise threshold θth for 
testing the model on new samples. If a test object is classified as 
“ATTACK,” we localize the features associated with attacked attributes, 
such as pumps, sensors, and valves, using reconstruction errors. 

For the HCAE model, we select hyperparameters that result in the 
best model's performance (F1-score). Our objective is to compare the 
performance of HCAE (AE with constraints) with the AE model (without 
constraints). To facilitate a fair comparison between HCAE and AE 
models, we retrain Taormina's AE model using the same hyper
parameters of the HCAE model. We refer to the retrained AE model as 
the baseline AE model. 

3.4. Synthetic WDSs attack data generation 

Unlike other DL-based attack detection approaches that require sig
nificant domain knowledge and passive awareness of the attacked model 
[72], GANs are proven to be effective in generating realistic attack 

Fig. 6. HCAE model development and attack detection workflow.  
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samples (poisoned data) [73] with minimal information about either the 
domain or the DL model. We use GAN [40] for synthetic data generation. 
GAN network learns feature statistics of a given dataset for generating a 
new set of synthetic data. A generator produces the synthetic samples in 
the GAN network, and a discriminator evaluates them. The generator 
learns by mapping latent feature space to a data distribution of partic
ular interest. Discriminator maximizes its objective by learning how to 
distinguish original samples from the generated fake samples. The 
generator aims to minimize the discriminator's objective by fooling it 
into thinking otherwise (fake samples as real ones). For instance, while 
generating a synthetic image set, GAN keeps the similar statistics of 
generated images set from the training set; hence, those generated im
ages look superficially similar to human perception. During the training 
phase, both generator and discriminator play a minimax game where a 
bi-level optimization is performed to train the GAN network. 

In our study, the generator learns the distribution of training samples 
X and maps data space as G(z;θg), where G is differentiable with respect 
to parameters θg. Then discriminator investigates if the data comes from 
the training samples and not from the generator itself. We train the 
discriminator to specify between original and generated samples from 
the generator correctly. Both the discriminator and the generator take 
participation in a minimax game which is represented as a value func
tion as V(G,D), as Eq. (20): 

min
G

max
D

V(D,G) = Ex∼pdata(x)[logD(x) ]+ Ez∼pz(z)[log(1 − D(G(z) ) ) ] (20) 

Here, the generator is trained to maximize logD(x) and minimize log 
(1 − D(G(z))) in a numerical and iterable fashion. This GAN approach 
generates synthetic poisoned data for the WDSs system. We assess both 
supervised and unsupervised models on these synthetic data for gener
alization study. 

4. Experimental design 

This section presents the three research questions, and discusses the 
selection of hyperparameters and metrics used in our experiments. 

In our experiments, supervised learning models are trained using two 
datasets: Dataset 1 and Dataset 2. As unsupervised learning requires “NO 
ATTACK” samples for training, the unsupervised models are trained 
with Dataset 1(“NO ATTACK” samples). Both the supervised and the 
unsupervised models are evaluated using Dataset 3. We use total of 492 
“ATTACK” samples from Dataset 3 to train the GAN model for synthetic 
data generation. Experiments are conducted to answer the following 
three research questions presented in Section 1.2. 

4.1. Experimental models design 

This section discusses the hyperparameter settings for TGCN, TGCN 
with attention, HCAE, AE, and GAN. This section presents the optimized 
hyperparameters set to train and evaluate the models. We also list all 
alternative hyperparameter values that are used to randomly search for 
the best models in appendix C, Table C.7. 

4.1.1. Supervised model design 
We pre-process the time series data as graph data and normalize 

them; during normalization, we perform standard minimum maximum 
scaling ranges from 0 to 1. The graph data can be represented as an 
adjacency matrix along with node data. Fig. 2b illustrates the node's 
information and locations in C-Town's WDS network. The adjacency 
matrix is constructed of the provided 31 nodes. Note that only one type 
of attribute is reported for each node in the network, except the pump 
nodes that have two different measurements: status and flow of water. 
We keep a single attribute for each node and exclude the binary pump 

status, where the numerical flow rate is preserved. 
The supervised models: TGCN (baseline) and TGCN with attention, 

are implemented using PyTorch and Scikit-learn API.7 The models are 
trained on a CPU with Intel core i5 10th gen. 

We have tested both models with multiple iterations with different 
hyperparameter sets to obtain one. For TGCN, we choose an Adam 
optimizer algorithm with a learning rate of 0.01; for TGCN with atten
tion, we choose an Adam optimizer learning rate of 0.005. Then, we 
utilize Rectified Linear Unit (ReLu) as an activation function for both 
models. The batch size selected for both models is 16 and 128, respec
tively. From each batch, we take sequences of length n (n = 8 hours) 
from the training inputs Xtrain and targets Ytrain. We use the optimizer to 
minimize the mean squared error (MSE) loss. While selecting optimal 
hyperparameters, we focus on maximizing performance metrics, 
including precision, recall, F1 score, accuracy, and specificity. 

To train both TGCN and TGCN with attention models, we use the 
“NO ATTACK” samples (Dataset 1) and split them into training and 
validation sets with a 75:25 ratio. Then, we train both models for 10 
times with 1000 epochs each time. A threshold (TH) is fine-tuned using 
the holdout set, Dataset 2, to maximize the ranking S score on the 
holdout set. 

4.1.2. Unsupervised model design 
We pre-process the data before inputting them to the AE and the 

HCAE. The pre-processing step includes normalization and removing 
null samples from the data. For normalization, we perform standard 
minimum maximum scaling ranges from 0 to 1. Both AE (baseline) and 
HCAE models are implemented using Scikit-learn API and are trained on 
a CPU with Intel core i5 10th gen. We use Adam Optimizer with learning 
rate = 0.0001, a decay factor of 0.5, and (β1, β2) = (0.9, 0.99). Addi
tionally, 500 epochs are selected with a minibatch size of 32. The design 
of HCAE differs from baseline AE in the design of the hidden layer 
definition. Early stopping is applied with patience = 3 for better regu
larization. Here, the patience parameter ensures convergence, when the 
training loss and validation loss don't change for three consecutive 
epochs and the training, is marked complete. We are compressing input 
features using an under-complete autoencoder architecture and both 
models' compression factor is selected as 2.5. Thus, we get the number of 
neurons in each layer as following: encoder layers: [l0, l1, l2] = [43, 34, 
25]; bottleneck layer: [l3] = [17]; and decoder layer as: [l4, l5, l6] = [25, 
34, 43]. 

Eqs. (15)–(18) represent AI assurance constraints, including Tide 
Weights, Orthogonal Weights, Uncorrelated Features, and Unit Norms 
constraints, which are applied to the AE. We pick a combination of these 
constraints and apply them to the hidden layers. Our goal is to obtain a 
meaningful and uncorrelated latent representation, a prerequisite for 
dimensionality reduction. We empirically select optimal hyper
parameters for the AE and the HCAE models and maximize binary 
classification performance scores, including precision, recall, F1 score, 
accuracy, and specificity. Dataset 1 is used during model training, and 
Dataset 3 is used for model testing. Finally, we select threshold θTH by 
following an empirical approach. We plot the F1 scores for baseline AE 
and HCAE models for Dataset 3 against a threshold range from 96 % 
percentile to 100 % percentile of their average reconstruction errors 
(Fig. 7). We observe that both models reach a maximum F1 score at 98.5 
% percentile. Hence, we choose θTH = 0.985 as the model's threshold. 

4.1.3. GAN model settings 
A GAN [24] is used to generate poisoned data in our experiments. All 

492 “ATTACK” samples from the test dataset (Dataset 3) are provided as 
input to the GAN network. For training the generator, the prior noise 
dimension is set as 32. The prior noise dimension and class labels are 
mapped into hidden layers (layer dimension 128) with a rectified linear 

7 github.com/scikit-learn/scikit-learn. 
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unit (ReLU) activation function. For output, a sigmoid function is 
selected as the last activation layer for the discriminator unit. We choose 
an Adam optimizer to minimize the loss function of the generator with a 
learning rate of 1e-5. Additionally, we pick a minibatch of size 128 and 
200 epochs and set (β1, β2) = (0.5, 0.9) for the optimizer. The poisoned 
dataset is generated by synthesizing only the “ATTACK” samples from 
the test set (Dataset 3). Then the generated samples are randomly placed 
in the same test set (Dataset 3) again. The synthetic dataset is condi
tioned to balance the number of samples in both classes. Testing a model 
with a balanced dataset helps us to evaluate the DL model's general
ization ability. Hence, the poisoned dataset used in our experiments 
consists of 984 samples with 492 “ATTACK” samples and 492 “NO 
ATTACK” samples. 

4.2. Model performance metrics 

We use multiple performance metrics from the BATADAL competi
tion to evaluate the model's ability to detect a threat in the shortest 
possible amount of time. In addition to this, we also use additional five 
metrics namely accuracy, precision, recall, specificity, and F1-score to 
measure the performance of a binary classifier. 

4.2.1. Time-to-detection score: STTD 
Time-to-detection is the difference between ground truth attack start 

time to (Eq. (21)) and algorithm detection start time td. 

0 ≤ STTD = td − t0 ≤ Δt (21) 

The attack is indicated by Δt. A smaller TTD indicates that an algo
rithm has an improved detection performance during an ongoing attack. 
Additionally, the detection rate is associated with recall (%) or sensi
tivity which is otherwise referred as the True Positive Rate (TPR) and it 
is represented in Eq. (22). Additionally, precision, what proportion of 
positive identifications was actually correct is represented in Eq. (23). 

Sensitivity = Recall = TPR =
TP

TP + FN
(22)  

Precision =
TP

TP + FP
(23) 

Here, FN is the number of false negatives, and TP is the number of 
true positives. TPR is determined by the ratio of the correct attack 
classifications and the total number of attacks detected by the algorithm 
(including TP and FN). Additionally, we leverage True Negative Rate 
(TNR) or specificity metric to check false alarms by the models, and it is 
defined as (Eq. (24)), 

Specificity = TNR =
TN

FP + TN
(24) 

TN is the number of True Negatives, and FP is the number of False 
Positives. TNR is determined by the ratio of the number of correct 
classifications for safe conditions (without attack) and the number of 
total classifications for safe conditions (including FP and TN). 

4.2.2. Binary classification metric: F1-score 
Eqs. (22) and (23) are also known as recall and precision respec

tively. In addition to accuracy and ranking, we calculate the F1-score 
using Eq. (25) that accounts for both precision and recall, 

F1 Score = 2* Precision*Recall
Precision + Recall

(25) 

Training a DL model with an imbalanced dataset and evaluating its 
performance using the accuracy metric can be misleading [74]. In such 
cases, an F1-score is preferred over accuracy as the F1-score represents a 
harmonic mean of precision and recall. 

4.2.3. Classification performance score: SCLF 
To compare with the other state-of-the-art detection algorithms, Eqs. 

(22) and (24) are merged as classification performance score SCLF (Eq. 
(26)), the mean of Eqs. (22) and (24). 

SCLF =
TPR + TNR

2
(26) 

This score (SCLF) represents detection as well as false-negative 
alarms. Additionally, this score is relevant to the F1 score, which is 
appropriate for problems with binary classification. The score can result 
in a 0 or 1 (where 1 indicates a perfect classification). 

4.2.4. Ranking score: S 
Time-to-detection STTD and classification performance score SCLF 

metrics can be merged further into a single ranking score as, Eq. (27): 

S = γ⋅STTD +(1 − γ)⋅SCLF (27) 

According to the BATADAL competition, γ is set to 0.5 to ensure the 
weight of the early detection and the accuracy are equally adjusted [8]. 

5. Deep H2O results 

This section presents the results of the three research questions 
presented prior (RQ1 - RQ3). 

5.1. RQ1: AI assurance 

5.1.1. Supervised detection results 
Table 1 presents the attack detection performance of both supervised 

and unsupervised models. Among the two supervised models, results 
suggest that the TGCN with attention model performs better in attack 
detection in WDS. With the introduction of Attention and RMD assur
ance methods, the TGCN with attention model results in a significant 

Fig. 7. F1 Score obtained on Dataset 3 for different Thresholds θ.  

Table 1 
Attack detection performance comparison between baseline and improved 
models on BATADAL Dataset 3.  

Performance 
metrics 

Supervised model Unsupervised model 

(Dataset 3 2) Tsiami TGCN TGCN with 
attention 

Taormina AE HCAE 

Precision 0.843  0.645  0.721 0.881  0.882  0.972 
Recall 0.906  0.553  0.774 0.602  0.604  0.865 
F1 Score 0.873  0.591  0.746 0.715  0.745  0.873 
Accuracy N/A  0.850  0.897 N/A  0.919  0.951 
Specificity N/A  0.922  0.927 N/A  0.972  0.983  
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improvement in recall and F1 score performance metrics. Out of the five 
metrics presented in Table 1, we observe an improvement in precision, 
recall, F1 score, and accuracy by 7.6 %, 22.1 %, 15.5 %, and 4.7 %, 
respectively. Precision, recall, and specificity metrics improve from 
baseline TGCN to TGCN with attention. 

In terms of detecting attacks in WDS, results indicate that both the 
TGCN model (baseline) and TGCN with attention model successfully 
detect all seven attacks. Nevertheless, we notice (Fig. 8a, b, c, d) that the 
baseline model (TGCN) has a higher number of false positives compared 
to TGCN with attention model. We believe that the introduction of 
assurance methods (Attention and RMD) improves the TGCN with 
attention model and minimizes the number of false positives; This is also 
reflected in the model's performance with an improved F1 and precision 
score compared to its baseline. Overall, our results suggest that TGCN 
with attention model performs better than TGCN (baseline). 

5.1.2. Unsupervised detection results 
To study the impact of the assurance constraints (Eqs. (15)–(18)) on 

HCAE, we present the model performance with and without assurance 
constraints in Table 1. Not all four constraints bring optimal perfor
mance, but a combination of these constraints achieves better classifi
cation and dimensionality reduction performance than the baseline AE 
model. From Table 1, we observe that sensitivity, specificity, accuracy, 
and F1 score improve significantly with assurance constraints applied to 
the AE. Also, we observe that precision is increased, because HCAE 
learns the imbalanced data (BATADAL dataset is unbalanced) better 
than AE. 

Fig. 9 presents the attack detection performance of the unsupervised 
models. The test dataset (Dataset 3) consists of seven different attacks. 
All seven attacks are classified as “ATTACK” by both AE and HCAE 
models. Fig. 9a and b present all seven attacks detected by the AE model 
and the HCAE model respectively. As Fig. 9a illustrates, in addition to 
detecting all SEVEN attacks, the AE model results in 21 sets of false 
alarms. On the contrary, the HCAE model results in a single false alarm 
(Fig. 9b). The result suggests that HCAE learns the complex 

interdependencies between the features during concealed attacks, hence 
performing better than AE in detecting the attacks. 

Table 4 presents the performance metrics, including the ranking 
score (S). Although both HCAE and AE time-to-detection performance is 
identical (94.7 %), the classification performance (Ranking Score S) of 
the HCAE has significantly improved than the baseline AE. From the 
table, we observe that classification performance has been improved 
from 80 % to 92 %. Similarly, TPR also improved from 60.4 % to 86.5 %, 
a significant increase. This performance improvement is expected as 
HCAE learns the complex relationships between features in a deter
ministic scheme, whereas AE learns them in a non-deterministic 
approach. 

5.2. RQ2: Data poisoning 

In this sub-section, we present the performance of both supervised 
and unsupervised models on poisoned data. Table 2 presents the attack 
detection performance on synthetic poisoned data generated using GAN. 

Results (Fig. 10a, b, c, d) suggest the supervised models perform 
poorly with poisoned data. More specifically for TGCN, we observe, by 
comparing Tables 1 and 2, that the attack detection performance of the 
model is decreased by more than 50 % across all five metrics. Similar to 
the baseline model, TGCN with attention model behaves poorly; results 
suggest, on average, a 65 % reduction in performance across all five 
metrics. The poor performance of supervised models on the poisoned 
data can be explained as follows. The TGCN and TGCN with attention 
models learn the behavior of a WDS by embedding the spatio-temporal 
structure of the WDS. In other words, they learn to detect attacks based 
on the sequential information inferred from the dataset during the 
training process. As the attacks are randomly distributed across the 
poisoned dataset (GAN data), both the supervised models fail to detect 
the attacks, resulting in poor performance. 

On the contrary to supervised models, we observe that the AE and 
HCAE (unsupervised models) perform well (Fig. 11a, b, c, d) on the 
poisoned data. In some cases, results suggest the performance of both 

Fig. 8. (a) Apply threshold on TGCN (b) TGCN detection results on the test dataset (c) Apply threshold on TGCN with attention (d) TGCN with attention detection 
results on test dataset. 
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unsupervised models is better on poisoned data (Table 2) than their 
performance on the test dataset (Table 1). This improved performance 
can be attributed to the fact that AE and HCAE models treat the training 
samples as non-sequential data, and the data are randomly placed with 
poisoned samples. Hence, they can detect the randomly distributed at
tacks from the poisoned dataset effectively. 

5.3. RQ3: Feature localization 

In this sub-section, we present the model's ability to identify the 
features impacted by an attack (feature localization). We perform 
feature localization by estimating the deviation of the features from the 
“NO ATTACK” dataset distribution. 

The results presented so far suggest that the model customized with 
AI assurance methods and constraints performs better than their 
respective baseline model. Hence, for feature localization, we limit our 
evaluation to two models: TGCN with attention and HCAE. Table 3 
presents the localization results for supervised and unsupervised 
models. The localized feature that matches the ground truth is high
lighted in bold. 

For TGCN with attention model, to localize the impacted features 
during an attack, we compare the mean squared error of the network 
from the testing set of its corresponding maximum error from the vali
dation set (25 % of Dataset 1). The supervised model can successfully 
localize five attacked nodes among the seven attacks while failing to 
localize attacked nodes for Attack 9 and Attack 13. 

Next, we present the feature localization performance of the unsu
pervised model. To localize the impacted features, we select the features 

Fig. 9. (a) AE detection results on test dataset (b) HCAE detection results on test dataset.  

Table 2 
Attack detection performance comparison between baseline and improved 
models on GAN generated samples.  

Performance metrics Supervised model Unsupervised model 

(GAN Samples) TGCN TGCN with attention AE HCAE 

Precision  0.310  0.239  0.974  0.984 
Recall  0.264  0.252  1  1 
F1 Score  0.285  0.245  0.986  0.991 
Accuracy  0.365  0.257  0.987  0.992 
Specificity  0.458  0.262  0.976  0.985  

Fig. 10. (a) Apply threshold on TGCN; (b) TGCN detection results on the poisoned dataset (c) Apply threshold on TGCN with attention; (d) TGCN with attention 
detection results on poisoned dataset. 
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with the highest number of deviations from the threshold (θth) by esti
mating their mean squared error. During a predicted attack, we pick the 
top features for which reconstruction errors deviate most from the 
threshold (θth). 

Overall, the results indicate that the modified models can success
fully localize various attacks, including alteration of thresholds, signals, 

and meter readings. Furthermore, we observe that TGCN with attention 
localizes the attacked features with a minimal number of False Positives 
(FP) among the two models. False positives are estimated for each attack 
category by subtracting the set of total nodes detected by the model in 
that category from the set of ground truths. For example, Consider 
Attack 12, in which the readings of L_T2 are altered. While both the 
models successfully localize the feature (L_T2), the TGCN with attention 
model, in addition to identifying L_T2, also identifies two additional 
features as potentially attacked. In contrast, HCAE models identify 
additional eight nodes within the proximity as potentially attacked 
features. This is because, the neighbor nodes show similar behavior 
during normal operations, and therefore, during an attack, the model 
predicts those neighbor nodes are highly likely to be attacked. 

5.4. Deep H2O model sensitivity analysis 

In this section, we evaluate the attack detection outcomes of both 
supervised and unsupervised models using Shapley values (SHapley 
values are the outcome of a game theoretic approach that explain the 
output of any ML model). In literature, variance-based sensitivity 
analysis is a popular approach that explains black box models; primarily, 
Sobol-based methods are gaining traction [75]. However, this approach 
has one major limitation: it cannot explain localized observations. In our 
work, we are more concerned with local observation explanations than 
global ones since the models detect attacks from different nodes and 
time points in a WDS. Therefore, we elected to use Deep Explainer,8 an 
enhanced approach from SHapley Additive exPlanations (SHAP) library 
similar to Kernel SHAP. It approximates the conditional expectations of 
SHAP values using a selection of background samples. 

In this analysis, we provide all seven categories of attack samples 
separately, generate SHAP values, and plot the scaled SHAP values 
ranging from 0 to 100 in Fig. 12. This figure represents local feature 
importance during the attack detection by the models. From the figure, 
we can observe that feature localization (Table 3) and Deep Explainer 
provide similar insights about the model's outcome. By observing 
Fig. 12, it becomes evident that the model gives less attention to 

Fig. 11. (a) AE reconstruction errors on the poisoned dataset, (b) AE detection results on the poisoned dataset, (a) HCAE reconstruction errors on the poisoned 
dataset, (b) HCAE detection results on poisoned dataset. 

Table 3 
Feature localization results of TGCN with attention and HCAE on Dataset 3.  

Attacks 
labels 

Real attacks 
description 

Predicted feature localization 

TGCN with 
attention 

FP HCAE FP 

Attack 8 Alteration of 
L_T3 thresholds 
leading to 
underflow 

P_J256, L_T3, 
P_J289, L_T2  

3 P_J256, L_T3, 
L_T6, P_J280, 
F_PU4, F_PU7  

4 

Attack 9 Alteration of 
L_T2 

P_J289, P_J422, 
P_J300, L_T7  

4 P_J422, P_J289, 
P_J280, P_J300, 
L_T6, F_PU1, 
L_T5, F_V2, L_T7, 
L_T4  

9 

Attack 
10 

Activation of 
PU3 

F_PU3, P_J280, 
L_T7, L_T4, 
P_J269, F_PU1, 
F_PU9  

6 F_PU3, S_PU10, 
F_PU10, L_T1, 
P_J269, P_J307, 
P_J14, P_J317  

7 

Attack 
11 

Activation of 
PU3 

F_PU3, P_J280, 
L_T7, F_PU1, 
L_T4, L_T6, 
P_J307, P_J415, 
F_PU6, P_J289  

9 L_T1, F_PU3, 
F_PU10, P_J269, 
P_J14, F_PU1, 
F_PU2  

6 

Attack 
12 

Alteration of 
L_T2 readings 
leading to 
overflow 

P_J289, P_J300, 
L_T2  

2 P_J300, P_J289, 
L_T1, P_J280, 
F_PU7, L_T5, 
L_T6, L_T2, 
P_J422  

8 

Attack 
13 

Change the L_T7 
thresholds 

L_T6  1 P_J307, P_J302, 
F_PU8, F_PU10, 
L_T7, L_T6, 
P_J306  

4 

Attack 
14 

Alteration of 
L_T4 signal 

L_T4, L_T7, 
P_J415, L_T6  

2 P_J415, F_PU7, 
L_T1, L_T6, 
P_J307, F_PU10, 
P_J14  

6  

8 github.com/slundberg/shap. 
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deactivated nodes from the training set (Dataset 1), including PU3, PU5, 
PU6, PU9, and PU11 while giving much more importance to the flow of 
pumps that worked during the training set. Additionally, we observe 
that all tanks were given attention during all seven categories because 
they are always active in the training set. One shortcoming of both 
models is that they could not learn the relationships among junctions 
because of the imbalance of the training dataset; most influential junc
tions got prioritized by the model over less participating ones. There
fore, model attack localization was incorrect during attacks 9 and 13; 

L_T2 and L_T7 weren't detected because other junctions got more 
“attention”, including P_J280, P_J289, P_J300, when compared to 
ground truth nodes V2 and PU10/PU11. 

5.5. Comparison with BATADAL models 

Next, we compare the attack classification performance of our 
models with the top-performing models from the BATADAL competi
tion. To maintain consistency in our evaluation, all the models are 

Fig. 12. Deep H2O attack detection local explanations using Shapley values. Ground truths are as follows: (a) Attack 8: Alteration of L_T3 thresholds leading to 
underflow, (b) Attack 9: Alteration of L_T2, (c) Attack 10: Activation of PU3, (d) Attack 11: Activation of PU3, (e) Attack 12: Alteration of L_T2 readings leading to 
overflow, (f) Attack 13: Change the L_T7 thresholds, (g) Attack 14: Alteration of L_T4 signal. 
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evaluated using the test dataset (Dataset 3). Table 4 presents the com
parison results, where our models are highlighted in bold. The results 
indicate both the unsupervised and supervised model exhibits better 
performance. HCAE (unsupervised model), with a ranking score of 
0.933, is ranked 3, whereas TGCN, with attention, achieves 0.845 and 
ranks eighth among the models from the BATADAL competition. 
Although our models do not achieve the highest ranking, they are su
perior compared to the top two models for the following reasons: 1). The 
top-ranked model is physics-based, and hence it is not relevant to 
compare with our model, an AI-based model. 2). The second-ranked 
model, although an AI-based model, might not perform well (detect
ing attacks) on previously unseen data. On the contrary, our models are 
scalable and demonstrate a better attack detection performance on un
seen data. 

Results indicate that adding the AI assurance methods to the TGCN 
model improves its overall performance. Compared to the baseline 
model (S =0.754), TGCN with attention model achieves a better score (S 
=0.845). Additionally, we observe that the time-to-detection (STTD) has 
improved significantly; the baseline model achieves 0.735, whereas the 
TGCN with attention model achieves 0.839. A higher STTD is significant 
in the context of WDS; an improved STTD score indicates that the TGCN 
with attention model can swiftly identify an attack at the earliest 
compared to its baseline model. 

For unsupervised models, both HCAE and AE (baseline) achieve an 
identical score for time-to-detection (STTD = 0.947). However, we 
observe that the HCAE model has an improved TPR score (0.865) 
compared to its baseline (0.604). This results in the HCAE model 
achieving a ranking score (S = 0.933) substantially higher than its 
baseline (S = 0.873). Furthermore, a higher TPR indicates that the 
model detects most attack samples. Thus, improving the trustworthiness 
of the model during deployment. 

Both TGCN with attention and HCAE models achieve a better ranking 
score compared to their respective baseline models. 

6. Discussions 

6.1. Water laws and public policy 

Environmental and water laws govern our nation's water, air, waste, 
and other natural components. Most of the time, and due to the public's 
lack of awareness or attention, voters are usually drawn to water and 
environmental issues after wide-scale incidents of environmental dam
age, such as the Flint Water crisis9 and its effects on safe drinking water 
in the state. The Clean Water Act (CWA) establishes the basic rules and 
benchmarks for regulating quality standards and discharging pollutants 
into the waters of the United States. The work presented in this manu
script aims to provide preventive measures for the health of water 
treatment plants against the rising dangers of cyber attacks. Deep H2O is 
instrumental in governing cyber components of a water facility, 
providing recommendations to WDSs operators on when and where the 
attack occurs, and validating against water policies and Environmental 
Protection Agency (EPA) regulations. This project continues as a 
collaboration with WDSs in Northern Virginia and the District of 
Columbia (DC) to deploy Deep H2O at local facilities and aim to expand 
it to other WDSs as well. Conclusions and future work items are pre
sented next. 

6.2. Conclusions and future work 

This manuscript presents Deep H2O, a novel cyber attack detection 
framework for WDSs. Deep H2O applies AI assurance to two DL archi
tectures, TGCN with attention and HCAE, and compares their 

performance improvement over their baseline models. For TGCN with 
attention model (supervised model), it has been observed that applying 
AI assurance, including attention and RMD with TGCN, improves the 
model's attack detection accuracy. Similarly, for HCAE (unsupervised 
model), applying AI assurance, including tide weights, orthogonality 
constraints, and other constraints, improves detection accuracy and F1- 
score of the HCAE model compared to AE. 

The performance of both supervised and unsupervised models on 
poisoned data has been evaluated. For the supervised model, compared 
to its performance on the test dataset, it has been observed that most of 
the metrics decrease significantly. The supervised model struggles to 
perform (i.e., to detect an attack) if there is randomness in the dataset. 
Unlike the supervised model that performs poorly on poisoned data, our 
result indicates that the predictive performance of the unsupervised 
model (HCAE) is similar for the test data and the poisoned GAN data. No 
significant drop in the model's performance has been observed. To 
explain this phenomenon, the unsupervised model learns uncorrelated 
feature representation in the latent dimension and does not learn the 
sequential attributes. Hence the model can identify randomness in the 
poisoned data. 

Result suggests that the HCAE model has better generalizability. 
Among the two models, the unsupervised model (HCAE) performs better 
in terms of ranking score and time-to-detection score. Also, HCAE is well 
generalized and regularized while detecting attacked samples on the 
BATADAL test set. This improved classification performance and recall 
values make HCAE a better choice for deployment in the WDS. 

The study uses multiple performance metrics, including time-to- 
detection score, classification score, ranking score, precision, recall, 
accuracy, and F1 score, to measure the model's performance. The F1 
score improvement is focused on the various metrics because of the 
heavily imbalanced BATADAL dataset. Therefore, this particular case, 
the F1 score becomes an important metric that considers model attack 
prediction errors and accounts for the type of errors by taking the har
monic mean of precision and recall. That is, only if both precision and 
recall values are high the F1 score gets higher; in this study, a higher F1 
score indicates higher “ATTACK” and “NO ATTACK” harmonic class 
detection. Additionally, the unsupervised model outperforms the su
pervised model for WDS, including a better F1 score. The unsupervised 
model is a one-class classification method that generalizes well regard
less of the water systems' spatio-temporal structure, making the model 
simpler than TGCN with attention. Additionally, the unsupervised 
model does not require labeling, an expensive and time-consuming ac
tivity in the model development process. 

The ability of both supervised and unsupervised models in feature 
localization has been evaluated. Localizing a feature is tedious for both 
models during a concealed attack. Although the results are not highly 
accurate, they are promising and vital for WDS. For instance, both 
models can identify attacked node(s) or neighboring nodes during an 
“ATTACK”. Further refining the model hyper-parameters by applying a 
grid search technique can improve the performance and result in better 
feature localization results, which is a potential future work. The 
sensitivity analysis of two models showed that less important or sensi
tive variables were inactive in the training set, while active components 
were the most influential during a cyber-attack. However, some com
mon junctions had high sensitivity or importance flags due to imbal
anced training data. 

Additionally, the extension of this work can be the following: 1) The 
GAN used in these experiments to generate synthetic data fails to 
replicate the time-series information from the original dataset. The 
attack samples are generated merely using GAN. Consequently, the next 
plan is to use TimeGAN [76], a variant of GAN, to generate sequential 
(time-series) synthetic data consisting of both attack and non-attack 
samples and test the performance of DL models on the time-series syn
thetic data. 2) A large metropolitan city can have multiple WDSs across 
various locations within the metroplex. A bad actor can start a concealed 
attack on one of the WDS and continue to spread the attack across all 

9 https://www.michigan.gov/mdhhs/inside-mdhhs/legal/flint-water-settlem 
ent. 
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locations. To swiftly detect and prevent such attacks, Federated 
Learning (FL) techniques [77] can be adapted to learn from the initial 
concealed attack and leverage that information to prevent future attacks 
(of similar nature) across other WDSs. Furthermore, using the real-time 
data collected from the WDSs to retrain the DL model can significantly 
improve the detection performance of the model. However, given the 
geographically distributed nature of WDSs, it is essential to preserve the 
privacy of the real-time data (collected from the WDSs). Therefore, the 
plan is to use FL techniques to guarantee data and model privacy. 3) 
Training and deploying a DL model across different WDSs is challenging 
as the threshold might vary across different WDSs locations. This is 
further complicated by a set of different operations across WDSs. 
Another interesting idea is to explore Context learning [72] to enable DL 
models to be context-aware (such as population and weather) and effi
ciently detect attacks that vary based on different thresholds. Further
more, training and evaluation of the Deep H20 framework using real- 
world WDS datasets10 such as: Water Distribution (WADI) dataset and 
Secure Water Treatment(SWaT) is a future task. Lastly, a plan to develop 
approaches that explain the model's outcomes to water plant operators 
could be a great study, which would result in higher adoption rates and 

increased trustworthiness [25] of such frameworks at water facilities in 
the United States. 
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Appendix A. First seven attacks set descriptions (C-Town Dataset 2)  

Table A.5 
Dataset 2 attacks description [8].  

Identifier Starting time 
(D/M/Y H) 

Ending time 
(D/M/Y H) 

Duration 
(H) 

Attack descriptions SCADA concealment Label 
(h)  

1 13/09/2016 
23 

16/09/2016 
00  

50 Attacker alters SCADA transmission to PLC9 and changes 
L_T7 thresholds determining when pumps PU10/PU11 are 
switched on/off. Low levels in T7. 

Replay attack on L_T7  42  

2 26/09/2016 
11 

27/09/2016 
10  

24 Like Attack #1. Like Attack #1 but replay attack extended 
on PU10/PU11 flow and status.  

0  

3 09/10/2016 
09 

11/10/2016 
20  

60 Attack alters L_T1 readings sent by PLC2 to PLC1, which 
reads a constant low level and keeps pumps PU1/PU2 on. 
Overflow in T1. 

Polyline to offset L_T1 increase.  60  

4 29/10/2016 
19 

02/11/2016 
16  

94 Like Attack #3. Replay attack on L_T1, PU1/PU2 flow and 
status, as well as on pressure at pumps 
outlet (P_J269).  

37  

5 26/11/2016 
17 

29/11/2016 
04  

60 Working speed of PU7 reduced to 0.9 of nominal speed. 
Lower water levels in T4.   

7  

6 06/12/2016 
07 

10/12/2016 
04  

94 Like Attack #5, but speed reduced to 0.7. Replay attack on L_T4.  73  

7 14/12/2016 
15 

19/12/2016 
04  

110 Like Attack #6. Replay attack on L_T4, as well as on PU6/ 
PU7 flow and status.  

0  

Table 4 
Comparison of AI Assured models with BATADAL competition models.  

Authors/models No. Of attacks detected Ranking score (S) Time-to-detection (STTD) Classification score (SCLF) TPR TNR 

Housh and Ohar  7  0.97  0.965  0.975  0.953  0.997 
Abokifa et al.  7  0.949  0.958  0.944  0.921  0.959 
HCAE  7  0.933  0.947  0.919  0.865  0.983 
Tsiami et al.  7  0.931  0.934  0.928  0.885  0.971 
Giacomoni et al.  7  0.927  0.936  0.917  0.838  0.997 
Brentan et al.  6  0.894  0.857  0.931  0.889  0.973 
AE  7  0.873  0.947  0.800  0.604  0.972 
TGCN with attention  7  0.845  0.839  0.851  0.774  0.927 
Chandy et al.  7  0.802  0.835  0.768  0.857  0.678 
Pasha et al.  7  0.773  0.885  0.66  0.329  0.992 
TGCN  7  0.754  0.735  0.773  0.553  0.922 
Aghashahi et al.  3  0.534  0.429  0.64  0.396  0.884  

10 https://itrust.sutd.edu.sg/ 

M.N.K. Sikder et al.                                                                                                                                                                                                                            

https://itrust.sutd.edu.sg/


Journal of Water Process Engineering 52 (2023) 103568

19

Appendix B. Remaining seven attacks set descriptions (C-Town Dataset 3)  

Table B.6 
Dataset 3 attacks description [8].  

Identifier Starting time 
(D/M/Y H) 

Ending time 
(D/M/Y H) 

Duration 
(H) 

Attack descriptions SCADA concealment  

8 16/01/2017 
09 

19/01/ 
2017 06  

70 Attacker gains control of PLC3 and changes L_T3 
thresholds determining when pumps PU4/PU5 are 
switched on/off. Low levels in T3. 

Replay attack on L_T3, as well as on PU4/PU5 flow and 
status.  

9 30/01/2017 
08 

02/02/ 
2017 00  

65 Attack alters L_T2 readings arriving to PLC3, which reads a 
low level and keeps valve V2 OPEN. Attack leads T2 to 
overflow 

Polyline to offset L_T2 increase  

10 09/02/2017 
03 

10/02/ 
2017 09  

31 Malicious activation of pump PU3   

11 12/02/2017 
01 

13/02/ 
2017 07  

31 Similar to Attack #10   

12 24/02/2017 
05 

28/02/ 
2017 08  

100 Similar to Attack #9 Replay attack on L_T2, V2 flow and status, as well as on V2 
inlet and outlet pressure readings (P_J14, P_J422)  

13 10/03/2017 
14 

13/03/ 
2017 21  

80 Attacker gains control of PLC5 and changes the L_T7 
thresholds determining when pumps PU10/PU11 are 
switched on/off. The pumps are forced to switch on/off 
continuously during attack 

Replay attack on L_T7, PU10/ PU11 flow, and status, as 
well as on pumps inlet and outlet pressure readings (P_J14, 
P_J422). Inlet pressure concealment terminates before that 
of other variables.  

14 25/03/2017 
20 

27/03/ 
2017 01  

30 Alteration of T4 signal arriving to PLC6. Overflow in T6.   

Appendix C. Hyper-parameters selection For Deep H2O  

Table C.7 
Hyperparameters selection using random search (Bold values are the finally selected hyperparameters).  

Hyperparameters Baseline AE HCAE Baseline TGCN TGCN with attention 

Adam optimizer learning rate 0.0001, 0.001, 0.01, 0.1 0.0001, 0.001, 0.01, 0.1 0.0001, 0.001, 0.005, 0.01, 0.1 0.0001, 0.001, 0.005, 0.01, 0.1 
Batch size 8, 16, 32, 64, 128, 264 8, 16, 32, 64, 128, 264 8, 16, 32, 64, 128, 264 8, 16, 32, 64, 128, 264 
Sequence length N/A N/A 4, 8, 16, 24, 32 h 4, 8, 16, 24, 32 h 
Number of epochs 500, 1000, 2500, 5000 500, 1000, 2500, 5000 500, 1000, 2500, 5000 500, 1000, 2500, 5000 
Number of hidden layers 3,5,7,9,11 3,5,7,9,11 N/A N/A 
Hidden dimensions N/A N/A 8, 16, 32, 64, 100, 128 8, 16, 32, 64, 100, 128  
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