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ABSTRACT Limited data access to Water Distribution Systems (WDSs) is a longstanding barrier to
data-driven research and development. This limited access is further exacerbated by the reluctance of WDSs
operators to share data. Driven by the absence of standard mandates, resource constraints, privacy and
security concerns, and legal challenges, access to big data has been a challenge in the water scientific
community. This review paper addresses this limitation by utilizing Generative Adversarial Networks
(GANs) to generate realistic synthetic datasets, overcoming data scarcity and privacy concerns in WDSs.
We review, train, and evaluate seven state-of-the-art GAN models using three multivariate time-series
datasets. The core contribution of this work lies in its comprehensive technical review of the GANs,
comparing and evaluating their ability to replicate temporal dynamics and maintain spatio-temporal
dependencies within WDSs. For evaluation, we use techniques like t-distributed Stochastic Neighbor
Embedding (t-SNE) and Principal Component Analysis (PCA) to quantify the diversity of the generated
synthetic data. Key findings indicate that specific GAN models, such as Cramer GAN and CTGAN,
are effective in generating data for predictive modeling, replacing the need for original WDSs datasets.
Additionally, DoppelGANger and TimeGAN exhibit strong capabilities in preserving essential spatio-
temporal relationships, which are critical for applications like environmental impact estimation. The results
also highlight the practical utility of GAN-generated synthetic data in supporting the secure and effective
management of WDSs, particularly in scenarios where data are scarce or sensitive. This research contributes
to the application of Artificial Intelligence (AI) in water resource management and guides the selection of
appropriate GAN models for specific tasks and contexts, demonstrating their practical implications in real-
world scenarios. Experimental results are recorded, evaluated, and discussed.

INDEX TERMS Cyberbiosecurity, deep learning, generative adversarial networks (GANs), synthetic data
generation, water data, water policy.

I. INTRODUCTION
Data-driven methodologies [1] have recently become essen-
tial in exploring empirically-driven design decisions and
management strategies [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11]. The unprecedented advancements in AI, particularly
in Deep Learning (DL), have prompted an urgent need for
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extensive datasets for training, testing, and validating DL
models [12]. This demand is especially pronounced inWDSs,
where data are critical for understanding and managing
complex dynamics. However, data availability often remains
a significant challenge, as access is typically limited to
entities that already possess such data. Despite the potential
for mutual advantages, concerns over disclosing confidential
business information and violating privacy standards prevent
data sharing among stakeholders [13]. To address this AI
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challenge, generating and distributing synthetic datasets
derived from authentic data sources [14], [15], [16], [17],
[18], [19] has become a practical solution. The outcome of
realistic synthetic data has therefore achieved prominence,
with DL methodologies emerging as critical contributors in
data generation steps [20], [21], [22], [23], [24]. Compared to
traditional Machine Learning (ML) techniques, DL provides
a more nuanced understanding and management of the
inherent complexities in WDSs. GANs [25] demonstrate
this state-of-the-art capability, as they excel in producing
accurate representations of complex, multidimensional data
relationships, particularly in scenarios where it is challenging
to obtain original data due to scarcity, sensitivity, or other
factors [26]. The implications of such synthetic datasets
are highlighted in environments where data accessibility
is a significant challenge [27], [28], [29], [30], proving
substantial development of AI models that can effectively
administer and protect WDSs infrastructures.

To address these persistent limitations, researchers have
increasingly turned to synthetic data generation as a viable
alternative. The synthesis of these datasets using deep
learning, primarily through GANs, signifies a considerable
advancement in applying AI to WDSs management. These
developments enhance the understanding of complex WDSs
and contributemeaningfully to these essential infrastructures’
efficient and secure operation.

A. MOTIVATION: THE NEED FOR WATER DATA
One of the primary motivations for synthetic data generation
for WDSs is to enhance cybersecurity. In recent years,
WDSs have increasingly relied on automated control systems
that introduce significant cyber-physical security vulnerabil-
ities [31], [32], [33], as a rising wave of adversarial cyber
activities continues to target these systems. The incident
on February 5th, 2021, at the Oldsmar water treatment
plant in Florida,1 where an attacker altered the chemical
levels, illustrates this vulnerability. To counter such threats,
initiatives such as the BATtle of the Attack Detection ALgo-
rithms (BATADAL), which employs EPANET2 [34], [35],
[36], have been established. However, the need for original
WDSs datasets often restricts these tasks, emphasizing the
significance of synthetic data.

In addition to cybersecurity, synthetic data also plays
an indispensable role in addressing environmental and
operational challenges [37]. It supports modeling the impacts
of environmental factors, such as droughts or floods, on water
supply and distribution networks, thereby facilitating the
development of adequate contingency plans. Synthetic data
simulates infrastructure aging and maintenance needs, pro-
moting proactive management and planning. The broader
applicability of synthetic data is further illustrated by studies

1https://www.wired.com/story/oldsmar-florida-water-utility-hack/
2EPANET is a public-domain software package for WDSs modeling

developed by the United States Environmental Protection Agency (EPA)’s
Water Supply and Water Resources Division.

such as Lin et al. [38], which leverage AI techniques
including clustering and neural networks, to develop a com-
prehensive flood susceptibility index known as NeuralFlood.
This index evaluates multiple factors, aiding decision-makers
in allocating resources efficiently and identifying high-risk
areas for effective flood mitigation.

Globally, over two billion people already live in water-
stressed regions, and demand is projected to outstrip
sustainable supply by 40% by 2030 [39]. Robust prediction
and mitigation strategies require high-frequency consump-
tion, pressure, and quality data, yet utilities in arid and
low-income areas rarely possess multi-year digital records.
GAN-generated synthetic series can fill three concrete gaps.

1) Demand-forecast augmentation: by synthesising addi-
tional peak-demand scenarios, operators can stress-
test reinforcement-learning controllers for equitable
allocation during drought.

2) Leak-detection calibration: scarcity amplifies the eco-
nomic cost of non-revenue water; synthetic data that
embed rare leak signatures improve the recall of
anomaly detectors when true leak examples are absent.

3) Proactive reservoir operation: scenario libraries
of inflow and evapotranspiration sequences enable
stochastic optimisation that anticipates shortfalls weeks
in advance, reducing emergency pumping costs by up
to 17 % in our pilot study (Section V).

These use-cases demonstrate how GAN-based synthetic data
support prediction, correction, and anticipation tasks that are
pivotal for managing water scarcity.

Additionally, technological innovation in water man-
agement benefits significantly from synthetic data. For
example, developing soft sensing [40] or innovative metering
technologies [41] using synthetic datasets reduces the need
for costly and time-consuming real-world trials. Moreover,
AI is essential in creating decision support systems in
WDSs, enabling more accurate and efficient modeling and
forecasting [42], [43]. Synthetic data can aid in reducing
operational costs and optimizing potential chemical and elec-
tricity consumption due to system failures or environmental
hazards. This efficient allocation and utilization of resources
contribute to cost savings and the sustainable management of
water resources.

The contributions of physical water testbeds, including AI
& Cyber for Water & Agriculture (ACWA) [44], and [45],3

SecureWater Treatment (SWaT) [46], andWater Distribution
(WADI) [47], are vital for water systems research. However,
these datasets alone are insufficient to cover the potential sce-
narios WDSs may encounter, underlining the importance of
synthetic data for comprehensive coverage and preparedness.

1) WATER DATA PRESERVATION: POLICY AND LAW
Synthetic data, especially generated by GANs, presents
significant potential for enhancing policy decision-making in
water quality management [48]. They can address some key

3https://github.com/AI-VTRC/ACWA-Data
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constraints that policymakers frequently encounter, such as
the limitations of available datasets and concerns over privacy
and data security. As policy development benefits from a
wide array of high-quality evidence, synthetic data emerges
as a promising tool [49]. Its potential utility and fidelity
in mirroring real-world scenarios are critical determinants
of its effectiveness in shaping informed and effective water
management policies.

While the potential of open water data to enhance
sustainability, improve management, and inform policy
decision-making is immense, the current landscape of data
availability presents significant challenges. Water data,
important for a comprehensive understanding of water
conditions and demands, are collected by multiple govern-
ment agencies and organizations at different levels. Often
published on different platforms and in disparate formats,
these datasets result in fragmented and difficult-to-access
information [50]. The reluctance of agencies to integrate
and share data on a common platform arises from multiple
factors. Primarily, there is no overarching mandate requiring
such data sharing. Constrained by tight budgets and limited
resources, agencies lack progress toward standardization and
integration of data from water systems [51]. Privacy and
security concerns are also paramount, as water data can
contain sensitive information linked to public health and
safety. Many states have implemented a variety of data
privacy laws [52], addressing a spectrum of concerns ranging
from the proper disposal of records to the safeguarding
of personal information. These laws, along with the threat
of fines and lawsuits for data breaches or unlawful use of
consumer data, add complexity to the issue. In some cases,
even when anonymized, water data can be traced back to
individual properties or activities, creating a barrier to passing
open data legislation and making it easier for agencies to
avoid sharing data without such laws [53], [54].

B. OUR CONTRIBUTION
This section outlines our contribution and presents our
research questions [55]. Our primary goal is to produce
realistic synthetic water data and validate the quality of the
generated data by assessing its fidelity and utility. We lever-
age seven GAN models (TimeGAN [56], CTGAN [22],
WGAN [57], WGAN-GP [58], DRAGAN [59], Cramer
GAN [60], and DoppelGANger [26]) in experiments on
three multivariate time-series datasets. Each model is
characterized by a distinct generative strategy, enabling
comparative evaluation across multiple dimensions. For
example, TimeGAN leverages supervised and unsupervised
learning to generate datasets mirroring real-world dynamics,
potentially a better-suited model for our time-series datasets.
WGAN and DRAGAN are notable for their stability and
convergence, while Cramer GAN and DoppelGANger allow
for diverse data generation approaches. Our experiments
test whether GANs can accurately replicate the temporal
dynamics of water systems, ensuring that the synthetic

FIGURE 1. Pipeline for synthetic data generation and evaluation. Three
datasets–(1) a physical water testbed (ACWA), (2) Simulated data (via
EPANET), and (3) real-world water treatment plant data (via supervisory
control and data acquisition)–are used to generate synthetic data by
applying seven different GAN models, and assessed via quantifiable
measures to test data fidelity and utility.

data sequences reflect the characteristics of original data
sequences.

We select three distinct multivariate time-series datasets:
(1) a physical testbed- ACWA [44], (2) EPANET-based
data BATADAL [34], and (3) a real-world dataset from a
water treatment plant (name withheld for confidentiality).
The ACWA dataset, generated by our team,4 represents an
operational testbed, mirroring a modern, large-scale water
supply facility. The EPANET dataset provides insights into
water flow dynamics and conceals attacks on physical
layer components [34]. The third dataset, from a water
treatment plant, offers a real-world perspective on operational
challenges in water treatment. These diverse datasets enable a
comprehensive evaluation of the models’ ability to replicate
both the statistical characteristics and dynamic behavior of
water systems.

Our evaluation metrics include t-distributed Stochastic
Neighbor Embedding (t-SNE) [61] and Principal Component
Analysis (PCA) [62], [63] to compare between synthetic and
original datasets. We also use a post-hoc classifier (GRU) to
distinguish between generated and original data and apply the
‘‘train on synthetic, test on original (TSTO)’’ framework [64]
for sequence prediction.

All ACWA-generated datasets for this study are available
in a public repository.5

Our central research question in this technical review is as
follows:

1) In the context of generating realistic WDSs data,
how do different GAN methods (e.g., TimeGAN,

4https://ai.bse.vt.edu/ACWA_Lab.html
5https://github.com/AI-VTRC/ACWA-Data/tree/main/GANs
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CTGAN) compare in terms of data fidelity (accuracy in
mimicking real data) and utility (usefulness for specific
applications or tasks)?

This question breaks down into two key aspects:
a. Given a GAN G, can we generate a WDSs multivariate

time sequential dataset Dsynth such that the accuracy
A(Dsynth) is comparable to the accuracy A(Doriginal) of
an original dataset Doriginal?

b. Can we evaluate synthetic time-series data generation
Dsynth in a 3-fold manner for WDSs?

• Quantitatively, using statisticalmeasures S(Dsynth),
• Qualitatively, with expert assessment Q(Dsynth),
• Visually, with graphs G(Dsynth).

This paper introduces a comprehensive technical review
integrating seven distinct GANs to explore our research
question across three multivariate time-series datasets [55].
Figure 1 presents a high-level workflow, illustrating the key
stages of our experimental processes. We have employed
multiple testing and evaluation methods, including diversity,
fidelity, and usefulness, to estimate the quality and utility
of the synthetically generated datasets and documented all
experimental results. Section II reviews related literature,
while section III covers data description and GAN models.
Section IV delves into our methodologies, section V elabo-
rates on experimental results and their discussion, section VI
discusses the implications of synthetic data in water policy,
and section VII summarizes and concludes the paper.

II. RELATED WORKS
Data generation is vital in water systems, particularly when
balancing two key objectives: privacy preservation and
maintaining data distribution and availability. This trade-off
is challenging; prioritizing privacy preservation can reduce
data utility due to limited availability. Our work emphasizes
capturing distribution relevancy across time points and under-
standing complex variable interdependence over time. For
instance, for multivariate sequential data x1:T = (x1, . . . , xT ),
we aim to accurately model the conditional distribution of
temporal transitions p(xt |x1:t−1).
Privacy concerns in essential infrastructure, such as water

utilities, have escalated, highlighted by the 2019 ransomware
attack on the Riviera Beach Water Utility (RBWU), which
paralyzed the computer systems controlling pumping sta-
tions, water quality testing, and payment operations. The
government authorities paid 65 bitcoins - approximately
$600,000 - to the attacker in a few days, but still, after two
weeks, water pump stations and water quality testing systems
were only partially available [65]. This incident led to the
U.S. Environmental Protection Agency (EPA) proposing,
then withdrawing, a rule to evaluate cybersecurity in public
water utilities due to legal pushback6 [66].
Synthetic data generation is proposed as one of the

solutions to utilize data for research and development without

6https://www.theregister.com/2023/10/13/epa_rescinds_water_cybersecurity
_rule/#∼:text=,attack

compromising sensitive real-world data [67]. Generating
synthetic datasets can mitigate overfitting and enhance model
generalization by introducing unseen data, especially where
real-world data are scarce [31], [68]. Sikder et al. 2023,
demonstrated that adversarial testing through synthetic data
generation yields more generalizable models. Critical system
research data are classified into original, synthetic, and
testbed types, each with its own significance [69]. For
example, PGGAN [70] has generated high-resolution river
images and aidedwith various hydrological studies. Synthetic
time-series data has also been used to improve models in
predicting the burst failure risk of corroded pipelines [71] and
in combined sewer flow predictions [72].
Goodfellow et al.’s introduction of GANs [25] revolution-

ized data generation, with architectures like WGAN [73] and
WGAN-GP [74] improving training stability. TimeGAN [75]
and CGAN [76] are effective for time-series data, cap-
turing temporal dependencies. DRAGAN [59] and Cramer
GAN [60] address training stability and accurate temporal
dependency representation. CTGAN [22] is notable for
handling discrete and continuous data and missing data
problems. TimeGAN is less sensitive to parameter changes
during training, suitable for data with static and sequential
features [56]. DoppelGANger [26] excels in preserving
privacy and managing time-series correlations.

TABLE 1. Comparison of GANs for synthetic data generation.

A. SYNTHETIC DATA GENERATION ON MULTIVARIATE
TIME-SERIES
Traditional time-series data generation approaches are lim-
ited by data type distributions and computational challenges,
affecting synthetic data reliability [77], [78], [79]. GAN-
based methods offer more flexibility and performance
enhancement [22], [26], [80]. However, many GAN exper-
iments focus on static dependencies, overlooking temporal
aspects crucial in real-world data [22], [57]. Recent attempts
partially incorporate temporal dependence in GANs, but
limitations still remain [26], [81].

In WDSs research, Zhou et al. [82] tackled the scarcity
of industrial control dataset attacks using GANs, claiming
significant attack detections [82]. However, their framework,
while innovative, is computationally intensive. Our approach
with various GANs aims to bridge the gap in generating
diverse and similar syntheticWDSs data. Table 1 summarizes
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the GANs used in our experiments, highlighting their
strengths and applications for synthetic data generation.

III. DATA DESCRIPTIONS AND METHODOLOGIES
This section describes the datasets used in this work and
briefly discusses all GANs used in the experiment.

A. DATASETS COLLECTION
This section describes three datasets: the ACWA testbed
dataset, the BATADAL (EPANET) dataset, and a real-world
water treatment plant dataset. Collectively, these datasets are
integral for comprehending and examining water systems.
They encompass the diverse data collection methods appli-
cable to water systems, offering a comprehensive view of
data acquisition and management variations. The datasets
mentioned are further detailed as follows:

1) AI & CYBER FOR WATER & AGRICULTURE: ACWA
Our study actively employs the ACWA testbed, a dynamic
and versatile platform, for data collection for real-time
water-quality monitoring and supply management. ACWA
meets four dataset-selection criteria essential for rigor-
ous evaluation of generative models: (i) physical validity,
because the testbed uses industry-grade tanks, pumps, and
sensors that replicate hydraulic behaviour found in full-
scale utilities; (ii) spatio-temporal richness, offering roughly
60 sensor channels sampled at 5 Hz across the Line,
Bus, and Star topologies; (iii) cyber-physical representation,
enabling scripted disturbances and cyber-intrusion scenarios
that yield labeled events for downstream utility tests; and
(iv) reproducibility and open access. The three topologies
collect complementary perspectives on flow and pressure
regimes, together capturing both steady-state and transient
network dynamics. During the operation of these topologies,
we record key parameters such as pH, temperature, dissolved
oxygen (DO), turbidity, nitrate levels, electrical conductivity
(EC), soil moisture, water level, pressure, and flow rate.
We systematically store these high-frequency, multivariate
observations in a MongoDB database, ensuring efficient
retrieval for advanced modeling and AI-based analyses.

2) ACWA TESTBED TOPOLOGIES
ACWA testbed mirrors the core Water Supply System
(WSS) structures such as Grid-Iron, Ring, Radial, and Dead-
end, which are conceptually similar to computer network
topologies. Our analysis explicitly utilizes Line, Star, and
Bus topologies to simulate various WSS scenarios. These
topologies, characterized by industry-recommended water
tanks, pipes, pumps, and reservoir configurations, offer
diverse data sets for our experiment. Although we haven’t
selected every variable for the experiment, only those with
high variability in continuous time-series are selected since
we focus on collecting time-series variables. Each topology
contributes unique data points, enhancing the complexity
and realism of the generated synthetic data. They are briefly
discussed as follows:

FIGURE 2. Schematic representations of the (a) Line Topology, (b) Bus
Topology, and (c) Star Topology as in the ACWA Testbed [44].

1) Line Topology: This topology (Figure 2a) features
point-to-point connections between tanks, enabling the
study of linear water flow systems. Equipped with
sensors for real-time data collection on water level,
nitrate, pH, and temperature, the Line topology pro-
vides a foundational dataset on linear water distribution
patterns.

2) Bus Topology: The Bus topology (Figure 2b), with
a central pipe distributing water to multiple tanks,
simulates branched water distribution networks. This
setup produces complex, multi-directional water flow
scenarios.

3) Star Topology: The Star topology emulates radial
water supply systems (Figure 2c) and offers data on
centralized distribution networks. The diversity in tank
sizes and connections in this topology enriches the
dataset.

ACWA is selected because it enables controlled
cyber-physical anomaly injection such as leak, pump failure,
or set-point tampering–under realistic hydraulic conditions.
These scripted disturbances provide rare, well-labelled events
that full-scale utilities are reluctant to share publicly, making
ACWA indispensable for evaluating whether synthetic data
can preserve the subtle signatures required for intrusion
detection and fault diagnosis.

3) EPANET SIMULATION: BATADAL
Our research utilizes a simulated dataset, called BATADAL,7

designed using EPANET [36], which features a C-Town
virtual city’s WDSs. This simulated environment, depicted
in Figure (as depicted in Figure 3a), is characterized by its
intricate infrastructure consisting of 429 pipes, 388 junctions,
7 storage tanks, 11 pumps, 5 valves, and a reservoir. This
dataset provides a rich ground for testing and enhancing our
synthetic data generation and evaluation methodologies.

7https://www.batadal.net/data.html
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FIGURE 3. WDSs nodes representation [31] - (a) Nodes layout of a virtual town distribution network;
(b) reduced nodes (31 Nodes).

The virtual town ‘‘C-Town’’ leverages a sophisticated
Supervisory Control and Data Acquisition (SCADA) system
for data collection and monitoring via the EPANET tool. This
setup is pivotal in capturing time-series data reflecting the
system’s performance under various operational scenarios,
including labeled physical anomalies. The SCADA system’s
detailed data on hydraulic components and their operations
is essential for our study, providing a baseline for generating
synthetic scenarios.

The primary functionality of the C-Town WDSs is its
seven tanks (T1-T7) and five pumping stations (S1-S5).
The stations are central to the water distribution and
storage processes, each comprising a valve and eleven
pumps. Additionally, the system incorporates nine Pro-
grammable Logic Controllers (PLCs) located near control
components, which relay operational data to the SCADA
system. The interplay between these elements, including
water levels, flow rates, and pump operations, forms a
comprehensive dataset for our synthetic data generation and
analysis.

Focusing on the first dataset of the BATADAL series, our
study examines 12 months of operation without intrusion
events. This dataset, critical for understanding the normal
operational baseline of theWDSs, includes 44 features across
8,762 data samples. The comprehensive nature of this dataset
provides a robust foundation for developing and validating
our GAN-based approaches to synthetic data generation and
evaluation.

The BATADAL dataset captures a simulation of stealthy
contamination and pipe-burst attacks on a large municipal
network. Because the attack timing and intensity are known,
it functions as a ground truth for stress-testing generative
models under extreme–but safety-critical–operating scenar-
ios that are ethically impossible to reproduce in a live system.
Including BATADAL therefore tests a GAN’s ability to

FIGURE 4. DC wastewater treatment plant high-level data flow [31].

retain rare, high-impact dynamics that drive water-security
research.

4) REAL-WORLD WATER PLANT SCADA DATASET
Our research employs a third and final dataset from a
real-world Wastewater Treatment Plant (WWTP), as pre-
sented in Figure 4. We collect this data from DC Water.8

This dataset represents the plant’s daily processing
capacity, handling massive amounts of wastewater. The
data spans from March 1st, 2018, to March 26th, 2022,
offering a detailed and extensive view of the plant’s
operations, recorded at five-minute intervals. The WWTP
dataset contains a total dimension of 1,458 columns and
2,569,464 rows. This extensive dataset is categorized into six
distinct operational aspects:

1) Principal inflows to the tunnel system.
2) Overflow incidents from the tunnel to the river.
3) Readings from level sensors within the tunnel.

8https://www.dcwater.com/
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4) Rainfall measurements.
5) Data from flow meters linked to the tunnel’s de-

watering pumps.
6) Other critical flows within the main plant.
The WWTP SCADA data represent a long-horizon,

multidimensional industrial process where 95% of values
are absent. This scenario reflects a common challenge in
real utilities: sensor downtime and telemetry gaps. Using
WWTP allows us to assess whether GANs can generate
plausible imputations and long-range sequences that remain
faithful to the plant’s daily inflow, overflow, and pump-
operation cycles, thereby informing capacity-planning and
maintenance analytics.

This rich dataset is instrumental for our research, offering
an extensive range of operational parameters. However,
approximately 95% of the data consists of ‘NA’ values,
underscoring the need for comprehensive data preprocessing
to extract meaningful insights. Specific data subsets, such
as pump usage, tunnel overflow incidents, and water mass
measurements, are emphasized in our experiments. This
subset yields an essential understanding of the WWTP’s
efficiency and the complexities of its operations, forming an
integral part of our study’s multivariate time-series data.

B. GENERATIVE ADVERSARIAL NETWORKS
This section briefly discusses seven GANs including
TimeGAN, CTGAN, WGAN, WGAN-GP, DRAGAN,
Cramer GAN, and DoppelGANger, and their high-level
architecture [55].

1) TIMEGAN
TimeGAN generates sequential data while preserving tempo-
ral dynamics. It comprises an embedding network, a recovery
network, a generator, and a discriminator. The embedding
network learns to represent time-series data in a latent space.
The generator produces realistic synthetic time-series data,
while the discriminator distinguishes between original and
synthetic data. A key feature of TimeGAN is its use of a
supervised loss to ensure that the generated sequences follow
the temporal dynamics of the original data.

L = Lunsupervised + λ × Lsupervised (1)

Lunsupervised = EX∼pdata [logD(X)]

+ EZ∼pZ [log(1 − D(G(Z)))] (2)

Lsupervised = E(X,Y)∼pdata [∥Y − E(G(X))∥2] (3)

Here, λ is a hyperparameter that balances the unsupervised
and supervised losses, E represents the embedding network,
G the generator, and D the discriminator.

2) CTGAN (CONDITIONAL TABULAR GAN)
CTGAN generates synthetic tabular data with a focus on
handling discrete, continuous, and mixed-type data. It uses
conditional generators and a novel training procedure to
handle class imbalance and mode collapse issues. CTGAN
introduces a conditional vector that allows the model to

generate data conditioned on specific attributes, helping in
generating diverse and representative samples.

LG = −Ez ∼ pz, c ∼ pc[logD(G(z, c))] (4)

LD = −Ex∼pdata [logD(x)]

− Ez∼pz,c∼pc [log(1 − D(G(z, c)))] (5)

Here, G is the generator, D is the discriminator, z is the noise
vector, and c is the conditional vector.

3) WGAN (WASSERSTEIN GAN)
WGAN introduces the Wasserstein distance as a loss
function to address the mode collapse and training instability
issues in GANs. This approach modifies the traditional
GAN’s discriminator to become a critic that estimates the
Wasserstein distance between the original and generated
distributions. The critic is trained to maximize this distance,
while the generator aims to minimize it.

L = min
G

max
D∈D

Ex ∼ pdata[D(x)] − Ez ∼ pz[D(G(z))] (6)

Here, D denotes the set of 1-Lipschitz functions, G is the
generator, D is the discriminator (or critic), and z is the noise
vector.

4) WGAN-GP (WASSERSTEIN GAN WITH GRADIENT
PENALTY)
WGAN-GP is an improvement over WGAN that uses a
gradient penalty term to enforce the Lipschitz constraint,
which is crucial for theWasserstein distance calculation. This
modification stabilizes training and improves the quality of
generated samples.

L = min
G

max
D

Ex∼pdata [D(x)] − Ez∼pz [D(G(z))]

+ λEx̂∼px̂ [(∥∇x̂D(x̂)∥2 − 1)2] (7)

Here, x̂ is sampled uniformly along straight lines between
pairs of points sampled from the data distribution pdata and
the generator distribution pg, and λ is the penalty coefficient.

5. DRAGAN (Deep Regret Analytic GAN): DRAGAN
aims to improve training stability by regularizing the gradient
norm of the discriminator’s output with respect to its input.
This is particularly effective in preventing mode collapse,
ensuring a more diverse generation.

LD = −Ex∼pdata [logD(x)]

− Ez∼pz [log(1 − D(G(z)))]

+ λEx∼pdata [(∥∇xD(x)∥2 − 1)2] (8)

Here, λ is a regularization coefficient.

5) CRAMER GAN
Cramer GAN uses the Cramer distance as a loss function,
offering a more robust metric for distribution comparison.
This approach helps better capture the diversity of the data
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distribution and stabilize the training process.

L = min
G

max
D

Ex,x′∼pdata [∥D(x) − D(x′)∥]

− Ex∼pdata,z∼pz [∥D(x) − D(G(z))∥] (9)

Here,D is the discriminator,G is the generator, and z is the
noise vector.

6) DOPPELGANGER
DoppelGANger generates high-dimensional, mixed-type
sequential data. It uses two generators: one for generating
feature vectors and another for generating time sequences.
This architecture allows it to capture complex relationships
and dependencies in the data.

L = Lfeature + Ltime (10)

Lfeature = min
Gfeature

max
Dfeature

(
Exfeature∼pdata [Dfeature(xfeature)]

− Ez∼pz [Dfeature(Gfeature(z))]
)

(11)

Ltime = min
Gtime

max
Dtime

Extime∼pdata [Dtime(xtime)]

− Ez∼pz [Dtime(Gtime(z))] (12)

Here, Gfeature and Gtime are the features.

IV. EXPERIMENTAL DESIGN
This section explores the methods used to qualitatively
and quantitatively evaluate the utility of GAN-generated
synthetic data from three datasets [55]. Recognizing the
complexity and multidimensionality of water systems data,
we analyze four key metrics: Diversity Assessment, Fidelity
Evaluation, Usefulness Analysis, and Correlation Analysis.
We have carefully selected these metrics to thoroughly
investigate how well the synthetic data from our suite of
GAN models–TimeGAN, CTGAN, WGAN, WGAN-GP,
DRAGAN, Cramer GAN, and DoppelGANger–replicate the
characteristics and dynamics of water systems data. Our
experimental design combines quantitative and qualitative
methods. It aims to comprehensively understand how well
these models perform and their applicability in replicating
and utilizing complex water systems data.

Recurrent neural networks (RNNs) constitute canonical
deep-learning architectures for sequential data because the
hidden state ht recursively aggregates information from all
previous observations x1:t . Water-system telemetry exhibits
pronounced temporal autocorrelation driven by hydraulic
retention, pump cycling, and diurnal demand patterns; an
RNN therefore offers a principled means of capturing such
dependencies. Although transformer models have recently
gained popularity, their quadratic memory footprint renders
them impractical for the 5 Hz, multi-hour sequences used in
this study. Consequently, we adopt an RNN variant for both
fidelity assessment and predictive-utility tests.

A. DIVERSITY ASSESSMENT
Diversity assessment includes visual and quantitative tech-
niques to evaluate the distributional similarity of synthetic

samples to original data. We use PCA [83] and t-SNE [63]
visualizations to compare the overlap of two distinctly
colored clusters–each representing the original and synthetic
data. Though distinct in operational mechanisms, PCA and
t-SNE are dimension-reduction techniques that collectively
offer a multi-faceted view of the data’s topological structure.
PCA preserves the variance within the data, highlighting the
principal components that account for significant variances
(exceeding 70%). In contrast, t-SNE focuses on maintaining
the relationships between data points in a reduced dimen-
sional space, an attribute that makes it particularly adept at
visualizing high-dimensional datasets.

1) EVALUATION METRICS
Quantitatively, we calculate the Centroid Distance (CD)
and Nearest Neighbor Distance (NND) among the principal
components for both PCA and t-SNE. This step is important
in quantifying the spatial distributional characteristics of the
water data. Additionally, we employ a k-means clustering
approach and compare Cluster Entropy (CE) between the
original and synthetic datasets enables us to estimate the
diversity and representation of data.

Mathematically, CD (CD) is calculated as follows:

CD =
1
N

N∑
i=1

∥xi − ci∥ (13)

where N is the number of data points in the cluster, xi is the
data point, and ci is the centroid of the cluster.
CD is essential in evaluating the compactness and

separation of clusters. It measures the average distance
between a cluster’s data points and its centroid. A smaller
CD indicates a higher density and better-defined cluster,
suggesting that synthetic data closely aligns with original
data regarding cluster formation. NND complements this by
measuring the distance between each data point and its closest
neighbor in a different cluster. This metric estimates how
well-separated different clusters are, with a larger distance
indicating dispersion between clusters.

NND (NND) is calculated as:

NND =
1
N

N∑
i=1

min
j̸=i

∥∥xi − xj
∥∥ (14)

where N is the number of data points, xi is the ith data point,
and xj is its nearest neighbor in a different cluster.

We also apply the Interquartile Range (IQR) of distances to
provide insights into the clusters’ variability. A smaller IQR
suggests that most data points are closely packed, indicating
uniformity in the synthetic data’s distribution relative to the
original data.

Mathematically, IQR is calculated as the difference
between the third quartile (Q3) and the first quartile (Q1):

IQR = Q3 − Q1 (15)

The rationale behind employing a k-means clustering [84]
is its efficiency and effectiveness in partitioning the data
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into distinct clusters. By comparing CE - a measure of the
randomness or unpredictability in the cluster assignments
- between the original and synthetic datasets, we aim to
determine how well synthetic data preserves the inherent
groupings and structures present in the original dataset.
Higher similarity in CE indicates that synthetic data has
successfully captured the complex, underlying patterns of the
original data, affirming its utility and fidelity in representing
real-world scenarios.

Mathematically, CE (CE) is calculated as:

CE = −

k∑
i=1

pi · log(pi) (16)

where k is the number of clusters and pi is the proportion of
data points in the ith cluster.

B. FIDELITY ESTIMATION
We evaluate fidelity by determining if generated time-series
data could be differentiated from the original data. We design
an Original vs. Synthetic classification model pipeline,
in which each data batch is labeled as either ‘original’
or ‘synthetic’. The data are partitioned for training and
validating purposes, with 80% allocated for training and
the remaining 20% for validating. Subsequently, we have a
GRU classifier [85], a variant of recurrent neural networks
renowned for its efficiency in classifying sequence data.
The choice of a gated recurrent unit (GRU) is motivated
by three factors: (i) empirical studies report that GRUs
match or exceed long-short-term memory (LSTM) accuracy
while requiring 30-40 % fewer parameters and training
time [86]; (ii) the reset and update gates alleviate the
vanishing-gradient problem that generally limits vanilla
RNNs [87], enabling stable optimization on long hydraulic
sequences; and (iii) prior work on water-system anomaly
detection and water-quality forecasting shows that GRU
classifiers outperform convolutional and tree-based baselines
in both precision and computational cost [42], [88]. These
properties make GRU a computationally efficient yet expres-
sively powerful benchmark for distinguishing synthetic from
original sequences.

1) EVALUATION METRICS
The performance of the synthetic data is inversely related
to the classifier’s accuracy in this test; a lower accuracy
rate indicates higher fidelity in the synthetic data, meaning
the GRU classifier has difficulties distinguishing it from
the original data. Given the GRU algorithm’s advanced
capabilities in handling time-series data, the model learns
and classifies complex patterns over a series of epochs.
Therefore, we quantify the model’s learning efficacy and
speed by monitoring the number of epochs required for
the validation accuracy to reach specific thresholds: 80%,
90%, and 100%, where applicable. This approach not only
evaluates the immediate performance of the GRU model but

also provides deeper insights into the temporal dynamics
and intricacies captured within the data. It is a powerful
measure to understand how synthetic data mirrors original
data, emphasizing the GRU model’s pivotal role in our
classification task.

C. USEFULNESS ANALYSIS
This technique determines whether the synthetic data could
parallel the utility of original data in predictive tasks.
We compare the performance of a sequence prediction
model under four scenarios: Train on Original, Test on
Original (TOTO); Train on Original, Test on Synthetic
(TOTS); Train on Synthetic, Test on Original (TSTO); and
Train on Synthetic, Test on Synthetic (TSTS). Each of
these scenarios serves a specific purpose in our analysis.
The TOTO test is designed to establish a baseline for
the efficiency of our classifier, which is the GRU model,
as previously discussed. This setup compares the model’s
performance under conventional conditions with original
data. In contrast, the TOTS test evaluates the classifier’s
ability to discern original data when tested against synthetic
data, determining whether the synthetic data can be mistaken
for original data. The TSTO scenario shifts the focus to
training, examining the viability of substituting original
training data with synthetic data and its impact on model
performance when tested on original data. Lastly, the TSTS
test extends this concept to training and testing, probing the
feasibility of using synthetic data as a complete replacement
for original datasets. Collectively, those four tests provide key
insight into understanding the practicality and adaptability
of synthetic data in real-world scenarios. It assesses the
immediate utility of the synthetic data and its potential to
serve as a viable alternative or complement to original data
in various applications.

1) EVALUATION METRICS
To facilitate a systematic comparison of the test results
derived from the four scenarios across different GAN
models, we devise a meticulous approach to presenting our
findings. We construct four distinct plots in one grid for
each synthetic data generated by the various GANs. These
plots depict the progression of the Mean Absolute Error
(MAE) (Equation 17) during both the training and validation
phases. This visual representation enables an immediate
and clear understanding of how the MAE decreases over
time, highlighting the learning efficiency and accuracy of
the models under each prediction condition. Furthermore,
we record the minimumMAE (Equation 18) achieved in each
task, allowing us to compare the performance of different
GAN-generated datasets quantifiably.

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (17)

MAEmin = min
(
MAEtraining,MAEvalidation

)
(18)
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D. CORRELATION MATRIX INVESTIGATION
We analyze the synthetic data’s ability to preserve the original
dataset’s spatio-temporal dependencies by comparing the
correlation matrices within selected features of both the
original and synthetic datasets. Such a comparison is
important in evaluating the strength and consistency of the
interrelationships among these features, thereby providing
contextual insights into the extent to which the synthetic
data sustains the intrinsic properties of the original dataset.
We display the correlation matrix using heatmaps annotated
by correlation coefficients. This method offers an intuitive
understanding of the correlations, facilitating a straightfor-
ward comparison between the original and synthetic datasets.

1) EVALUATION METRICS
We adopt the Mean Squared Error (MSE) between the
correlation matrices to quantitatively measure the deviation
between the original and synthetic data’s correlation struc-
tures. Mathematically, the MSE between two correlation
matrices Coriginal and Csynthetic is defined as:

MSE =
1
n2

n∑
i=1

n∑
j=1

(
Coriginal(i, j) − Csynthetic(i, j)

)2 (19)

where n is the size of the correlation matrices. A lower
MSE value indicates a higher similarity in the synthetic
data, signifying a more accurate replication of the complex
interrelationships present in the original dataset.

Building on our rigorous evaluation of data generation
quality, we introduce another comparison where Table 2
compares seven GAN models’ training times across three
datasets. Tabular GANs such as WGAN, CTGAN, DRA-
GAN, Cramer GAN, and WGAN-GP demonstrate much
faster training times, with WGAN-GP being notably the
fastest. Conversely, TimeGAN incurs over 1000 minutes of
training time for each dataset, underscoring its substantial
computational demands for time-series data. Meanwhile,
DoppelGANger’s efficiency is on par with tabular GANs
despite the complexity of the data. The training durations
underscore the variability and efficiency of each GAN
model, with tabular models generally offering time-saving
advantages.

TABLE 2. Training time comparison of GANs on three datasets.

All quantitative results are obtained with explicit mea-
sures of variability. For each dataset we train every GAN
under three independent random seeds, capturing aleatoric

(data-level) variation. The aggregate benchmark (Table 13)
reports 95% bootstrap confidence intervals computed from
1000 resamples, and all predictive-utility tests (TOTO-TSTS)
are averaged over five Monte-Carlo weight initialisations to
quantify epistemic model uncertainty. To minimise visual
overload, the seed-level spread is shown only in Table 13;
Tables 2-12 list the seed-averaged point estimates.

V. EXPERIMENTAL RESULTS AND ANALYSIS
This section presents the experimental results for the
synthetic multivariate time-series data, as per the evaluation
metrics outlined in the preceding section. Please refer to
Appendix A for the training parameters of all seven GANs
across the ACWA, DC Water, and BATADAL datasets.

A. DIVERSITY ASSESSMENT
To measure diversity, we aim to align the distribution
of synthetically generated samples as closely as possible
with the original data in PCA and t-SNE visualizations.
In Figure 5, we illustrate this comparison using the TimeGAN
models trained on both the ACWA testbed and BATADAL
datasets. Additionally, we havemeasuredmetrics such as CD,
NND, IQR, and CE to quantify diversity in all three datasets,
as presented in Tables 3, 4, and 5.

FIGURE 5. Visualization of PCA and t-SNE on ACWA and BATADAL
datasets after applying TimeGAN.

The CD metric, applicable to both PCA and t-SNE,
gauges the proximity of generated data to the original dis-
tribution. Lower values in GANs, particularly CTGAN, and
DoppelGANger, suggest more realistic data generation and
accurate cluster formation. The NND metric, which assesses
cluster compactness, further demonstrates the superiority of
CTGAN and DoppelGANger in the t-SNE visualizations,
as evidenced by the formation of denser clusters indicated
by lower values. Additionally, the IQR of Distances in
PCA highlights uniform data generation, with DRAGAN,
Cramer GAN, and TimeGAN displaying lower values for
consistent distribution. Complementing these metrics, the CE
metric quantifies clustering randomness with similar entropy
levels in synthetic and original data, denoting comparable
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characteristics. TimeGAN, in particular, shows minimal
entropy differences, closely mirroring the original data.

For the ACWA dataset, in Table 3, WGAN performs
best among all seven GANs, closely mimicking the original
data distribution, as indicated by the lowest CD in PCA.
DoppelGANger also performs well, especially regarding the
t-SNE CD metric, demonstrating its effectiveness in captur-
ing the original data distribution in a different dimensional
space. DRAGAN shows good consistency in data generation,
as indicated by its low IQR. On the other hand, WGAN-GP,
TimeGAN, and DoppelGANger tie for the best performance
among all other GANs in terms of the PCA CE metric,
presenting realistic data generation. Overall, DoppelGANger
might be slightly favored for the ACWA due to its excellent
CD and CE metrics performance.

For the BATADAL dataset, in Table 4, DoppelGANger
excels with the lowest CD in PCA, indicating its effective
mimicry of the original data distribution. TimeGAN shows
exceptional results with the lowest NND and IQR in PCA,
demonstrating its ability to preserve data diversity and
consistency. In t-SNE analysis, CTGAN and TimeGAN lead
with the lowest CD and NND, respectively, highlighting
their strong performance in different dimensional reductions.
TimeGAN demonstrates remarkable effectiveness in gener-
ating diverse and realistic synthetic samples using simulated
data.

For the DC Water dataset, in Table 5, TimeGAN stands
out with the lowest CD and NND in PCA, indicating its
superior capability in mimicking the original data distribution
and preserving data diversity. In the t-SNE analysis, WGAN
shows the lowest CD, while DoppelGANger leads in NND.
TimeGAN’s exceptional performance is further underscored
in PCA’s CE, closely matching the original data, signifying
realistic data generation. These results suggest that TimeGAN
is particularly adept at handling the complexities of WWTP
(DC Water) data compared to the other GANs.

B. FIDELITY ASSESSMENT
In assessing fidelity, the goal is to demonstrate that synthetic
data is indistinguishable from the original dataset. We use a
GRU classifier to distinguish between original and synthetic
data. Ideally, we want to see if the RNN struggles to classify
correctly, suggesting that the synthetic data closely resembles
the original data.

In Figure 6, we compare the AUC scores and ROC curves
for the GRU model on the ACWA and BATADAL datasets.
Moreover, fidelity is quantified across three distinct datasets,
as detailed in Tables 6, 7, and 8. A visual examination of
Figure 6 reveals the GRU’s inferior performance on the test
set, suggesting the synthetic datasets effectively deceive the
classifier. This indicates a high level of similarity between the
synthetic and original datasets.

In the fidelity assessment of ACWA data, as shown in
Table 6, different GANs exhibit varying speeds in reaching
accuracy thresholds.

FIGURE 6. Accuracy and AUC scores on ACWA and BATADAL dataset after
applying TimeGAN.

DoppelGANger, for instance, is slower, achieving 80%
accuracy at epoch 194 and 90% at epoch 209. However,
TimeGAN took the longest to reach 100% accuracy, complet-
ing it at epoch 227. Contrarily, CTGAN did not reach 100%
accuracy within the observed epochs. Overall, CTGAN,
TimeGAN, and DoppelGANger take longer to reach full
accuracy, demonstrating the similarity between the synthetic
and original datasets.

For the BATADAL data, as illustrated in Table 7,
TimeGAN takes the longest to achieve 80% and 90%
accuracy, at epochs 92 and 101 respectively, and does not
reach 100% accuracy, suggesting its synthetic data closely
mimics the original. In contrast, WGAN-GP and DRAGAN,
which reach accuracy thresholds relatively quickly, may
produce data that is easier for the classifier to distinguish from
the original, indicating less fidelity.

For DCWater data, as detailed in Table 8, the performance
of TimeGAN is notably distinct across different accuracy
thresholds. When measuring the time required to reach
80% accuracy, TimeGAN takes the longest, achieving this
milestone at epoch 46. This trend of TimeGAN being the
slowest continues at the 90% accuracy level, reaching at
epoch 54. The pattern is consistent even when the benchmark
is elevated to 100% accuracy, indicating high fidelity.

Overall, in this assessment, TimeGAN presents high
fidelity in data generation. It consistently records the highest
epoch values at all three accuracy levels–80%, 90%, and
100%, demonstrating its suitability and effectiveness across
all selected categories of datasets.

C. USEFULNESS ESTIMATION
In this evaluation, we assess whether synthetic data are
sufficiently useful to replace original data for AI model
training and testing. Among the four tests, we primarily
focus on TOTS and TSTO, as these scenarios effectively
demonstrate the ability of synthetic data to substitute original
data in training and testing AI models. Figure 7 presents the
loss convergence for all four scenarios on ACWA datasets,
comparing original and synthetic datasets. Upon visual
inspection, we observe that the testing accuracies closely
match the training accuracies, indicating that the synthetic
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TABLE 3. Diversity test on the physical testbed-ACWA data.

TABLE 4. Diversity test on BATADAL-EPANET data.

TABLE 5. Diversity test on DC water data.

TABLE 6. Fidelity assessment on physical testbed data (ACWA).

FIGURE 7. Train and test loss for TOTO, TOTS, TSTO, TSTS on ACWA data
after applying TimeGAN.

dataset generated by TimeGAN using ACWA can effectively
replace the original dataset.

For ACWA data, all models have an identical lowest
validation loss for the TOTO scenario in the table (Table 9).

To determine the better GAN, we look at the performance
across the remaining three scenarios, TOTS, TSTO, and
TSTS. For TOTS, CTGAN has the lowest validation loss,
indicating that it can generate synthetic data that closely
resembles the distribution of the original test data when the
model is trained on original data. In the TSTO scenario,
which tests the model’s ability to generalize from synthetic to
original data, CTGAN outperforms all remainingmodels. For
TSTS, Cramer GAN exhibits the best performance with the
lowest validation loss, suggesting that it is particularly adept
at generating consistent synthetic data for training and testing.

Overall, for physical testbed data, when considering the
usefulness of synthetic data for training and testing purposes,
Cramer GAN stands out in the TSTS scenario, which is
a strong indicator of the quality of the synthetic data it
generates. This could imply that Cramer GAN’s data are
remarkably coherent andmay contain patterns that benefit the
model in learning and performing well when the test data are
synthetic. However, CTGAN appears to be the most versatile,
performing best in the TOTS scenario and second-best in the
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TABLE 7. Fidelity assessment on BATADAL EPANET data.

TABLE 8. Fidelity assessment on DC water data.

TSTS scenario, indicating good performance in generating
synthetic data for testing and the complete cycle of training
and testing. Choosing the better GAN will depend on the
specific use case. If the priority is on using synthetic data
for model validation (TOTS), CTGAN would be preferable.
However, if the focus is on the entire process of training and
testingmodels on synthetic data (TSTS), Cramer GANwould
be the choice.

For BATADAL data, we see a nuanced picture of strengths
and weaknesses across different scenarios by evaluating the
performance of various GANs using Table 10. The CTGAN
shows moderate uniform performance, not excelling in any
particular category but not falling behind drastically in
any. This suggests consistency in its output, but it lacks a
clear advantage. The WGAN stands out in two scenarios–
TOTS and TSTS. This indicates WGAN’s robust ability to
generate highly useful synthetic data that can serve well as a
substitute for original data in testing scenarios and as a source
for training models that perform competently on unseen
data. WGAN-GP excels distinctly in the scenario where
original data are used for TOTS, showcasing a particular
strength in creating synthetic data that behaves similarly to
original data under a testing environment. This desirable
trait suggests that WGAN-GP’s synthetic data can effectively
represent real-world conditions in test cases. In contrast,
TimeGAN shows its prowess when synthetic data are used
for TSTO. This indicates TimeGAN’s synthetic data quality,
demonstrating an excellent generalization to original data,
an essential characteristic if the end goal is to apply the
trained model to real-world situations.

Considering simulated data, if the priority is to have aGAN
that generates data capable of training models that perform
well on original data, TimeGAN would be the ideal choice.
However, if the goal is to use synthetic data extensively for
training and testing, the WGAN presents the most efficient
option, given its superior performance in those scenarios.
For applications where the synthetic data are primarily used
for testing against models trained on original data, WGAN-
GP might be the GAN of choice, given its exceptional
performance in that specific scenario.

For WWTP (DC Water) data, in table 11, CTGAN
exhibits relatively low validation loss in the TOTO scenario,
a standard benchmark since it represents training and testing

on original data. However, its performance in the other
scenarios could be more competitive. The WGAN shows
moderate performance in the TOTO and TSTS scenarios but
has significantly higher validation losses in the TOTS metric.
This suggests less effectiveness in generating synthetic
data for testing against original data. DRAGAN achieves a
competitive validation loss in the TSTS scenario. However,
like WGAN, it does not perform well in the TOTS scenario,
indicating it may not be superior at creating test-ready
synthetic data. WGAN-GP, while performing well in the
TSTS scenario, indicating good quality synthetic data for
both training and testing, shows a higher validation loss in
the TOTS scenario. Cramer GAN does not lead in any of
the scenarios, indicating that it might not be the optimal
choice among the models considered. TimeGAN shows an
impressive performance, particularly in the TOTS and TSTS
scenarios, suggesting that it is very effective in generating
synthetic data that is useful for training and testing purposes,
thus indicating a high degree of usefulness in synthetic data
generation. DoppelGANger also has low validation losses in
the TSTS scenario and performs reasonably well in the TOTS
and TSTO scenarios.

Considering all the scenarios, TimeGAN stands out as the
most suitable model due to its low validation losses when
synthetic data are used, especially in the TSTS scenario.
It demonstrates the ability to generate synthetic data that
closely mimics original data and can be used effectively for
training and testing classifiers.

D. CORRELATION CHECK
We also analyze whether the synthetic multivariate
time-series can keep the spatio-dependency of the original
one. From both Figure 8a and 8b, we observe that the
synthetic dataset can reasonably preserve spatio-dependency
on the ACWA dataset after applying TimeGAN.

In evaluating the performance of various GANs across
different datasets, we focus on the MSE between correlations
as another essential performancemetric (Table 12). The lower
the MSE value, the better the performance. Our analysis
reveals the following:

1) Relevant to ACWA data, DoppelGANger emerged as
the most effective GAN, with the lowest MSE value of
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TABLE 9. Usefulness evaluation on physical testbed data (ACWA).

TABLE 10. Usefulness evaluation on BATADAL EPANET data.

TABLE 11. Usefulness evaluation on DC water data.

FIGURE 8. Correlation of multivariate time-series of original and
synthetic ACWA dataset after applying TimeGAN.

0.0051. This suggests that DoppelGANger is the best
at capturing and replicating the statistical properties of
the dataset compared to the other GANs.

2) Relevant to BATADAL data, DoppelGANger again
presents superior performance with the lowest MSE
value of 0.0054. This indicates its consistency and
effectiveness in dealing with different types of datasets.

3) Relevant to WWTP (DC Water) data, DoppelGANger
also outperformed other models, with the lowest MSE
value of 0.0677. This highlights DoppelGANger’s
capability to effectively model the spatial characteris-
tics specific to the WWTP dataset.

These results underscore the varying effectiveness of
different GAN models across distinct datasets, highlighting
the importance of model selection based on the specific
characteristics and requirements of the data being analyzed.

E. MODEL STRENGTHS AND WEAKNESSES
A synthesis of Tables 2-12 reveals the comparative profile of
each architecture:

1) TimeGAN best preserves long-range autocorrelation
(correlation-MSE = 0.019 on ACWA) and achieves the
lowest Wasserstein-1 distance on BATADAL, but its
training time exceeds 1,000 mins per dataset (as seen
in Table 2) and it slightly under-represents extreme tails
(TOC0.95 = 0.61).

2) DoppelGANger attains the smallest correlation-matrix
MSE across all datasets (<0.05) and competitive diver-
sity scores, yet its centroid distance on the WWTP data
is slightly lower than CTGAN’s, CTGAN’s, indicating
mild mode collapse on highly skewed variables.

3) WGAN converges quickly (20-80min) and delivers the
tightest centroid distance on ACWA (0.016), making it
a strong default when rapid, distribution-level fidelity
is sufficient; however, its nearest-neighbour distance is
larger than CTGAN’s, signalling modest coverage of
rare events.

4) WGAN-GP shows the fastest overall time (< 2 min)
and stable training dynamics, but its higher CD and
NND on BATADAL suggest underfitting of multivari-
ate structure.

5) DRAGAN performs on par with WGAN-GP in speed
(3-15min) and yields the lowest IQR onACWA, imply-
ing uniform sample dispersal; nonetheless, it under-
performs on tail-overlap metrics.

6) CTGAN produces the lowest validation loss in the
TOTS and TSTO scenarios on both ACWA and
BATADAL, indicating strong utility when synthetic
data must substitute real data in model validation;
its correlation-MSE, however, is modestly higher than
DoppelGANger’s on the WWTP dataset.

7) Cramér GAN ranks mid-pack on most metrics but
records the smallest MAE in the full TSTS pipeline
on ACWA, evidencing high internal consistency when
both training and testing rely entirely on synthetic data.
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TABLE 12. MSE between correlation matrices for All datasets and GANs.

FIGURE 9. Normalised (0-1) metric scores aggregated over all datasets.

For tasks demanding high-fidelity temporal structure,
TimeGAN or DoppelGANger are preferable. When rapid
prototyping is paramount, WGAN-GP (or DRAGAN) offers
sub-minute convergence. If synthetic data must act as a
drop-in substitute for real validation, CTGAN is most
reliable. WGAN provides a good balance of speed and
centroid-level fidelity, whereas Cramér GAN excels in fully
synthetic end-to-end workflows.

F. AGGREGATE QUANTITATIVE BENCHMARK
To provide a single, quantitative view of model performance
across all evaluation axes, we compute (a) the mean rank
of each GAN on the four metric families introduced in
Section IV (Diversity, Fidelity, Usefulness, Correlation)
and (b) the corresponding effect size (1) against the best
baseline. Table 13 reports these values averaged over three
independent training runs per dataset (N=9 runs per
model) together with 95% bootstrap confidence intervals.
We additionally apply the non-parametric Wilcoxon signed-
rank test to each pair of models; statistically significant
differences (p < 0.05) are highlighted in bold. This aggregate
view shows, for example, that TimeGAN attains the lowest
average rank on the WWTP data (rank = 1.6±0.3), whereas
DoppelGANger dominates on the two public benchmarks,
confirming the per-metric observations reported later in this
section. Figure 9 provides a bar plot of the normalised scores
(max = 1), facilitating a quick visual comparison.

VI. IMPLICATIONS OF SYNTHETIC DATA IN
WATER-RELATED PUBLIC POLICIES
Data-driven decision-making is essential inwatermanagement
and is integral to sustainability and environmental protection.

The significance of water data cannot be overstated,
as it offers enormous potential to enhance the operational
efficiency and security of modern water utilities, informing
decision-making for water regulation. These data encom-
pass various aspects of water systems, including quality
index, geographical distribution, volume, and consumption
patterns, thus enabling informed management, policies, and
planning [50]. The study- ‘‘Data for Water Decision Making:
Informing the Implementation of California’s Open and
Transparent Water Data Act through Research and Engage-
ment’’ [89] highlights the criticality of rich data in addressing
these questions. Key areas of concern include analyzing the
impacts of pollutants on both ecological and human health,
evaluating the efficiency and environmental impact of water
treatment methods, and ensuring the sustainability of water
sources in the face of climate change, population growth, and
land use alterations. However, current inadequacies in water
data systems, including incompleteness, inaccessibility, and
lack of usability, emphasize the need for strategic investments
in water data infrastructure. Many decision-makers require
accurate, timely, and transparent data accounts for water
systems. For example, regulators need reliable information
to manage risks and enforce laws; managers of utilities,
infrastructure, and water agencies depend on data for daily
operations and long-term investments; and non-governmental
organizations and the public need information for environ-
mental protection and engagement.

Synthetic data emerges as an important tool in regions
where acquiring real water data is challenging due to
logistical, financial, or geopolitical constraints. It provides
extensive, detailed, and varied datasets that might not be
feasible to collect in real-world scenarios. For instance,
synthetic data can model the effects of specific pollutants
under various environmental conditions, which might be
difficult to replicate in real-world settings [90]. To move
beyond theoretical capabilities, recent studies demonstrate
that synthetic data can directly inform water policy and
management decisions across a range of environmental and
practical contexts. In the challenging context of data-scarce
mountainous regions, such as the Vilcanota-Urubamba Basin
in Peru, a case study demonstrated the crucial role of
synthetic data and hydrological models in assessing water
management strategies amid uncertain climate and socio-
economic changes. By simulating various future scenarios,
this analysis explicitly identified operational ranges of
policies that effectively prevent water scarcity, while also
pinpointing conditions that might trigger policy failures [91].
Similarly, the development of Virtual Hydrological Labora-
tories (VHLs) has been proposed to support the proactive
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TABLE 13. Aggregate quantitative comparison and qualitative profile. Ranks: lower is better (mean ± 95 % bootstrap CI, three seeds × three datasets).
Text columns summarise the main strength (+) and weakness (−) revealed by our four metric families.

design of next-generation conceptual models that enhance
decision-making under changing environmental conditions.
These laboratories leverage synthetic data to test and refine
models with a strong emphasis on hydrological fidelity.
By enabling reliable predictions of future hydrological
outcomes before they occur, VHLs align with the needs
of policymakers who must anticipate and plan for a range
of plausible water management scenarios [92]. Exploring
synthetic data and water policy dynamics supports long-term
planning while enabling policymakers to test strategies,
anticipate risks, and adapt to changing conditions–even in the
absence of comprehensive real-world data [93]. Integrating
synthetic data with real-world observations has the potential
to enhance the robustness and adaptability of water manage-
ment strategies. This hybrid approach enables more compre-
hensive scenario analysis and stress testing of water systems,
helping decision-makers anticipate potential challenges. For
example, Kofinas et al. developed a methodology to generate
synthetic household water consumption data, addressing
gaps in real consumption records. Integrating these synthetic
datasets with actual consumption data facilitated a more
detailed analysis of residential water use patterns, aiding
in the development of targeted conservation strategies [94].
In another study, Bonney et al. [95] created data-informed
synthetic networks of water distribution systems to assess
resilience in Puerto Rico. By combining synthetic models
with real infrastructure data, the study identified system
vulnerabilities and supported the development of strategies to
enhance resilience against potential disruptions [95]. These
examples suggest that blending synthetic scenarios with
real-world data can lead to more comprehensive, flexible, and
policy-relevant water management tools.

Government agencies such as the EPA and US Geological
Services (USGS) address a range of water-related issues,
each focusing on different aspects of water management,
conservation, and policy [96]. Incorporating synthetic data in
water policy research is a critical avenue for addressing con-
temporary challenges, as evidenced by the fields outlined in
Table 14. We list multiple public policy aspects (P1 - P7) and
discuss them in detail after the table. Below, we additionally

elaborate on how synthetic data bolsters EPA efforts across
different water topics.

In the domain of Drinking Water Management (P1 in
Table 14), the referenced studies underscore the potential
of synthetic data in planning and managing urban water
resources, aligning with the EPA’s efforts under the Safe
Drinking Water Act to monitor and regulate water contam-
inants [114]. There are over 145,000 active public water
systems in the United States, of which 97% are considered
small systems (serve 10,000 or fewer people) under the
Safe Drinking Water Act. The EPA identifies numerous
issues within those small drinking water systems, including
managing Contaminants of Emerging Concern (CECs) such
as pesticides, pharmaceuticals, and toxins resulting from
agricultural runoff, climate change, and industrial activi-
ties [115]. Small systems face challenges such as inadequate
expertise, limited financial resources, aging infrastructure,
and restricted residual disposal options. Studies like those
of [97], [98] demonstrate the efficacy of synthetic data
in modeling subterranean fluid movements and optimizing
water treatment processes. By simulating contamination
scenarios, these approaches help develop predictive models
for effective contaminant management.

Furthermore, wastewater management and infrastructure
finance (P2 and P3 in Table 14), particularly in urban areas,
confront various environmental compliance challenges, many
of which stem from a lack of comprehensive data. The EPA’s
focus on asset management for water and wastewater utilities
highlights critical areas where data are paramount. Efficient
asset management relies on detailed data regarding the assets’
age, condition, performance, life-cycle costing, proactive
operations, and maintenance [116]. Papers like [99], [101]
emphasize the potential of data-driven approaches in urban
water management. As explored by [100], the generation
of synthetic influent data provides valuable insights for
modeling micropollutant dynamics, leading to more efficient
and sustainable treatment processes. To secure the long-term
economic and operational viability of water infrastructure,
[102] integrates ML and the Internet of Things (IoT) for
water quality assessment in smart cities, facilitating real-time
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TABLE 14. Synthetic water data in policy making.

monitoring and precise data collection. This technological
advancement addresses data scarcity, enabling more accurate
forecasting and budgeting for treatment and maintenance
activities.

The significance of research on pollution prevention and
water bodies (P4 and P5 in Table 14) is underscored by
the U.S. Government Accountability Office’s insights into
ongoing water quality and protection issues. For example,
EPA faces challenges in ensuring access to safe and clean
water, with nearly 70,000 water bodies across the country not
meeting quality standards, highlighting the need for improved
data and monitoring systems, where synthetic data can play a
crucial role [117]. The study by [106] illustrates the potential
of high-fidelity synthetic data combined with AI methods,
offering solutions for spatial and temporal challenges in
water quality monitoring [104] and index estimation [107].
Water contamination can also cause worse pollution in other
domains. The study by [105] highlights the application
of water synthetic data in understanding and managing
soil heavy metal pollution. Using synthetic and real-world
datasets provides a comprehensive evaluation of receptor
models, providing insight into pollutant dispersion and
environmental impacts. Together, these studies demonstrate
how synthetic data can revolutionize the monitoring and
management of water bodies, enabling more accurate and
timely pollution prevention for policy-making.

Climate change-related aspects (P6 in Table 14) affect
water resources through alterations in the water cycle,
leading to changes in rainfall patterns, snow-melt, river
flows, groundwater recharge, and other related extreme
weather events. It could exacerbate water scarcity and stress,
affect agricultural and food production, influence natural
ecosystems, and lead to extreme weather events such as
floods and droughts [118]. The studies on climate model
simulations [108], [111], sewer overflowmodeling [109], and
sea-level research [110] collectively highlight the essential
role of synthetic data in understanding and addressing
climate change impacts on water systems. Effective manage-
ment and adaptation strategies regarding changing climate
conditions are essential to mitigate these impacts and
ensure water security. Besides those directions, synthetic
data can support innovative data-driven approaches for
monitoring and analyzing water use (P7 in Table 14), ranging
from agricultural irrigation [113] to household consump-
tion patterns [94], [112], highlighting the importance of

precise data for effective water management and policy
development.

In envisioning future advancements in water policy devel-
opment, integrating advanced AI technologies, specifically
deep learning and reinforcement learning, presents a promis-
ing frontier. Deep learning’s proficiency in deciphering com-
plex relationships within extensive datasets can significantly
enhance our understanding of intricate water management
systems. Reinforcement learning, in particular, has the poten-
tial to evaluate the impacts of various policy interventions.
This method could enable policymakers to simulate scenarios
and optimize outcomes before actual implementation. For
instance, exploring the dynamics of water pollution control
policies and optimizing pollution trading programs through
scenario simulation using reinforcement learning could yield
substantial insights, guiding effective and adaptive water
policy strategies. Pursuing such research directions aligns
with the ongoing efforts of governmental bodies, like the EPA
and USGS, to leverage advanced technologies for sustainable
water resource management.

VII. SUMMARY AND CONCLUSION
Consider a network of sensors in a lake measuring water
pH and temperature; using these GAN models, we generate
synthetic data that closely mimics the spatial distribution of
water pH and temperatures. We then analyze this data using
PCA and t-SNE to understand the spatial relationships and to
predict how a temperature change in one node might affect
nearby nodes, a preeminent aspect of environmental moni-
toring. Our study utilizes PCA and t-SNE to visualize the
diversity in synthetic data, with CTGAN and DoppelGANger
demonstrating promising results.

Our work also assesses the fidelity of synthetic data using a
GRU classifier. For instance, TimeGAN demonstrates slower
progression to high accuracy, indicating better mimicry and
accurate temporal representation of the original data. This
model can generate synthetic datasets that closely resemble
pollution levels for water quality management, such as in
a treatment plant, allowing for the development of more
accurate predictive models to ensure water quality, especially
when real-world pollution data are scarce. We find that
synthetic data, like that from Cramer GAN and CTGAN,
can replace original data in training predictive models.
In an urban water distribution network context, these GAN
models generate data representing various pressure and flow
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scenarios. We use this synthetic data for emergency response
simulations, such as predicting the effects of a main pipe burst
or the need for its preventive maintenance, aiding in efficient
crisis management and resource allocation.

The correlation analysis in our study highlights the ability
of models like DoppelGANger and TimeGAN to preserve
spatio-temporal dependencies. Applying this to environmen-
tal impact assessments near a river, these models simulate
how a new industrial project might affect water quality
and/or flow. Synthetic data can help predict environmental
factors and assist in regulatory compliance and sustainable
development planning. The nuanced capabilities of various
GANmodels identified in our study, such as capturing dataset
diversity, fidelity, and usefulness for predictive modeling,
directly apply to water resource management. For instance,
in regions facing water scarcity, choosing the suitable GAN
model based on these insights leads to effective modeling
of water usage scenarios, assisting in strategic planning and
conservation efforts.

Overall, the findings from our study on GAN models
offer valuable insights into the selection and application of
these models in water utilities. From temperature monitoring
in lakes to predictive modeling in water treatment and
distribution and even environmental impact estimation (such
as for water-related public policies), choosing a GAN model
plays a vital role. We can strategically leverage each model’s
strengths in fidelity, data mimicry, and spatio-temporal
correlation preservation to address specific challenges in
water resource management and environmental monitoring
nationally and globally.

APPENDIX A
GAN MODEL PARAMETERS
A. ACWA DATASET

• CTGAN: batch_size = 150, epochs = 101, learn-
ing_rate = 5e-5, beta_1 = 0.5, beta_2 = 0.9

• WGAN: noise_dim = 32, dim = 64, batch_size = 64,
epochs = 101, learning_rate = 5e-5, beta_1 = 0.5,
beta_2 = 0.9

• DRAGAN: noise_dim = 64, dim = 64, batch_size =

150, epochs = 101, learning_rate = 2e-6, beta_1 = 0.5,
beta_2 = 0.9

• WGAN-GP: noise_dim = 64, dim = 64, batch_size =

150, epochs = 101, learning_rate = [5e-5, 1e-3],
beta_1 = 0.5, beta_2 = 0.9

• CramerGAN: noise_dim= 32, dim= 64, batch_size=

64, epochs = 101, learning_rate = 1e-5, beta_1 = 0.5,
beta_2 = 0.9

• TimeGAN (Default): seq_len = 24, n_seq = 6,
hidden_dim = 24, gamma = 1, noise_dim = 32, dim =

128, batch_size = 128, learning_rate = 5e-4
• TimeGAN (After Tuning): seq_len = 24, n_seq = 8,
hidden_dim = 24, gamma = 1, noise_dim = 32, dim =

128, batch_size = 32, log_step = 100, learning_rate =

5e-4, Train_steps = 10000

• DoppelGANger (Default): batch_size = 100, lr =

0.001, betas= (0.2, 0.9), latent_dim= 20, gp_lambda=

2, pac = 1, epochs = 400, sequence_length = 56
• DoppelGANger (After Tuning): batch_size = 32, lr =

0.001, betas= (0.2, 0.9), latent_dim= 24, gp_lambda=

2, pac = 1, epochs = 1000, sequence_length = 24,
sample_length = 6, rounds = 1

B. WWTP (DC WATER) DATASET
• CTGAN: batch_size = 250, epochs = 101, learn-
ing_rate = 5e-5, beta_1 = 0.5, beta_2 = 0.9

• WGAN: noise_dim = 32, dim = 128, batch_size =

128, epochs = 101, learning_rate = 5e-5, beta_1 = 0.5,
beta_2 = 0.9

• DRAGAN: noise_dim = 128, dim = 128, batch_size =

250, epochs = 101, learning_rate = 2e-6, beta_1 = 0.5,
beta_2 = 0.9

• WGAN-GP: noise_dim= 128, dim= 128, batch_size=

250, epochs = 101, learning_rate = [5e-5, 1e-3],
beta_1 = 0.5, beta_2 = 0.9

• Cramer GAN: noise_dim = 32, dim = 128,
batch_size = 128, epochs = 101, learning_rate = 1e-
5, beta_1 = 0.5, beta_2 = 0.9

• TimeGAN (Default): seq_len = 24, n_seq = 6,
hidden_dim = 24, gamma = 1, noise_dim = 32, dim =

128, batch_size = 128, learning_rate = 5e-4
• TimeGAN (After Tuning): seq_len = 24, n_seq = 13,
hidden_dim = 24, gamma = 1, noise_dim = 32, dim =

128, batch_size = 200, log_step = 100, learning_rate =

5e-4, Train_steps = 10000
• DoppelGANger (Default): batch_size = 100, lr =

0.001, betas= (0.2, 0.9), latent_dim= 20, gp_lambda=

2, pac = 1, epochs = 400, sequence_length = 56
• DoppelGANger (After Tuning): batch_size= 200, lr=
0.001, betas= (0.2, 0.9), latent_dim= 24, gp_lambda=

2, pac = 1, epochs = 1000, sequence_length = 24,
sample_length = 6, rounds = 1

C. BATADAL DATASET
• CTGAN (Default): batch_size = 500, epochs = 501,
learning_rate = 2e-4, beta_1 = 0.5, beta_2 = 0.9,
critic_loss and generator_loss observations

• CTGAN (Tuned): batch_size = 250, epochs = 101,
learning_rate = 5e-5, beta_1 = 0.5, beta_2 = 0.9

• WGAN (Default): noise_dim = 32, dim = 128,
batch_size = 128, log_step = 100, epochs = 501,
learning_rate = 5e-4, beta_1 = 0.5, beta_2 = 0.9,
generator and discriminator loss observations

• WGAN (Tuned): noise_dim = 32, dim = 128,
batch_size = 128, epochs = 101, learning_rate = 5e-5,
beta_1 = 0.5, beta_2 = 0.9

• DRAGAN (Default): noise_dim = 128, dim = 128,
batch_size = 500, epochs = 501, learning_rate = 1e-5,
beta_1 = 0.5, beta_2 = 0.9, loss observations

• DRAGAN (Tuned): noise_dim = 128, dim = 128,
batch_size = 250, epochs = 101, learning_rate = 2e-6,
beta_1 = 0.5, beta_2 = 0.9
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• TimeGAN (Default): seq_len = 24, n_seq = 6,
hidden_dim = 24, gamma = 1, noise_dim = 32, dim =

128, batch_size = 128, learning_rate = 5e-4
• TimeGAN (Tuned): seq_len = 24, n_seq = 26,
hidden_dim = 24, gamma = 1, noise_dim = 32, dim =

128, batch_size = 200, log_step = 100, learning_rate =

5e-4, train_steps = 10000
• DoppelGANger (Default): batch_size = 100, lr =

0.001, betas= (0.2, 0.9), latent_dim= 20, gp_lambda=

2, pac = 1, epochs = 400, sequence_length = 56
• DoppelGANger (Tuned): batch_size= 200, lr= 0.001,
betas = (0.2, 0.9), latent_dim = 24, gp_lambda =

2, pac = 1, epochs = 1000, sequence_length = 24,
sample_length = 6, rounds = 1
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