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Abstract—State of the art Artificial Intelligence Assurance
(AIA) methods validate AI systems based on predefined goals

and standards, are applied within a given domain, and are
designed for a specific AI algorithm. Existing works do not
provide information on assuring subjective Al goals such as fair-
ness and trustworthiness. Other assurance goals are frequently
required in an intelligent deployment, including explainability,
safety, and security. Accordingly, issues such as value loading,
generalization, context, and scalability arise; however, achieving
multiple assurance goals without major trade-offs is generally
deemed an unattainable task. In this manuscript, we present
two AIA pipelines that are model-agnostic, independent of the
domain (such as: healthcare, energy, banking), and provide scores
for AIA goals including explainability, safety, and security. The
two pipelines: Adversarial Logging Scoring Pipeline (ALSP) and
Requirements Feedback Scoring Pipeline (RFSP) are scalable
and tested with multiple use cases, such as a water distribution
network and a telecommunications network, to illustrate their
benefits. ALSP optimizes models using a game theory approach
and it also logs and scores the actions of an AI model to detect
adversarial inputs, and assures the datasets used for training.
REFSP identifies the best hyper-parameters using a Bayesian
approach and provides assurance scores for subjective goals
such as ethical AI using user inputs and statistical assurance
measures. Each pipeline has three algorithms that enforce the
final assurance scores and other outcomes. Unlike ALSP (which
is a parallel process), RFSP is user-driven and its actions are
sequential. Data are collected for experimentation; the results of
both pipelines are presented and contrasted.
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1. INTRODUCTION

In a recent review paper on AIA [1], assurance is defined as:
“a process that is applied at all stages of the Al engineering
lifecycle ensuring that any intelligent system is producing
outcomes that are valid, verified, data-driven, trustworthy,
and explainable to a layman, ethical in the context of its
deployment, unbiased in its learning, and fair to its users”.
AIA aims to define empirical ways of evaluating subjective
measures that are commonly domain-dependent such as fair-
ness and explainability. For instance, an Al model that is
used for recruiting might contain some bias towards certain
candidates, but that bias is very difficult to quantify. Being
able to measure fairness would help assure that the model is
fit for use within organizational and legal constraints. Another
example where AIA would be critical is for example, in
hospitals. Trusting an Al model in making subtle decisions
that might lead to health-related consequences is a process
that requires high trust in the model. Through AIA models
presented in this paper, one can measure the trustworthiness of
an Al model. However, representing such subjective measures
in a quantified manner is unquestionably complicated. AIA
goals can be achieved by either a model-specific or model-
agnostic approach. A model-specific approach manages a
domain-specific Al algorithm such as assurance of fairness-
aware outlier detection [2], whereas a model-agnostic ap-
proach is a generic and universal approach that facilitates
verifying Al algorithms irrespective of the domain of study.
In the algorithms presented in this manuscript, we can be able
to provide unique quantifiable scores for six AIA goals [1]
including Explainable Al (XAI), Trustworthy Al (TAI), Fair
Al (FAI), Ethical AI (EAI), Secure Al (CAI), and Safe Al
(SAI). The six goals are, however, quasi-mutually exclusive,
trade-offs are often enforced when choosing amongst them.
In literature, it has been highly arguable whether to make
an Al model highly explainable and less safe for instance.
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The trade-off between goals depends on the requirements of
each specific application. It is a subjective decision whether to
compromise a model’s safety to achieve other assurance goals
(such as safety). Regardless of the challenges, considering
few trade-offs, we provide tools to Al engineers to manage
the six goals of assurance in this manuscript. Accordingly,
we present Model Agnostic Assurance (MAA) for domain-
independent applications through two pipelines: ALSP and
RFSP (Fig. 1 and Fig. 2). ALPS includes three algorithms:
Weight Assessment, Reverse Learning, and Secret Inversion.
RFSP is a user-driven framework where users provide their
expected AIA weights as inputs to dictate outcome of the
system. The final outcome of the RFSP pipeline includes
quantifiable AIA scores; RFSP involves three working algo-
rithms: Economic Equilibrium, Extreme Data Segmentation,
and Model Optimization. Unlike Weight Assessment, Reverse
Learning, and Secret Inversion, these algorithms are executed
sequentially yielding scores. The major difference between
these two pipelines is that one is user-driven (RFSP) i.e.
requires user input, whereas the other is not.
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The rest of the paper is structured as follows: The next
section presented related studies in AIA. Afterwards, we
present both pipelines, along with the design process and
reasoning for each algorithm. Experiments are presented in
section 4, section 5 presents the results as well as example

10

use cases. Lastly, section 6 presents conclusions and potential
future works related to the MAA pipelines.

II. RELATED WORK

A model-agnostic approach explains a model in a post-
hoc fashion (hindsight) by accepting that the model is as a
black-box; with the inner workings of the model hidden from
sight, and then attempting to approximate its behavior [3].
One such example of a model-agnostic approach is Local
Interpretable Model-agnostic Explanations (LIME) [4]. This
approach attempts to provide local explanations in the form of
linear approximations of the model, accurate in small regions
of the space. It is also practical when explaining, for example,
why a particular individual has been denied a mortgage
application. Other post-hoc model-agnostic algorithms provide
explanations in ranking features, even when an underlying
model is not linear. This includes InterpretML [5], SHapley
Additive exPlanations (SHAP) [6], and Partial Dependence
Plots (PDP) [7]. Each of these algorithms takes a distinct ap-
proach to the process of determining the important contributors
to an ML model. Albeit MAA is rare, there is no scarcity of
model-specific assurance, we present a brief review by AIA
goal, with the most related study found in the literature for
each.

EAL: In a study conducted by [8] on EAI the researchers em-
ploy a combination of symbolic and logic-based approaches, a
data-driven approach, as well as consideration of a rule-based
and data-driven hybrid approach. This last approach is one
they propose with the question of how we determine when
preference breeches ethics as a breach in ethics can make the
model not viable to use. We employ a system that weighs each
assurance goal in each model to attempt to combat this issue.
FAI: Another work by [9] investigates how biased and un-
biased data can both result in Al models that treat certain
inputs unfairly when compared to others. They constructed a
framework that helps to prevent discrimination between inputs
in Al models. Our research looks not just at how we can assure
outputs, but also inputs (the dataset) to aid in preventing such
bias.

SAI and CALI: In work presented in [10], the researchers inves-
tigated SAI, measuring it using states and the reachability of
what is defined to be a secure state. They use this algorithm to
obtain a quantitative score for security. While these researchers
used the reachability of the output of the Al model, we use
various techniques such as an auto-encoder to detect outliers
in the data and obtain reconstruction error to use to measure
a security score.

TAIL In a study conducted by [11], the researchers constructed
SUNNY, “a new algorithm for trust inference in social net-
works using probabilistic confidence models”. This algorithm
outperformed another trustworthiness measure relevant at the
time in their testing. Our models differ in that they employ
the measurement of feature contribution with game theory
and Shapley [12] and causal values to obtain a score for
trustworthiness.

XAI In a study conducted by [13], the researchers employ
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various formulas involving cognitive chunks to determine a
quantitative score for XAl. They mention that “explainable de-
cisions from commercial Al systems are going to be a standard
imposed by regulators to eliminate bias and discrimination,
and ensure trust”. XAI is undoubtedly the most studied [1]
out of AIA goals. The next section presents both pipelines
and how they address the six goals.

III. AI ASSURANCE PIPELINES
A. Pipeline 1: ALSP

ALSP is a pipeline that validates an Al system for generat-
ing quantifiable AIA scores using a combination of both data-
driven and AI model-driven approaches. More specifically,
ALSP optimizes models using a game theory approach and
it also logs and scores the actions of an Al model to detect
adversarial inputs, and assures the datasets used for training.
It is quite difficult to assure all six goals for an Al system
using a single algorithm, therefore we propose three separate
algorithms in ALSP pipeline including Weight Assessment,
Reverse Learning, and Secret Inversion that, are capable of
achieving all six goals combined for different contextual
applications.

1) Weight Assessment: The Weight Assessment is an algo-
rithm that applies Game Theory to the Al model of particular
interest for calculating the Shapley values [12] at every epoch
of learning; this algorithm aims to achieve assurance goals
including XAI, FAI and TAI as a form of quantifiable AIA
scores by assigning scores per data point and not as an
aggregate score. It is important to note that, we assume an Al
model for scoring the given dataset. For Weight Assessment
study, we apply XGBDT as our baseline model. Shapley values
are outcomes of a game that assumes cooperation among
players and achieves overall gain from alliances. These values
represent each player’s bargaining power and the payoff that
is reasonable to expect in a given context. The alliance in
the game can be represented by a characteristic function. This
characteristic function (v) can be mapped as v : 2V — R for
a set of N; therefore, each player 7 gets a fair distribution,
assuming the game is cooperative and can be represented
mathematically as (1). Considering a fair cooperation game,
a player can expect v(S U {i}) — v(S) by averaging the set
of possible different permutations in which the alliance was
formed.

n—1Y\" .
("5') eeum-us o

n
SCN\{i}

A unique set of values that indicates the importance of
each feature in a given dataset is assigned. Along with the
game theory-driven weights, these values also represent a
heuristic expectation from an assurance perspective that is
provided by domain experts. Similar to how labels are used as
independent variables in a training-testing learning approach,
here, we add assurance labels, namely: AIA Columns (AIAC).
However, AIAC values, as assigned by the domain expert,

are not directly fed to the Al model as inputs. For instance,
some features in a dataset can be relevant to specific assurance
goals such as fairness (consider data on gender or on race),
accordingly, these features are labeled as FAI features for
instance. The use cases provided in this manuscript provide
further information on the usability of these labels.

Algorithm 1: Weight Assessment
Inputs : Dataset (X) and AI Model (f(z): XGBDT)
Execute  : AIA scores (XAI, FAI, TAI, EAI)
1 Train and test the Al model (f(x):XGBDT) with the given
dataset (X)
2 Apply Game Theory to evaluate the expected values for each
feature ¢;(v) from the trained AI model using (1)
3 Measure the AIA scores = ;(v) * (ATAC})

Algorithm 1 represents steps of the Weight Assessment
technique. To generate AIA scores, we matrix-multiply Shap-
ley value weights ;(v) and AIACs (AIAC;). This matrix
multiplication generates the AIA score for each row/column.
Experimental work provides further information on that.

2) Reverse Learning: Reverse Learning is a log-based algo-
rithm (Algorithm 2) that can trace back assurance issues using
a table of recorded learning actions (i.e. reverse engineering).
Reverse Learning accomplishes AIA goals such as XAI. XAl
can be enforced if learning details and evolution is available
through a log of actions. The log records the learning process
and indicates to points in time during learning where the
algorithm’s learning accuracy -for instance- has decreased
or seized to improve. That is illustrated in the experimental
section. While designing the AI model, we use the Gradi-
ent Boosting Decision Tree (GBDT) model as an example.
Though we select GBDT as our Al model of choice, for
experimentation purposes, other Al algorithms can be applied
as well. While developing the Al algorithm, the primary focus
was to log the actions of each epoch of learning. The outcome
of this algorithm is two-fold: the optimized number of epochs
to minimizing the loss function and a logged action of each
epoch. For GBDT, values including pseudo-residuals 7;,,,
gamma “;,,,, log of odds for the labels ,,(x), probability p,,;
are saved during each epoch. Equation 2 presents a prediction
of GBDT model after each epoch. Equation 3 presents the
logarithmic loss function of GBDT model.

Foni = {0 s Pt < 05,1 = g >= 0.5 @)

N
L=-— Z (y log(odds) — log (1 + elog("dds))) 3)
i=1
Here, f,; is the prediction of the GBDT model, L is the loss
function in terms of logs of each odd epoch of the GBDT
model.
Unlike Weight Assessment, Reverse Learning doesn’t pro-
vide AIA scores, however it serves as a tool to manually verify
and optimize the Al algorithm.
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Algorithm 2: Reverse Learning

Algorithm 3: Secret Inversion

Inputs : Dataset (X) and Al Model (f(z): GBDT)
Execute  : Log Model action, Optimize loss function
1 Train and test the Al model (f(z): GBDT) with the given
dataset (X)
2 Log actions (For GBDT: pseudo-residuals, gamma, log of
odds for the labels, probability) of each epoch in a
collection of data frame

3 Minimize loss function, for GBDT
L=-%V, (y log(odds) — log (1 n e1°g<0dd8>))

3) Secret Inversion: The Secret Inversion algorithm (Algo-
rithm 3) performs exhaustive comparisons amongst features by
reconstructing them using an Autoencoder. We assume that,
given the reconstruction errors (r) work using an encoder-
decoder mechanism, the AIA scores that are relevant in this
case are goals such SAI and CAIL. An Autoencoder learns a
meaningful pattern of the data model by reducing its feature
dimensions. It consists of a feed-forward neural network and
works as a self-supervised model where the encoder-decoder
can be characterized as an hourglass shape compressor and
decompressor. The encoder compresses feature space and
translates it into codes that are decompressed by the decoder.
The decoder reconstructs the feature space from the codes.
However, the reconstructed signal is not always the same as
the input (if its not the same it indicates an alteration in the
data - which could be a SAI/CAI issue). This difference is
represented by the reconstruction errors (r). Let, ¢ and v as
the encoder and decoder respectively, mathematically an AE
can be represented as,

“
(3

Here, X € X is input for the encoder and F' € F represents
the code as the input of the decoder. By defining ¢ and
1, the AE minimizes the reconstruction errors and measure
connection weights across the training phase for all elements
of input X. It can be defined mathematically as,

[ X — (¢poy)X|? (6)

Where o is a composition operator. The reconstruction error
can be minimized using either Adam Optimizer or Stochastic
Gradient Descent (SGD) algorithm. Both optimizer is capable
of quickly updating the connection weights after a few learning
cycles.

¢o: X - F
Yv:F =X

B. Pipeline 2: RFSP

RFSP is a framework that optimizes and generates scores for
Al systems by using user input as basis. It identifies the best
hyper-parameters for a model using a Bayesian approach and
provides scores for AIA goals based on user inputs through
a user interface. RFSP creates statistical assurance measures
that can contrast with what the Al user (i.e. layman or domain

Inputs : Dataset (X), number of epochs (e), batch size
(b), learning rate (1), compression ratio (cf)
Execute  : CAI, SAI scores

1 Load X, e, b, 1, c
2 Train the AE with a few sample of the dataset (X)

3 Loop: Apply SGD for updating connection weight and define
¢ (4) and 1 (5) to minimize reconstruction error

4 Select a proper threshold 6. By selecting threshold (0), SAI
and CAI scores = Reconstruction errors (r)

expert) requires and what the system actually provides. RFSP
has three algorithms, presented next.

1) Economic Equilibrium: Economic Equilibrium is an
algorithm that provides the optimal trade-off between all
assurance goals (like equilibriums in economics) using
supply/demand and price elasticity foundations. This
algorithm provides a graphical user interface for adjusting
expected assurance weights up-to 100 points. However, it
does not allow the sum of all goals to exceed a total of 100
points, since we assume that 100 is the maximum amount
of weights combined that can be assigned for all six AIA
goals. For instance, an Al system that is within the context
of a bank may has less need for safety than one flying
a commercial plane. All points must be allocated and the
weights of all six Al goals are transferred to the pipeline
for generating quantifiable scores. Fig. 3 shows the graphical
user interface used for providing user expectations. After
selecting the expected AIA weights, they can be submitted
using the “Submit” button. If the assignment of weights is a
total of 100 then the values are passed to the next algorithm
for other statistical measures.

User Input: Al Weights

Ethical Al (EAI): 10
Explainable Al (XAl). 15
Fair Al (FAI): 15
»————— Trustworthy Al (TAI): 50

— Safe Al (SAl): 5

Secure Al (CAl): 5
Evenly Spiit Remaining Points: 0

Fig. 3. User interface for providing inputs for AIA’s equilibrium

2) Extreme Data Segmentation: Extreme Data Segmenta-
tion is an algorithm that splits the whole dataset into three
parts: the training set, the testing set, and the AIA set (in lieu
of the traditional testing-training split). In RFSP, the training
set and testing set are used for Al model development, while
the AIA set is used for generating assurance scores. For the
AIA set, a series of statistical measures are calculated of
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each feature (Table I), also the relations between statistical
measures and AIA goals are presented. Chi-Squared, Kendall
rank, Mutual Information, and ANOVA are measures used
to analyze the significance of the type response (correctness)
against the labels [14]. Additionally, the Kolmogorov—Smirnov
test is used, it is a non-parametric test of the equality of contin-
uous one-dimensional probability distributions [15]. Lastly, we
measure bias and variance as additional measures to indicate
to issues such as FAI in the outcomes. Finally, this algorithm
generates a weighted average assurance score utilizing the in-
put weights from Economic Equilibrium’s interface selections.
The final scores help to compare different states such as bias
and variance of an Al system. In the experiment section, the
design procedure of this algorithm is provided.

TABLE I
STATISTICAL MEASURES AND RELEVANCE TO AIA GOALS
Statistical Implication Limitation Related
Measure AIA goals
ANOVA-F Linear Dependency Num to Cate | XAI, TAI
Kendall Nonlinear Dependency Num to Cate | XAI, TAI
Mutual Info | Dependency Agnostic  to | XAI, TAI
data

Chi2 Dependency Cate to Cate | XAI, TAI
Ks-test Distribution (Distance) Num cols SAI CAI
Outlier Percentage out of 3 std Num cols SAI, CAI
Bias Prediction accuracy All cols FAI, EAI
Variance Prediction consistency All cols FAI, EAI

3) Model Optimization: Model Optimization applies two
different optimization techniques to allocate the best hyper-
parameter values combination in a given deployment: Grid
Search and Bayesian Optimization [16]. For instance, in a
classification algorithm, Model Optimization compares the F1-
scores reached by the model compared with Fl-scores from
the open-source default set of hyper-parameters, using (7).

)

Where f(z) is the objective function to minimize, =* is the
optimized hyper-parameter set that yields the best results of
the objective function. The goal is to investigate an optimized
hyper-parameter set that generates the best scores using a
validation metric set.

z* = argmin f(zx)

IV. EXPERIMENTAL WORK

In this study, we design the experiments with both synthetic
and real-world datasets. For ALSP, we use three datasets:
Water distribution network, Pima Indian Diabetic, and Bank
Loans. The water distribution network dataset is synthetic
data [17] that are generated using an emulator; it represents a
sensor network within a hydraulic system. It also represents
the Supervisory Control and Data Acquisition (SCADA) mon-
itoring system (a commonplace dataset for simulations). We
select this data to emphasize our study for assuring Al models
in critical contexts. The remaining datasets are collected from
Kaggle and University of California Irvine (UCI) Machine
Learning Repository; Pima Indian Diabetic Dataset ' and

Uhttp://archive.ics.uci.edu/ml

Bank Loan?. The Pima Indians Diabetes dataset come from
the National Institute of Diabetes and Digestive and Kidney
Diseases. The dataset include data from Pima Indian heritage
female patients who are at least 21 years old and classifies
if a patient is diabetic or not based on a specific diagnostic
condition. We also collect Cellular Carrier data from the
public website: Kaggle®, where the data are provided by China
Unicom (a mobile operator), the data contain 25 features and
more than 1 Million instances.

A. Testing ALSP

In this experiment, we test if the algorithm provides accurate
AIA scores for each sample of a given dataset using Weight
Assessment. For Reverse Learning, we test if the actions of
an Al model (GBDT) are logged for each epoch and illustrate
how they provide XAI outcomes. Finally, for Secret Inversion,
we test if the algorithm can detect adversarial inputs from the
SCADA dataset.

1) Weight Assessment- Scoring Al System: For this exper-
iment, we calculate Shapley values that help generate AIA
scores for each sample of the dataset, namely: weights (W)
of each feature contributing towards the final outcome of our
Al model. These weights and the AIA in the diabetic dataset
are multiplied to generate scores for each observation. We
select the Pima Indian Diabetic dataset (number of samples,
N= 768 and number of features m = 8) for this study, where
the label indicates if a patient is diabetic or not. Since there
is a total of eight features in this dataset, accordingly, a
total of new eight AIACs are added that represent feature
expectations. Feature expectations dictate the assurance goals
for the AI system, therefore they must be designed based on
the application requirements, we label binary values for each
AIAC. Additionally, for this experiment we select Extreme
Gradient Boosting Decision Tree (XGBDT) for the Al model
with the hyper-parameters set as follows: learning rate = 0.1,
number of estimators = 1000, maximum depth = 5, minimum
child weight = 1, gamma = 0, subsample = 0.8, colsample by
tree = 0.8, objective = “binary:logistic”, number of thread =
4, scale position weight = 1, and seed = 27.

The deployed AIACs represent TAI expectations. to test
that, we inject bias and compared the scores with the unbiased
dataset (Fig. 4). For injecting bias, we apply Gaussian noise
(mean = 0.3 and standard deviation = 0.1) and present the
difference between the biased and unbiased datasets using
Gaussian distribution. Fig. 5 represents Gaussian score dis-
tribution difference for biased and unbiased datasets. It is
evident from the Fig. 5 that intentional bias injection generates
different AIA scores that helps to explain relevant changes in
the Al system.

The scores are the expected outcome of the Al system;
however, they do not necessarily mean anything until we
deploy the AIACs properly in the dataset. We present that

2https://www.kaggle.com/zaurbegiev/my-dataset
3https://www.kaggle.com/pwang001/user-package-information-of- mobile-
operators
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Weight Assessment generates AIA scores for every observa-
tion of the dataset. Additionally, after altering the dataset, we
get a meaningful score representation of that alteration. It is
evident from Fig. 5 that the score distribution changed when
we inject minimal bias into the dataset, which was captured
by the pipeline. Accordingly, this helps in indicating whether
the outcomes are deemed more trustworthy or not.

2) Reverse Learning- Log and Optimize: In this experi-
ment, we incorporate GBDT as our main Al algorithm. For
GBDT, the primary target is to log each action while mini-
mizing the loss function, therefore we design the Al algorithm
as a white box (didnt use any off-the-shelf library). Reverse
Learning doesn’t provide any AIA score but dictates AIA goals
such as FAI and EAI by visualizing and using exhaustive
explanations (Explanations mean checking all the calculations
and comparing them with the logs). This algorithm returns
statistics on each epoch.

We select the Bank Loan dataset (number of samples, N=

TABLE 11
LOGS OF GBDT ALGORITHM LEARNING CYCLE (REVERSE LEARNING)

Row [ p(t) (1) r ~ I(t+1) | p(t+1)
1 0.74 1.06 -0.74 0.36 1.09 0.75
2 0.79 1.32 0.21 0.31 1.35 0.79
3 0.74 1.06 0.25 -1.58 0.90 0.71
4 0.71 0.91 0.28 0.63 0.97 0.72
5 0.74 1.04 0.26 0.63 1.10 0.75
6 0.74 1.06 0.25 -1.58 0.90 0.71
7 0.26 -1.02 -0.26 -0.84 -1.11 0.24
8 0.74 1.04 0.26 -1.58 0.88 0.70
9 0.64 0.59 -0.64 0.63 0.66 0.65
10 0.78 1.32 0.21 -1.58 1.16 0.76
11 0.74 1.04 0.26 -1.58 0.88 0.70
12 0.65 0.65 -0.65 -1.58 0.49 0.62
13 0.78 1.30 0.21 0.01 1.30 0.78
14 0.71 0.91 0.28 0.63 0.97 0.72
15 0.26 -1.02 -0.26 -0.84 -1.11 0.24

614 and number of features m = 12) where the label indicates
if a customer is likely to be accepted or not for a loan
application. The features of this dataset are Gender, Married
Dependents, Education, Self Employed, Applicant Income,
Co-applicant Income, Loan Amount, Loan Amount Term,
Credit History, and Property Area. The GBDT model predicts
the status of an applicant. Since our focus is minimizing loss
function, we use default hyper-parameters including learning
rate [ = 0.1, max depth of the decision tree d = 4, and max leaf
nodes nl = 7. For the training stage, we perform 50 epochs for
training the GBDT model. From Fig. 6, it’s evident that the
loss minimizes during the 13th epoch (Fig. 7); the idea here
is that all epochs post 13 are obsolete, because the accuracy
decreases afterwards - something that wouldn’t be traceable or
explainable otherwise except by using an overly simple line
chart. Table II presents the first 15 observations within the
13th epoch where the rest of the observations (as well as all
code and data used in this study) can be found in the MAA
GitHub repository *.

3) Secret Inversion- Detection of Adversarial Data Points:
For the Secret Inversion algorithm, we design the experiment
to present the successful detection of adversarial inputs in an
Al system. Final outcomes are scores for AIA goals including
SAI and CAI (Table III). For AE, detection performance varies
with compression factor (cf) and the number of hidden layers
(nl). Since we use labeled data, we select the best hyper-
parameter (approximately we build 20 AE models) set for
maximum accuracy. The outcome is the status of the network,
binary classification, which represents if the overall system
is under attack or not. Additionally, instead of sigmoidal
function we select rectified linear units due to their higher
training performance in deep neural networks [18]. Here we
use SCADA dataset to test secret inversion algorithm. Two-
thirds of the training dataset is used for model development
and the other one-third is used for validation purposes. During
validation, we are able to perform early stopping for preventing

“https://github.com/AI-VTRC/MAA
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model overfitting scenarios. We use Adam algorithm [19]
for our AE model where we find the best trade-off between
execution speed and convergence (number of training epochs
e = 200 and mini-batch size b = 300 samples). The mini-batch
size is important because it updates the connection weights by
propagating into the AE’s network and computing the gradient.
The average reconstruction errors, which are the mean squared
errors between input and reconstructed patterns, are optimized
using the SDG technique. Fig. 8 represents two different test
datasets where scaled reconstruction errors are plotted on the

TABLE III

INTRUSION INPUT DETECTION PERFORMANCE USING AE

HYPER-PARAMETERS OF LIGHTGBM ON TELCO DATASET

Test Dataset | Accuracy | F1_Score | Precision Recall

01 0.9466 0.7194 0.9438 0.5813

02 0.9128 0.7182 0.9707 0.5700
TABLE IV

Ist test dataset. By properly selecting threshold (), normal Hyper-parameters Default Bayesian Grid
and adversarial samples for all 43 features have separated. i Optimization | Search
For this experiment, we select the range between 99% and Lle\zm“(;g ‘:;‘lte T (1);1 7o) Oi?ts 087
100% percentile of the error distribution as adversarial inputs A% Cep - unmite
. Bagging fraction 1 0.8 1
where the rest of the ranges are considered normal samples. Number of trees 100 396 100
The detection accuracy of test datasets 1 and 2 are 94.66% Number of leaves 31 25 12
and 91.28% respectively. Table III presents the performance
evaluation of the AE model.
Loss vs Epochs TABLE V
TAI F1 SCORES USING DIFFERENT MODELS
—— Loss
2901 AT-Model Telco SCADA
Default 0.767 0.802
280 1 Grid Search 0.746 0.794
Bayesian Optimization 0.772 0.842
¥ 270 A
(o]
|
2607 TABLE VI
TELCO FEATURES - AIA GOALS MAPPING
250 4
Features XAI| TAI| SAI| CAI| FAI| EAI
240 4 service_type 1 1 0 0 0 0
A T N Bmbxserviee | 1 | T [0 [0 00
Epochs month_tral c
many_over_bill 1 1 0 0 0 0
Fig. 6. Loss function vs learning epochs contract_type 1 1 0 0 0 0
contract_time 1 1 0 0 0 0
pay_num 1 1 0 1 0 0
et last_month_traffic 1 1 0 0 0 0
servicel_caller_time 1 1 0 0 0 0
service2_caller_time 1 1 0 0 0 0
gender 0 0 0 1 1 1
mse = 0.089
b age A U SRR S
- complaint_level 0 0 0 1 1 0
former_complaint num| 0 0 0 1 1 0
[manﬁ':é"i"é?séz“‘o] {Mmuﬂ‘m;msj former_complaint_fee | 0 0 0 0 I 0
samples = 9 samples = 401
value = -0.316 value = 0.068
= / }= <=618.0 Applicantincome <= 4699.5
Samples=6| | sampies =3 res vz me-0188 TABLE VII
G |\ valuo=-0778 value = 0.121 value = 0.004 CAI SCORES FOR DIFFERENT INTENTIONAL BIASES
TEaoE e Bias Injection CAI Score Bias Injection CAI Score
Vallie 200 valug=-0173) | value 20043 (SCADA) (SCADA) (Telco) (Telco)
3.33% 54.4 0.45% 16.7
Fig. 7. Decision tree 13 - minimum loss epoch 2.67% 52.7 0.36% 16.8
2% 534 0.27% 17.0
1.34% 57.3 0.18% 17.2
B. Testing RFSP 0.67% 63.6 0.09% 17.7
0% 71.5 0% 17.8

In the experiment for RFSP, we test if the pipeline generates
lower AIA scores due to bias insertion, and we optimize the
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TABLE VIII
TELCO FEATURES - STATISTICAL MEASURES AND AIA SCORES

Features Causalityl ANOVA-F | Mutual_infp Chi2 Kendall Outlier| Bias Varianc¢ Distribution XAI | TAI | SAI | CAI | FAI | EAI
service_type 231 0 112 084 0 0 0.79 02 0 044 | 044 [ 0 0 0 0
complaint_level 0.66 0 .15 0.62 0 0 17 02 0 0 0 0 | 051 | 054] 0
contract_type 0.05 0 0.43 233 0 0 0.48 02 0 08 | 08 | 0 0 0 0
gender -0.36 0 -1.08 -0.68 0 0 101 02 0 0 0 0 | 051 | 067 | 067
net_service -0.08 0 1 -0.68 0 0 1.88 02 0 027 | 027 | 0 0 0 0
age 0.23 -0.69 0.57 0 142 | 126 | 064 | 02 179 0 0 0 T_| 098 | 098
contract_time 032 192 0.56 0 227 | 202 | -008 02 0.81 054 | 054 [ 0 0 0 0
complaint_fee 0.29 -1.05 117 0 05 | 203 | 059 49 1.94 0 0 0 0 0 0
plaint_num 0.1 B .16 0 0 112 | 067 02 207 0 0 0 0 [073] 0
Tast_month_traffic 0.29 0.32 0.62 0 117 | 133 | 071 0.2 0.61 042 | 042 0 0 0 0
Tocal_caller_time 0.29 0.72 0.7 0 043 | 038 | 072 | 02 02 04 | 04 | 0 0 0 0
month_traffic 029 0.59 057 0 057 | 013 | 072 | 02 042 045 | 045 [ 0 | 047 ] 0O 0
online_time 0.3 0.84 0.55 0 T11 | 0.9 | 068 02 03 055 | 055 | 0 |04 0 0
servicel_caller_time 0.28 -1.03 0.66 0 018 | 07 | 071 02 0.44 03 | 03 | 0 0 0 0
service2_caller_time 03 0.16 0.63 0 063 | 003 | 072 | 02 0.3 069 | 069 | 0 0 0 0

hyper-parameters to create higher assurance scores.
e — 1) Bayesian Hyper-parameters Optimization: We apply
predicted state Grid Search and Bayesian Optimization (Tree Parzen Estima-

—— real state
—— Scaled Reconstruction Errors

tor) for fine-tuning hyper-parameters of a LightGBM model
using both the SCADA and the Telco datasets. The hyper-
parameters are listed in Table IV. Afterwards, we compare

- the performance (F1-score) of two models to the default set
I of hyper-parameters:

Y M ctonontestdatasetz p1 o, Precision Recall .

e T Predictespete ~ %" Precision + Recall ®

It is evident from the Table V, Bayesian Optimization

accomplishes a higher performance level than the default set of

hyper-parameters; and Grid Search arrived at a poorer perfor-

mance level. Accordingly, in this case, Bayesian Optimization

NO ATTACK = has higher efficiency in finding the best hyper-parameters

J0UTOLOL 20170115 20170201 20170215 2017:0301 20170315 2017:04.01 using a Gaussian process other than an exhaustive Grid Search,

which is expected. This higher efficiency allows Bayesian
Optimization’s support of a broader search-space of hyper-
parameters, and avoids a local maximum, a notion that is more
possible with Grid Search. Accordingly, we generate the TAI
scores based on the difference of Fl-scores reached by default

Fig. 8. Intrusion detection using r on test datasets 1 and 2

Attack Localization hyper-parameters and the “Bayesian” hyper-parameters. In this
Predicted State case, the TAI score for Telco is (—0.005+1 = 0.995), the TAI
Mz ::nleztakt:(r) LT4 score for SCADA is (—0.04 + 1 = 0.96). Both numbers are
12| — Scaled RE(r) F_PU7 indicators of the level of trust in the outcomes of the systems,
—— Scaled RE(r) S_PU7 . . e .
I a notion that could be compared with the initial user inputs
10 “ and their preferences.
Y os r In this experiment, we inject different levels of outlier data
g in order to change the distribution of the original SCADA and

the pipeline could reflect the injection of outlier data. For the
dataset with varying levels of outlier injections, we execute

02 following workflow:
U Vﬂ r 1) For Economic Equilibrium, we set the user score of 6

00 AIA goals evenly specifically /6.6 for each AIA goal.

2) We assign features to different AIA goals as shown in
Table VI. The rest of the features (along with all project
data and code) can be found in the GitHub repository .

06 n k’\ Telco datasets, followed by running RFSP to observe whether

0.4

2016-12-06 2016-12-07 2016-12-08 2016-12-09 2016-12-10 2016-12-11
Time

Fig. 9. Attack localization (XAI) using SAI scores

Shttps://github.com/AI-VTRC/MAA
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3) From Table VII it is evident that, with the level of outlier
injection increasing, CAI score is decreased. However,
after reaching a threshold, increasing the outlier in-
jection, CAI might increase as well. This is because
addition of more outliers leads to normalizing the data
distribution.

Nine statistical measures are calculated of each feature
as shown in Table VIII, the result is normalized using
Z-SCores.

The AIA scores of each feature are calculated using the
results of step 2 and step 3 along with the developed
mechanism for converting statistical measures to the
scores of 6 AIA goals; value=0 means the feature has
no relation with definite AIA goals. Results are shown
in Table VIII.

The average score is calculated for the 6 AIA goals,
as follows: XAI:0.43, TAIL:0.43, SAILO, CAIO0.17,
FAIL:0.12, and EAI:0.05 based on different assigned
features and their independent AIA goals scores. A
weighted average of overall AIA goals could also be
calculated using the results of step 1 (Weights) and step
4 (Statistical Measures), which is 0.195 (on a scale of 0
to 1).

4)

5)

6)

V. EXPERIMENTAL USE CASES

Earlier, we discuss how ALSP and RFSP can provide
pointers to achieving quantifiable assurance goals. However,
without actual use cases, the pipelines don’t illustrate their
real-world purposes. In this section, we provide one use case
for ALSP using SCADA and one for RFSP using gender
bias in Telco plans selection. SCADA data represent a critical
infrastructure, for that we explore AIA goals XAI, CAI, and
SALI Blue lines in Fig. 8 represent reconstruction errors () and
SAI scores for the water distribution system. We use SGD
to minimize r, where the errors (r) also provide localized
information of adversarial inputs in case the system is under
attack. The attack localization explains how and why an attack
happens in the water distribution network. Fig. 9 illustrates
that the attack appeared during 6! — 11*” December, 2016
on tank 4 (L74) due to intentional pressure change on valve
7 (Fpy7) where the sensor reading (Spyr) deviated as well.
The proposed pipeline is able to detect such adversarial inputs
during that time which is explained by r leading to SAI
pointers. For the second use case, we use RFSP and compared
FAI scores between the dataset with and without gender [20].
The pipeline generates a higher FAI score of 0.12 for the
dataset without gender data (shown in Table VII).

VI. SUMMARY AND CONCLUSION

In this manuscript, we provide two MAA pipelines for
achieving quantifiable assurance goals including XAI, FAI,
TAI EAI CAI, and SAI. Although the algorithms are model-
agnostic in nature, the use cases are model-specific (SCADA
and Telco). ALSP is a model-driven approach that generates
quantifiable assurance scores. It leverages game theory, AE,
and logging to provide AIA goals; RFSP is a user-driven

approach, where user input their expected AIA weights as
a form of an equilibrium, the desired optimum set points
dictate the final outcomes of assurance. Many works in Al
systems management exist [21], but due to the unavailability
of benchmark assurance standards, we are unable to com-
pare the results with existing algorithms; nonetheless, in this
manuscript, we present multiple empirical outcomes that are
deemed successful for that goal. The two use cases presented
are for: (1) a critical infrastructure: SCADA system, where we
explain attack localization as a form of explainability using
reconstruction errors from the AE and showed that Secret
Inversion algorithm is capable of detecting adversarial inputs;
and for a (2) Telco dataset, we test it by injecting intentional
bias and testing if the pipeline detects it and reflects that
in AIA scores. The algorithms had different success rates,
albeit they all improved on the assurance of the Al systems
at hand. Furthermore, potential areas of application include
but are not limited to water distribution system, smart grids,
and telecommunication systems. As part of future work, we
plan to test other Al models using our framework and aim
to create benchmarks for water treatment plants usage of Al,
with the long term goal of securing complex and critical water
distribution networks across the country.
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