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Abstract—State of the art Artificial Intelligence Assurance 
(AIA) methods validate AI systems based on predefined goals 
and standards, are applied within a given domain, and are 
designed for a specific AI algorithm. Existing works do not 
provide information on assuring subjective AI goals such as fair-
ness and trustworthiness. Other assurance goals are frequently 
required in an intelligent deployment, including explainability, 
safety, and security. Accordingly, issues such as value loading, 
generalization, context, and scalability arise; however, achieving 
multiple assurance goals without major trade-offs is generally 
deemed an unattainable task. In this manuscript, we present 
two AIA pipelines that are model-agnostic, independent of the 
domain (such as: healthcare, energy, banking), and provide scores 
for AIA goals including explainability, safety, and security. The 
two pipelines: Adversarial Logging Scoring Pipeline (ALSP) and 
Requirements Feedback Scoring Pipeline (RFSP) are scalable 
and tested with multiple use cases, such as a water distribution 
network and a telecommunications network, to illustrate their 
benefits. ALSP optimizes models using a game theory approach 
and it also logs and scores the actions of an AI model to detect 
adversarial inputs, and assures the datasets used for training. 
RFSP identifies the best hyper-parameters using a Bayesian 
approach and provides assurance scores for subjective goals 
such as ethical AI using user inputs and statistical assurance 
measures. Each pipeline has three algorithms that enforce the 
final assurance scores and other outcomes. Unlike ALSP (which 
is a parallel process), RFSP is user-driven and its actions are 
sequential. Data are collected for experimentation; the results of 
both pipelines are presented and contrasted.

Index Terms—AI Assurance, Deep Learning, Equilibrium, 
Optimization, Scoring Methods

I. INTRODUCTION

In a recent review paper on AIA [1], assurance is defined as:

“a process that is applied at all stages of the AI engineering
lifecycle ensuring that any intelligent system is producing
outcomes that are valid, verified, data-driven, trustworthy,
and explainable to a layman, ethical in the context of its
deployment, unbiased in its learning, and fair to its users”.
AIA aims to define empirical ways of evaluating subjective

measures that are commonly domain-dependent such as fair-

ness and explainability. For instance, an AI model that is

used for recruiting might contain some bias towards certain

candidates, but that bias is very difficult to quantify. Being

able to measure fairness would help assure that the model is

fit for use within organizational and legal constraints. Another

example where AIA would be critical is for example, in

hospitals. Trusting an AI model in making subtle decisions

that might lead to health-related consequences is a process

that requires high trust in the model. Through AIA models

presented in this paper, one can measure the trustworthiness of

an AI model. However, representing such subjective measures

in a quantified manner is unquestionably complicated. AIA

goals can be achieved by either a model-specific or model-

agnostic approach. A model-specific approach manages a

domain-specific AI algorithm such as assurance of fairness-

aware outlier detection [2], whereas a model-agnostic ap-

proach is a generic and universal approach that facilitates

verifying AI algorithms irrespective of the domain of study.

In the algorithms presented in this manuscript, we can be able

to provide unique quantifiable scores for six AIA goals [1]

including Explainable AI (XAI), Trustworthy AI (TAI), Fair

AI (FAI), Ethical AI (EAI), Secure AI (CAI), and Safe AI

(SAI). The six goals are, however, quasi-mutually exclusive,

trade-offs are often enforced when choosing amongst them.

In literature, it has been highly arguable whether to make

an AI model highly explainable and less safe for instance.
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The trade-off between goals depends on the requirements of

each specific application. It is a subjective decision whether to

compromise a model’s safety to achieve other assurance goals

(such as safety). Regardless of the challenges, considering

few trade-offs, we provide tools to AI engineers to manage

the six goals of assurance in this manuscript. Accordingly,

we present Model Agnostic Assurance (MAA) for domain-

independent applications through two pipelines: ALSP and

RFSP (Fig. 1 and Fig. 2). ALPS includes three algorithms:

Weight Assessment, Reverse Learning, and Secret Inversion.

RFSP is a user-driven framework where users provide their

expected AIA weights as inputs to dictate outcome of the

system. The final outcome of the RFSP pipeline includes

quantifiable AIA scores; RFSP involves three working algo-

rithms: Economic Equilibrium, Extreme Data Segmentation,

and Model Optimization. Unlike Weight Assessment, Reverse

Learning, and Secret Inversion, these algorithms are executed

sequentially yielding scores. The major difference between

these two pipelines is that one is user-driven (RFSP) i.e.

requires user input, whereas the other is not.

Fig. 1. ALSP

Fig. 2. RFSP

The rest of the paper is structured as follows: The next

section presented related studies in AIA. Afterwards, we

present both pipelines, along with the design process and

reasoning for each algorithm. Experiments are presented in

section 4, section 5 presents the results as well as example

use cases. Lastly, section 6 presents conclusions and potential

future works related to the MAA pipelines.

II. RELATED WORK

A model-agnostic approach explains a model in a post-

hoc fashion (hindsight) by accepting that the model is as a

black-box; with the inner workings of the model hidden from

sight, and then attempting to approximate its behavior [3].

One such example of a model-agnostic approach is Local

Interpretable Model-agnostic Explanations (LIME) [4]. This

approach attempts to provide local explanations in the form of

linear approximations of the model, accurate in small regions

of the space. It is also practical when explaining, for example,

why a particular individual has been denied a mortgage

application. Other post-hoc model-agnostic algorithms provide

explanations in ranking features, even when an underlying

model is not linear. This includes InterpretML [5], SHapley

Additive exPlanations (SHAP) [6], and Partial Dependence

Plots (PDP) [7]. Each of these algorithms takes a distinct ap-

proach to the process of determining the important contributors

to an ML model. Albeit MAA is rare, there is no scarcity of

model-specific assurance, we present a brief review by AIA

goal, with the most related study found in the literature for

each.

EAI: In a study conducted by [8] on EAI, the researchers em-

ploy a combination of symbolic and logic-based approaches, a

data-driven approach, as well as consideration of a rule-based

and data-driven hybrid approach. This last approach is one

they propose with the question of how we determine when

preference breeches ethics as a breach in ethics can make the

model not viable to use. We employ a system that weighs each

assurance goal in each model to attempt to combat this issue.

FAI: Another work by [9] investigates how biased and un-

biased data can both result in AI models that treat certain

inputs unfairly when compared to others. They constructed a

framework that helps to prevent discrimination between inputs

in AI models. Our research looks not just at how we can assure

outputs, but also inputs (the dataset) to aid in preventing such

bias.

SAI and CAI: In work presented in [10], the researchers inves-

tigated SAI, measuring it using states and the reachability of

what is defined to be a secure state. They use this algorithm to

obtain a quantitative score for security. While these researchers

used the reachability of the output of the AI model, we use

various techniques such as an auto-encoder to detect outliers

in the data and obtain reconstruction error to use to measure

a security score.

TAI: In a study conducted by [11], the researchers constructed

SUNNY, “a new algorithm for trust inference in social net-

works using probabilistic confidence models”. This algorithm

outperformed another trustworthiness measure relevant at the

time in their testing. Our models differ in that they employ

the measurement of feature contribution with game theory

and Shapley [12] and causal values to obtain a score for

trustworthiness.

XAI: In a study conducted by [13], the researchers employ

10
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various formulas involving cognitive chunks to determine a

quantitative score for XAI. They mention that “explainable de-

cisions from commercial AI systems are going to be a standard

imposed by regulators to eliminate bias and discrimination,

and ensure trust”. XAI is undoubtedly the most studied [1]

out of AIA goals. The next section presents both pipelines

and how they address the six goals.

III. AI ASSURANCE PIPELINES

A. Pipeline 1: ALSP

ALSP is a pipeline that validates an AI system for generat-

ing quantifiable AIA scores using a combination of both data-

driven and AI model-driven approaches. More specifically,

ALSP optimizes models using a game theory approach and

it also logs and scores the actions of an AI model to detect

adversarial inputs, and assures the datasets used for training.

It is quite difficult to assure all six goals for an AI system

using a single algorithm, therefore we propose three separate

algorithms in ALSP pipeline including Weight Assessment,

Reverse Learning, and Secret Inversion that, are capable of

achieving all six goals combined for different contextual

applications.

1) Weight Assessment: The Weight Assessment is an algo-

rithm that applies Game Theory to the AI model of particular

interest for calculating the Shapley values [12] at every epoch

of learning; this algorithm aims to achieve assurance goals

including XAI, FAI, and TAI as a form of quantifiable AIA

scores by assigning scores per data point and not as an

aggregate score. It is important to note that, we assume an AI

model for scoring the given dataset. For Weight Assessment

study, we apply XGBDT as our baseline model. Shapley values

are outcomes of a game that assumes cooperation among

players and achieves overall gain from alliances. These values

represent each player’s bargaining power and the payoff that

is reasonable to expect in a given context. The alliance in

the game can be represented by a characteristic function. This

characteristic function (v) can be mapped as v : 2N → R for

a set of N ; therefore, each player i gets a fair distribution,

assuming the game is cooperative and can be represented

mathematically as (1). Considering a fair cooperation game,

a player can expect v(S ∪ {i}) − v(S) by averaging the set

of possible different permutations in which the alliance was

formed.

ϕi(v) =
1

n

∑
S⊆N\{i}

(
n− 1
|S|

)−1

(v(S ∪ {i})− v(S)) (1)

A unique set of values that indicates the importance of

each feature in a given dataset is assigned. Along with the

game theory-driven weights, these values also represent a

heuristic expectation from an assurance perspective that is

provided by domain experts. Similar to how labels are used as

independent variables in a training-testing learning approach,

here, we add assurance labels, namely: AIA Columns (AIAC).

However, AIAC values, as assigned by the domain expert,

are not directly fed to the AI model as inputs. For instance,

some features in a dataset can be relevant to specific assurance

goals such as fairness (consider data on gender or on race),

accordingly, these features are labeled as FAI features for

instance. The use cases provided in this manuscript provide

further information on the usability of these labels.

Algorithm 1: Weight Assessment

Inputs : Dataset (X) and AI Model (f(x): XGBDT)
Execute : AIA scores (XAI, FAI, TAI, EAI)

1 Train and test the AI model (f(x):XGBDT) with the given
dataset (X)

2 Apply Game Theory to evaluate the expected values for each
feature ϕi(v) from the trained AI model using (1)

3 Measure the AIA scores = ϕi(v) ∗ (AIACi)

Algorithm 1 represents steps of the Weight Assessment

technique. To generate AIA scores, we matrix-multiply Shap-

ley value weights ϕi(v) and AIACs (AIACi). This matrix

multiplication generates the AIA score for each row/column.

Experimental work provides further information on that.

2) Reverse Learning: Reverse Learning is a log-based algo-

rithm (Algorithm 2) that can trace back assurance issues using

a table of recorded learning actions (i.e. reverse engineering).

Reverse Learning accomplishes AIA goals such as XAI. XAI

can be enforced if learning details and evolution is available

through a log of actions. The log records the learning process

and indicates to points in time during learning where the

algorithm’s learning accuracy -for instance- has decreased

or seized to improve. That is illustrated in the experimental

section. While designing the AI model, we use the Gradi-

ent Boosting Decision Tree (GBDT) model as an example.

Though we select GBDT as our AI model of choice, for

experimentation purposes, other AI algorithms can be applied

as well. While developing the AI algorithm, the primary focus

was to log the actions of each epoch of learning. The outcome

of this algorithm is two-fold: the optimized number of epochs

to minimizing the loss function and a logged action of each

epoch. For GBDT, values including pseudo-residuals rim,

gamma γim, log of odds for the labels lm(x), probability pmi

are saved during each epoch. Equation 2 presents a prediction

of GBDT model after each epoch. Equation 3 presents the

logarithmic loss function of GBDT model.

fmi =
{
0→ pmi < 0.5, 1→ pmi >= 0.5 (2)

L = −
N∑
i=1

(
y log(odds)− log

(
1 + elog(odds)

))
(3)

Here, fmi is the prediction of the GBDT model, L is the loss

function in terms of logs of each odd epoch of the GBDT

model.

Unlike Weight Assessment, Reverse Learning doesn’t pro-

vide AIA scores, however it serves as a tool to manually verify

and optimize the AI algorithm.
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Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on January 26,2023 at 11:13:13 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 2: Reverse Learning

Inputs : Dataset (X) and AI Model (f(x): GBDT)
Execute : Log Model action, Optimize loss function

1 Train and test the AI model (f(x): GBDT) with the given
dataset (X)

2 Log actions (For GBDT: pseudo-residuals, gamma, log of
odds for the labels, probability) of each epoch in a
collection of data frame

3 Minimize loss function, for GBDT

L = −∑N
i=1

(
y log(odds)− log

(
1 + elog(odds)

))

3) Secret Inversion: The Secret Inversion algorithm (Algo-

rithm 3) performs exhaustive comparisons amongst features by

reconstructing them using an Autoencoder. We assume that,

given the reconstruction errors (r) work using an encoder-

decoder mechanism, the AIA scores that are relevant in this

case are goals such SAI and CAI. An Autoencoder learns a

meaningful pattern of the data model by reducing its feature

dimensions. It consists of a feed-forward neural network and

works as a self-supervised model where the encoder-decoder

can be characterized as an hourglass shape compressor and

decompressor. The encoder compresses feature space and

translates it into codes that are decompressed by the decoder.

The decoder reconstructs the feature space from the codes.

However, the reconstructed signal is not always the same as

the input (if its not the same it indicates an alteration in the

data - which could be a SAI/CAI issue). This difference is

represented by the reconstruction errors (r). Let, φ and ψ as

the encoder and decoder respectively, mathematically an AE

can be represented as,

φ : X → F (4)

ψ : F → X (5)

Here, X ∈ X is input for the encoder and F ∈ F represents

the code as the input of the decoder. By defining φ and

ψ, the AE minimizes the reconstruction errors and measure

connection weights across the training phase for all elements

of input X . It can be defined mathematically as,

‖X − (φ ◦ ψ)X‖2 (6)

Where ◦ is a composition operator. The reconstruction error

can be minimized using either Adam Optimizer or Stochastic

Gradient Descent (SGD) algorithm. Both optimizer is capable

of quickly updating the connection weights after a few learning

cycles.

B. Pipeline 2: RFSP

RFSP is a framework that optimizes and generates scores for

AI systems by using user input as basis. It identifies the best

hyper-parameters for a model using a Bayesian approach and

provides scores for AIA goals based on user inputs through

a user interface. RFSP creates statistical assurance measures

that can contrast with what the AI user (i.e. layman or domain

Algorithm 3: Secret Inversion

Inputs : Dataset (X), number of epochs (e), batch size
(b), learning rate (l), compression ratio (cf)

Execute : CAI, SAI scores

1 Load X , e, b, l, c

2 Train the AE with a few sample of the dataset (X)

3 Loop: Apply SGD for updating connection weight and define
φ (4) and ψ (5) to minimize reconstruction error

4 Select a proper threshold θ. By selecting threshold (θ), SAI
and CAI scores = Reconstruction errors (r)

expert) requires and what the system actually provides. RFSP

has three algorithms, presented next.
1) Economic Equilibrium: Economic Equilibrium is an

algorithm that provides the optimal trade-off between all

assurance goals (like equilibriums in economics) using

supply/demand and price elasticity foundations. This

algorithm provides a graphical user interface for adjusting

expected assurance weights up-to 100 points. However, it

does not allow the sum of all goals to exceed a total of 100

points, since we assume that 100 is the maximum amount

of weights combined that can be assigned for all six AIA

goals. For instance, an AI system that is within the context

of a bank may has less need for safety than one flying

a commercial plane. All points must be allocated and the

weights of all six AI goals are transferred to the pipeline

for generating quantifiable scores. Fig. 3 shows the graphical

user interface used for providing user expectations. After

selecting the expected AIA weights, they can be submitted

using the “Submit” button. If the assignment of weights is a

total of 100 then the values are passed to the next algorithm

for other statistical measures.

Fig. 3. User interface for providing inputs for AIA’s equilibrium

2) Extreme Data Segmentation: Extreme Data Segmenta-

tion is an algorithm that splits the whole dataset into three

parts: the training set, the testing set, and the AIA set (in lieu

of the traditional testing-training split). In RFSP, the training

set and testing set are used for AI model development, while

the AIA set is used for generating assurance scores. For the

AIA set, a series of statistical measures are calculated of
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each feature (Table I), also the relations between statistical

measures and AIA goals are presented. Chi-Squared, Kendall

rank, Mutual Information, and ANOVA are measures used

to analyze the significance of the type response (correctness)

against the labels [14]. Additionally, the Kolmogorov–Smirnov

test is used, it is a non-parametric test of the equality of contin-

uous one-dimensional probability distributions [15]. Lastly, we

measure bias and variance as additional measures to indicate

to issues such as FAI in the outcomes. Finally, this algorithm

generates a weighted average assurance score utilizing the in-

put weights from Economic Equilibrium’s interface selections.

The final scores help to compare different states such as bias

and variance of an AI system. In the experiment section, the

design procedure of this algorithm is provided.

TABLE I
STATISTICAL MEASURES AND RELEVANCE TO AIA GOALS

Statistical
Measure

Implication Limitation Related
AIA goals

ANOVA-F Linear Dependency Num to Cate XAI, TAI
Kendall Nonlinear Dependency Num to Cate XAI, TAI
Mutual Info Dependency Agnostic to

data
XAI, TAI

Chi2 Dependency Cate to Cate XAI, TAI
Ks-test Distribution (Distance) Num cols SAI, CAI
Outlier Percentage out of 3 std Num cols SAI, CAI
Bias Prediction accuracy All cols FAI, EAI
Variance Prediction consistency All cols FAI, EAI

3) Model Optimization: Model Optimization applies two

different optimization techniques to allocate the best hyper-

parameter values combination in a given deployment: Grid

Search and Bayesian Optimization [16]. For instance, in a

classification algorithm, Model Optimization compares the F1-

scores reached by the model compared with F1-scores from

the open-source default set of hyper-parameters, using (7).

x� = argmin
x∈X

f(x) (7)

Where f(x) is the objective function to minimize, x� is the

optimized hyper-parameter set that yields the best results of

the objective function. The goal is to investigate an optimized

hyper-parameter set that generates the best scores using a

validation metric set.

IV. EXPERIMENTAL WORK

In this study, we design the experiments with both synthetic

and real-world datasets. For ALSP, we use three datasets:

Water distribution network, Pima Indian Diabetic, and Bank

Loans. The water distribution network dataset is synthetic

data [17] that are generated using an emulator; it represents a

sensor network within a hydraulic system. It also represents

the Supervisory Control and Data Acquisition (SCADA) mon-

itoring system (a commonplace dataset for simulations). We

select this data to emphasize our study for assuring AI models

in critical contexts. The remaining datasets are collected from

Kaggle and University of California Irvine (UCI) Machine

Learning Repository; Pima Indian Diabetic Dataset 1 and

1http://archive.ics.uci.edu/ml

Bank Loan2. The Pima Indians Diabetes dataset come from

the National Institute of Diabetes and Digestive and Kidney

Diseases. The dataset include data from Pima Indian heritage

female patients who are at least 21 years old and classifies

if a patient is diabetic or not based on a specific diagnostic

condition. We also collect Cellular Carrier data from the

public website: Kaggle3, where the data are provided by China

Unicom (a mobile operator), the data contain 25 features and

more than 1 Million instances.

A. Testing ALSP

In this experiment, we test if the algorithm provides accurate

AIA scores for each sample of a given dataset using Weight

Assessment. For Reverse Learning, we test if the actions of

an AI model (GBDT) are logged for each epoch and illustrate

how they provide XAI outcomes. Finally, for Secret Inversion,

we test if the algorithm can detect adversarial inputs from the

SCADA dataset.

1) Weight Assessment- Scoring AI System: For this exper-

iment, we calculate Shapley values that help generate AIA

scores for each sample of the dataset, namely: weights (W )

of each feature contributing towards the final outcome of our

AI model. These weights and the AIA in the diabetic dataset

are multiplied to generate scores for each observation. We

select the Pima Indian Diabetic dataset (number of samples,

N= 768 and number of features m = 8) for this study, where

the label indicates if a patient is diabetic or not. Since there

is a total of eight features in this dataset, accordingly, a

total of new eight AIACs are added that represent feature

expectations. Feature expectations dictate the assurance goals

for the AI system, therefore they must be designed based on

the application requirements, we label binary values for each

AIAC. Additionally, for this experiment we select Extreme

Gradient Boosting Decision Tree (XGBDT) for the AI model

with the hyper-parameters set as follows: learning rate = 0.1,

number of estimators = 1000, maximum depth = 5, minimum

child weight = 1, gamma = 0, subsample = 0.8, colsample by

tree = 0.8, objective = “binary:logistic”, number of thread =

4, scale position weight = 1, and seed = 27.

The deployed AIACs represent TAI expectations. to test

that, we inject bias and compared the scores with the unbiased

dataset (Fig. 4). For injecting bias, we apply Gaussian noise

(mean = 0.3 and standard deviation = 0.1) and present the

difference between the biased and unbiased datasets using

Gaussian distribution. Fig. 5 represents Gaussian score dis-

tribution difference for biased and unbiased datasets. It is

evident from the Fig. 5 that intentional bias injection generates

different AIA scores that helps to explain relevant changes in

the AI system.

The scores are the expected outcome of the AI system;

however, they do not necessarily mean anything until we

deploy the AIACs properly in the dataset. We present that

2https://www.kaggle.com/zaurbegiev/my-dataset
3https://www.kaggle.com/pwang001/user-package-information-of- mobile-

operators
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Fig. 4. Distribution - normal and biased datasets

Fig. 5. Distribution of TAI scores - normal and biased datasets

Weight Assessment generates AIA scores for every observa-

tion of the dataset. Additionally, after altering the dataset, we

get a meaningful score representation of that alteration. It is

evident from Fig. 5 that the score distribution changed when

we inject minimal bias into the dataset, which was captured

by the pipeline. Accordingly, this helps in indicating whether

the outcomes are deemed more trustworthy or not.

2) Reverse Learning- Log and Optimize: In this experi-

ment, we incorporate GBDT as our main AI algorithm. For

GBDT, the primary target is to log each action while mini-

mizing the loss function, therefore we design the AI algorithm

as a white box (didnt use any off-the-shelf library). Reverse

Learning doesn’t provide any AIA score but dictates AIA goals

such as FAI and EAI by visualizing and using exhaustive

explanations (Explanations mean checking all the calculations

and comparing them with the logs). This algorithm returns

statistics on each epoch.

We select the Bank Loan dataset (number of samples, N=

TABLE II
LOGS OF GBDT ALGORITHM LEARNING CYCLE (REVERSE LEARNING)

Row p(t) l(t) r γ l(t+1) p(t+1)
1 0.74 1.06 -0.74 0.36 1.09 0.75
2 0.79 1.32 0.21 0.31 1.35 0.79
3 0.74 1.06 0.25 -1.58 0.90 0.71
4 0.71 0.91 0.28 0.63 0.97 0.72
5 0.74 1.04 0.26 0.63 1.10 0.75
6 0.74 1.06 0.25 -1.58 0.90 0.71
7 0.26 -1.02 -0.26 -0.84 -1.11 0.24
8 0.74 1.04 0.26 -1.58 0.88 0.70
9 0.64 0.59 -0.64 0.63 0.66 0.65
10 0.78 1.32 0.21 -1.58 1.16 0.76
11 0.74 1.04 0.26 -1.58 0.88 0.70
12 0.65 0.65 -0.65 -1.58 0.49 0.62
13 0.78 1.30 0.21 0.01 1.30 0.78
14 0.71 0.91 0.28 0.63 0.97 0.72
15 0.26 -1.02 -0.26 -0.84 -1.11 0.24

614 and number of features m = 12) where the label indicates

if a customer is likely to be accepted or not for a loan

application. The features of this dataset are Gender, Married

Dependents, Education, Self Employed, Applicant Income,

Co-applicant Income, Loan Amount, Loan Amount Term,

Credit History, and Property Area. The GBDT model predicts

the status of an applicant. Since our focus is minimizing loss

function, we use default hyper-parameters including learning

rate l = 0.1, max depth of the decision tree d = 4, and max leaf

nodes nl = 7. For the training stage, we perform 50 epochs for

training the GBDT model. From Fig. 6, it’s evident that the

loss minimizes during the 13th epoch (Fig. 7); the idea here

is that all epochs post 13 are obsolete, because the accuracy

decreases afterwards - something that wouldn’t be traceable or

explainable otherwise except by using an overly simple line

chart. Table II presents the first 15 observations within the

13th epoch where the rest of the observations (as well as all

code and data used in this study) can be found in the MAA

GitHub repository 4.
3) Secret Inversion- Detection of Adversarial Data Points:

For the Secret Inversion algorithm, we design the experiment

to present the successful detection of adversarial inputs in an

AI system. Final outcomes are scores for AIA goals including

SAI and CAI (Table III). For AE, detection performance varies

with compression factor (cf ) and the number of hidden layers

(nl). Since we use labeled data, we select the best hyper-

parameter (approximately we build 20 AE models) set for

maximum accuracy. The outcome is the status of the network,

binary classification, which represents if the overall system

is under attack or not. Additionally, instead of sigmoidal
function we select rectified linear units due to their higher

training performance in deep neural networks [18]. Here we

use SCADA dataset to test secret inversion algorithm. Two-

thirds of the training dataset is used for model development

and the other one-third is used for validation purposes. During

validation, we are able to perform early stopping for preventing

4https://github.com/AI-VTRC/MAA
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model overfitting scenarios. We use Adam algorithm [19]

for our AE model where we find the best trade-off between

execution speed and convergence (number of training epochs

e = 200 and mini-batch size b = 300 samples). The mini-batch

size is important because it updates the connection weights by

propagating into the AE’s network and computing the gradient.

The average reconstruction errors, which are the mean squared

errors between input and reconstructed patterns, are optimized

using the SDG technique. Fig. 8 represents two different test

datasets where scaled reconstruction errors are plotted on the

1st test dataset. By properly selecting threshold (θ), normal

and adversarial samples for all 43 features have separated.

For this experiment, we select the range between 99% and

100% percentile of the error distribution as adversarial inputs

where the rest of the ranges are considered normal samples.

The detection accuracy of test datasets 1 and 2 are 94.66%

and 91.28% respectively. Table III presents the performance

evaluation of the AE model.

Fig. 6. Loss function vs learning epochs

Fig. 7. Decision tree 13 - minimum loss epoch

B. Testing RFSP
In the experiment for RFSP, we test if the pipeline generates

lower AIA scores due to bias insertion, and we optimize the

TABLE III
INTRUSION INPUT DETECTION PERFORMANCE USING AE

Test Dataset Accuracy F1 Score Precision Recall
01 0.9466 0.7194 0.9438 0.5813
02 0.9128 0.7182 0.9707 0.5700

TABLE IV
HYPER-PARAMETERS OF LIGHTGBM ON TELCO DATASET

Hyper-parameters Default Bayesian
Optimization

Grid
Search

Learning rate 0.1 0.05 0.07
Max depth -1(unlimited) 14 9

Bagging fraction 1 0.8 1
Number of trees 100 396 100
Number of leaves 31 25 12

TABLE V
TAI F1 SCORES USING DIFFERENT MODELS

AI-Model Telco SCADA
Default 0.767 0.802

Grid Search 0.746 0.794
Bayesian Optimization 0.772 0.842

TABLE VI
TELCO FEATURES - AIA GOALS MAPPING

Features XAI TAI SAI CAI FAI EAI
service type 1 1 0 0 0 0

is mix service 1 1 0 0 0 0
month traffic 1 1 0 1 0 0

many over bill 1 1 0 0 0 0
contract type 1 1 0 0 0 0
contract time 1 1 0 0 0 0

pay num 1 1 0 1 0 0
last month traffic 1 1 0 0 0 0

service1 caller time 1 1 0 0 0 0
service2 caller time 1 1 0 0 0 0

gender 0 0 0 1 1 1
age 0 0 0 1 1 1

complaint level 0 0 0 1 1 0
former complaint num 0 0 0 1 1 0
former complaint fee 0 0 0 0 1 0

TABLE VII
CAI SCORES FOR DIFFERENT INTENTIONAL BIASES

Bias Injection
(SCADA)

CAI Score
(SCADA)

Bias Injection
(Telco)

CAI Score
(Telco)

3.33% 54.4 0.45% 16.7
2.67% 52.7 0.36% 16.8

2% 53.4 0.27% 17.0
1.34% 57.3 0.18% 17.2
0.67% 63.6 0.09% 17.7

0% 71.5 0% 17.8
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TABLE VIII
TELCO FEATURES - STATISTICAL MEASURES AND AIA SCORES

Features Causality ANOVA-F Mutual info Chi2 Kendall Outlier Bias Variance Distribution XAI TAI SAI CAI FAI EAI
service type -2.31 0 1.12 0.84 0 0 0.79 -0.2 0 0.44 0.44 0 0 0 0

complaint level 0.66 0 -1.15 -0.62 0 0 1.7 -0.2 0 0 0 0 0.51 0.54 0

contract type 0.05 0 0.43 2.33 0 0 0.48 -0.2 0 0.8 0.8 0 0 0 0

gender -0.36 0 -1.08 -0.68 0 0 1.01 -0.2 0 0 0 0 0.51 0.67 0.67

net service -0.08 0 -1.1 -0.68 0 0 1.88 -0.2 0 0.27 0.27 0 0 0 0

age 0.23 -0.69 -0.57 0 -1.42 -1.26 -0.64 -0.2 -1.79 0 0 0 1 0.98 0.98

contract time 0.32 1.92 0.56 0 -2.27 -2.02 -0.08 -0.2 0.81 0.54 0.54 0 0 0 0

complaint fee 0.29 -1.05 -1.17 0 -0.5 -2.03 -0.59 4.9 1.94 0 0 0 0 0 0

complaint num 0.1 -1 -1.16 0 0 1.12 0.67 -0.2 2.07 0 0 0 0 0.73 0

last month traffic 0.29 -0.32 0.62 0 -1.17 1.33 -0.71 -0.2 0.61 0.42 0.42 0 0 0 0

local caller time 0.29 -0.72 -0.75 0 0.43 0.38 -0.72 -0.2 0.2 0.4 0.4 0 0 0 0

month traffic 0.29 -0.59 0.57 0 -0.57 -0.13 -0.72 -0.2 0.42 0.45 0.45 0 0.47 0 0

online time 0.3 0.84 0.55 0 -1.11 0.79 -0.68 -0.2 -0.3 0.55 0.55 0 0.43 0 0

service1 caller time 0.28 -1.03 -0.66 0 -0.18 0.7 -0.71 -0.2 0.44 0.3 0.3 0 0 0 0

service2 caller time 0.3 0.16 0.68 0 0.63 -0.03 -0.72 -0.2 -0.13 0.69 0.69 0 0 0 0

Fig. 8. Intrusion detection using r on test datasets 1 and 2

Fig. 9. Attack localization (XAI) using SAI scores

hyper-parameters to create higher assurance scores.
1) Bayesian Hyper-parameters Optimization: We apply

Grid Search and Bayesian Optimization (Tree Parzen Estima-

tor) for fine-tuning hyper-parameters of a LightGBM model

using both the SCADA and the Telco datasets. The hyper-

parameters are listed in Table IV. Afterwards, we compare

the performance (F1-score) of two models to the default set

of hyper-parameters:

F1 = 2 · Precision ·Recall
Precision+Recall

(8)

It is evident from the Table V, Bayesian Optimization

accomplishes a higher performance level than the default set of

hyper-parameters; and Grid Search arrived at a poorer perfor-

mance level. Accordingly, in this case, Bayesian Optimization

has higher efficiency in finding the best hyper-parameters

using a Gaussian process other than an exhaustive Grid Search,

which is expected. This higher efficiency allows Bayesian

Optimization’s support of a broader search-space of hyper-

parameters, and avoids a local maximum, a notion that is more

possible with Grid Search. Accordingly, we generate the TAI

scores based on the difference of F1-scores reached by default

hyper-parameters and the “Bayesian” hyper-parameters. In this

case, the TAI score for Telco is (−0.005+1 = 0.995), the TAI

score for SCADA is (−0.04 + 1 = 0.96). Both numbers are

indicators of the level of trust in the outcomes of the systems,

a notion that could be compared with the initial user inputs

and their preferences.
In this experiment, we inject different levels of outlier data

in order to change the distribution of the original SCADA and

Telco datasets, followed by running RFSP to observe whether

the pipeline could reflect the injection of outlier data. For the

dataset with varying levels of outlier injections, we execute

following workflow:

1) For Economic Equilibrium, we set the user score of 6

AIA goals evenly specifically 16.6 for each AIA goal.

2) We assign features to different AIA goals as shown in

Table VI. The rest of the features (along with all project

data and code) can be found in the GitHub repository 5.

5https://github.com/AI-VTRC/MAA
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3) From Table VII it is evident that, with the level of outlier

injection increasing, CAI score is decreased. However,

after reaching a threshold, increasing the outlier in-

jection, CAI might increase as well. This is because

addition of more outliers leads to normalizing the data

distribution.

4) Nine statistical measures are calculated of each feature

as shown in Table VIII, the result is normalized using

z-scores.

5) The AIA scores of each feature are calculated using the

results of step 2 and step 3 along with the developed

mechanism for converting statistical measures to the

scores of 6 AIA goals; value=0 means the feature has

no relation with definite AIA goals. Results are shown

in Table VIII.

6) The average score is calculated for the 6 AIA goals,

as follows: XAI:0.43, TAI:0.43, SAI:0, CAI:0.17,

FAI:0.12, and EAI:0.05 based on different assigned

features and their independent AIA goals scores. A

weighted average of overall AIA goals could also be

calculated using the results of step 1 (Weights) and step

4 (Statistical Measures), which is 0.195 (on a scale of 0

to 1).

V. EXPERIMENTAL USE CASES

Earlier, we discuss how ALSP and RFSP can provide

pointers to achieving quantifiable assurance goals. However,

without actual use cases, the pipelines don’t illustrate their

real-world purposes. In this section, we provide one use case

for ALSP using SCADA and one for RFSP using gender

bias in Telco plans selection. SCADA data represent a critical

infrastructure, for that we explore AIA goals XAI, CAI, and

SAI. Blue lines in Fig. 8 represent reconstruction errors (r) and

SAI scores for the water distribution system. We use SGD

to minimize r, where the errors (r) also provide localized

information of adversarial inputs in case the system is under

attack. The attack localization explains how and why an attack

happens in the water distribution network. Fig. 9 illustrates

that the attack appeared during 6th − 11th December, 2016

on tank 4 (LT4) due to intentional pressure change on valve

7 (FPU7) where the sensor reading (SPU7) deviated as well.

The proposed pipeline is able to detect such adversarial inputs

during that time which is explained by r leading to SAI

pointers. For the second use case, we use RFSP and compared

FAI scores between the dataset with and without gender [20].

The pipeline generates a higher FAI score of 0.12 for the

dataset without gender data (shown in Table VII).

VI. SUMMARY AND CONCLUSION

In this manuscript, we provide two MAA pipelines for

achieving quantifiable assurance goals including XAI, FAI,

TAI, EAI, CAI, and SAI. Although the algorithms are model-

agnostic in nature, the use cases are model-specific (SCADA

and Telco). ALSP is a model-driven approach that generates

quantifiable assurance scores. It leverages game theory, AE,

and logging to provide AIA goals; RFSP is a user-driven

approach, where user input their expected AIA weights as

a form of an equilibrium, the desired optimum set points

dictate the final outcomes of assurance. Many works in AI

systems management exist [21], but due to the unavailability

of benchmark assurance standards, we are unable to com-

pare the results with existing algorithms; nonetheless, in this

manuscript, we present multiple empirical outcomes that are

deemed successful for that goal. The two use cases presented

are for: (1) a critical infrastructure: SCADA system, where we

explain attack localization as a form of explainability using

reconstruction errors from the AE and showed that Secret

Inversion algorithm is capable of detecting adversarial inputs;

and for a (2) Telco dataset, we test it by injecting intentional

bias and testing if the pipeline detects it and reflects that

in AIA scores. The algorithms had different success rates,

albeit they all improved on the assurance of the AI systems

at hand. Furthermore, potential areas of application include

but are not limited to water distribution system, smart grids,

and telecommunication systems. As part of future work, we

plan to test other AI models using our framework and aim

to create benchmarks for water treatment plants usage of AI,

with the long term goal of securing complex and critical water

distribution networks across the country.
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