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Graphical abstract

Abstract

An outlier is an event or observation that is defined as an unusual activity, in-
trusion, or a suspicious data point that lies at an irregular distance from a pop-
ulation. The definition of an outlier event, however, is subjective and depends on
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the application and the domain (agriculture, healthcare, wireless network, etc.).
It is important to detect outlier events as carefully as possible to avoid infras-
tructure failures, because anomalous events can cause minor to severe damage
to infrastructure. For instance, an attack on a cyber-physical system, such as
a microgrid may initiate voltage or frequency instability, thereby damaging a
smart inverter, which involves very expensive repairing. Unusual activities in
microgrids can be mechanical faults, behavior changes in the system, human
or instrument errors or a malicious attack. Accordingly, and due to its variabil-
ity, outlier detection (OD) is an ever-growing research field. In this chapter, we
discuss the progress of OD methods using AI techniques. For that, the funda-
mental concepts of each OD model are introduced via multiple categories. Broad
range of OD methods are categorized into six major categories: statistical-based,
distance-based, density-based, clustering-based, learning-based, and ensemble
methods. For every category, we discuss recent state-of-the-art approaches, their
application areas, and performances. After that, a brief discussion regarding the
advantages, disadvantages, and challenges of each technique is provided with
recommendations on future research directions. This survey aims to guide the
reader to better understand recent progress of OD methods for the assurance
of AI.

Keywords

Outlier detection, AI assurance, ensemble learning, outlier tools, data manage-
ment

Highlights

• A comprehensive review of outlier detection algorithms from the perspective of

Artificial Intelligence (AI)

• Multiple outlier detection categories are introduced and relevant studies are

reviewed

• Advantages, disadvantages, research gaps, and suggestions are addressed for each

outlier detection category

• AI assurance is defined and discussed in relation with outlier’s detection and analysis

7.1 Introduction and motivation
An outlier or anomaly can be defined as abnormality, deviant, or discordant
data point from the remaining dataset in data science literature. Accord-
ing to (Hawkins, 1980, pp. 1), “an outlier is an observation which deviates
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so much from the other observations as to arouse suspicions that it was
generated by a different mechanism.” During the development of AI-based
applications, data are being created by several generational processes or
observations collected from one or multiple entities. Outlier points gen-
erate when one or a collection of entities which behave in an unusual
manner. Therefore it is very important to understand the behavior of out-
liers to diagnose a system’s health and predict potential system failures.
Some of the most popular OD applications are intrusion detection meth-
ods (Alrawashdeh and Purdy, 2016), credit card fraud detection (Porwal and
Mukund, 2018), medical diagnosis (Gebremeskel et al., 2016), sensor events
in critical infrastructure, precision agriculture, earth science, and law en-
forcement (Bordogna et al., 2007). One of the recently successful example
applications of OD is credit card fraud identification, where an AI algorithm
is used to find if sensitive information, such as customer identification or
a card number is fraudulent or stolen. In such contexts, unusual buying
patterns are observed, especially large transactions or irregular buying ac-
tivities.

In networking and the Internet of things (IoT) domain, sensors are
frequently used to detect environmental and geographical information;
changes in underlying patterns, if they occur suddenly, might indicate im-
portant events. Event detection in sensor networks is one of the most com-
pelling applications in cyber-physical system. Another OD example is from
medical diagnosis, where data are collected from numerous medical de-
vices, including MRI (magnetic resonance imaging) scans, PET (positron
emission tomography) scans, and ECG (electrocardiogram) time-series,
where unusual patterns could indicate an illness.

In data mining literature, normal data are also known as “inliners” (Ag-
garwal, 2017). Often in real-world applications, such as fraud or intrusion
detection system, outliers are sequential and not single datapoints within a
sequence. For instance, network intrusion is an event in a sequence that is
intentionally caused by an individual. Properly identifying the anomalous
event helps to handle those sequences.

In most conventional cases, OD algorithms have two types of outcomes:
binary labels and outlier scores. Outlier scores impose the level or degree
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FIGURE 7.1 Anomalies and noise in data. Image source: (Aggarwal, 2016).

of “outlierness” of each data point. Scores naturally rank outlier points and
provide various information about the algorithm. However, they don’t rep-
resent a concise summary with small group sizes. Binary labeling is used
to represent if a datapoint is a strong outlier or an inliner. Algorithms can
directly provide binary labeling or other means of labeling, such as out-
lier scores, which then can be converted to binary labels for learning pur-
poses. For that, a threshold is selected based on the statistical distribution
of the dataset. Binary labels provide less information regarding the degree
of outlierness, however in most applications, it is the desired outcomes for
decision-making process.

For an outlier, defining how much deviation is sufficient from a normal
datapoint is a subjective judgment. Datasets from real applications might
contain embedded noise, and analysts might not be interested in keeping
such noise. Therefore investigating significant deviation is a prime decision
to make for OD algorithms. To comprehend this problem clearly, Fig. 7.1(a)
and 7.1(b) illustrate two-dimensional feature spaces. It is evident that clus-
ters are identical in both figures. However, considering a single datapoint
“A” in Fig. 7.1(a) seems different from the rest of the datapoints. Therefore
“A” in Fig. 7.1(a) is clearly an outlier. However, point “A” in Fig. 7.1(b) is sur-
rounded by noise and it’s quite difficult to say if it is noise or an outlier.
When designing algorithms, normal and outlier boundary conditions need
to be precise and specific to application requirements.
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FIGURE 7.2 A typical data spectrum with noise and outliers.

In unsupervised learning models, noise is defined as weak anomalies
that don’t hold criteria of being an outlier. For instance, datapoints close
to the boundary are mostly considered noise (as presented in Fig. 7.2). Of-
ten the separation criteria of these datapoints is subjective and depends on
the interest of application-specific demands. Real datapoints that are gen-
erated from noisy environments are difficult to detect using scores. That
is because noise represents deviated datapoints, therefore requires domain
experts to select the threshold between noise and outliers to satisfying ap-
plication requirements.

Success in OD depends on data modeling, where every application has
its own unique data management requirements. Evidently, the OD tech-
nique needs to process the attribution in the data and be sensitive enough
to understand the underlying data distribution model. By properly exam-
ining the data model, contextual outliers can be achieved. Aggarwal et al.
(2011) proposed a concept of linkage outlier by analyzing social networks.
Here, nodes that don’t show any connection with each other are likely to
be outliers, therefore data distribution models play an important role for
designing OD models.

OD is a creative process; many researchers are trying to answer the ques-
tion of how to identify outliers. Research communities are trying to bring
forward many innovative and novel algorithms for OD (Aggarwal, 2017;
Hadi et al., 2009). While identifying and removing outliers from the dataset,
researchers need to be very observant, because sometimes outliers carry
important hidden information about data. It is crucial to understand data
types applying OD methods; for instance, data can be univariate or mul-
tivariate and need different approach to begin with. In statistical analy-
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sis, careful observation regarding feature selection needs to be considered,
because we usually want the feature to represent the data distribution
model for both non-parametric and parametric analysis. Moreover, during
OD, one must make analytic arguments and intuitions before making any
conclusions. Besides, real world applications require context-aware and
purpose-based detection, because the outcome of the result should ben-
efit the requirements of outlier analysis in any given domain. Some recent
state-of-the-art application areas are as follows:

Fraud and intrusion detection: Intrusion detection is performed to check
if a computer network has any unauthorized access by observing unusual
patterns (Singh et al., 2010). Additionally, to make a network secure and
safe, detection of outlier instances is extremely important.

Database and sensor network monitoring: Sensor networks require con-
tinuous monitoring for effective wireless operations. Detecting outliers in
sensor network (Abid et al., 2017; Feng et al., 2017), body sensor networks
(Zhang et al., 2016), and target tracking environments (Shahid et al., 2015)
ensures flawless operations with proper routing in the network.

IoT and critical infrastructure operations: IoT devices utilize wireless sen-
sors to collect various information on architecture, including smart grid,
power distribution system, water supply system, and healthcare diagnostic
system. It’s very crucial to know correct and effective data are being col-
lected from IoT devices. If the data are being polluted with outliers because
of a sensor fault or a cyber-attack, that should be identified for securing
the critical infrastructure. Additionally, OD algorithms need to be trained
against attack concealment. Critical infrastructures are the backbone of so-
ciety; effective and efficient OD models are crucial for optimal operations,
preventive maintenance, and the overall safety and security of our nation.

Data streams monitoring: Zheng et al. (2016); Tamboli and Shukla (2016);
Shukla et al. (2015); Tran et al. (2016); Gupta et al. (2014); and Cateni (2008)
showed OD for data streams and time series datasets. Detecting outliers in
data streams is important, because any abnormality may hinder fast com-
putational and estimation processes of applications.
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Medical diagnosis: Modern healthcare and diagnosis analysis are mostly
dependent on electronic devices. These devises observe unusual pat-
terns while reading different measures from patients. Properly separating
anomalous readings help doctors to predict underlying conditions, and
thereby to apply proper diagnosis.

Fake news detection: Fake news can be considered as an outlier if com-
pared with foundational datasets and real sources (Shu et al., 2017).

Surveillance and security: Security is an important aspect in computer
administrative network. Cybersecurity is a field where researchers ensure
methods for safe access and proper authentication. An exciting and practi-
cal research in cybersecurity is surveillance video OD (Xiao et al., 2015).

Data logging and data quality: Logging and processing data for commer-
cial purposes can go wrong because of unwanted concealment processes,
which if not detected, might result in irrecoverable loss. Automated data
mining models are applied in searching for abnormalities while processing
large volume of logs (Ghanbari et al., 2014). Proper anomaly identifica-
tion algorithms need to be applied to enhance data quality (D’Urso, 2016;
Chenaoua et al., 2014).

The rest of the chapter is organized as follows: In Section 7.2, we catego-
rize OD algorithms into six subgroups, where each subgroup has a detailed
discussion, advantages, disadvantages, research gaps and suggestions. In
Section 7.3, we include multiple OD tools. In Section 7.4, we enlist several
benchmarking datasets for outlier analysis, and in Section 7.5, we discuss
AI assurance and its relevance to outlier analysis. Finally, in Section 7.6, we
conclude with open research gaps and OD challenges.

7.2 Outlier detection methods
OD methods can be classified into many categories (Ranshous et al., 2015;
Braei and Wagner, 2020; Lai et al., 2020), however, in this chapter we intro-
duce six major categories: Statistical, Density, Clustering, Distance, Learn-
ing, and Ensemble-based OD methods. For each group, we provide short
overview about their gradual development over the last few decades.



238 AI Assurance

7.2.1 Statistical and probabilistic based methods

Statistical and probabilistic-based OD methods originated from early nine-
teenth century (Edgeworth, 1887). Before inventing high performance de-
vices these methods were applied for simple data visualization, although
performance and efficiency were being neglected. Nevertheless, the funda-
mental mathematics are always useful and eventually these methods are
applied to most regular OD applications.

Almost all the OD algorithms apply numerical scores to every object
and in the final step they assign extreme values by observing the scores.
Binary classification is one way of sorting the extreme value points. Statis-
tical and probabilistic OD algorithms can be either supervised, unsuper-
vised or semi-supervised. The model is built based on data distribution. For
statistical-based OD algorithms, stochastic distribution is a widely adopted
technique to detect outliers. Therefore the degree of outlierness depends on
the model built using data distribution. Statistical and probabilistic-based
methods can be further divided into two broad categories: parametric and
non-parametric distribution models. Parametric methods assume a dis-
tribution model from the dataset, and then use knowledge from the data
to approximate model parameters. Non-parametric methods don’t assume
any underlying distribution model (Eskin, 2000).

7.2.1.1 Parametric distribution models
Parametric distribution models have prior knowledge of the data distribu-
tion, these models can be divided into two subcategories: Gaussian mixer
and regression models.

Gaussian mixture models: Gaussian model is a popular statistical ap-
proach in OD, it initially adopts maximum likelihood estimation (MLE) in
training stage to compute variance and mean of the Gaussian distribution.
During the test phase, several statistical measures are applied (mean vari-
ance test, box plot test) to validate the outcomes.

Yang et al. (2009b) proposed an unsupervised Gaussian mixture model
(GMM) based on an explainer that globally optimizes to detect outliers.
In this method, first it fit the GMM for a dataset by utilizing the expecta-
tion maximization (EM) algorithm based on global optima. Outlier factor
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for this method is calculated as the sum of proportional weighted mixture,
the weights represent affiliations to remaining datapoints. Mathematically,
outlier factor can be expressed as xk:

Fk = zk(th) =
n∑

j=1

skjπj (th) (7.1)

where, skjπj (th) = Point Xk’s relationship with other point Xj .

skj = Relationship strength

th = Iteration (Final)

πj = Degree of importance of point j

Higher outlier factor indicates greater degree of outlierness. This method
focuses on global properties rather than local ones that we discuss later in
density-based method section (Breunig et al., 2000; Papadimitriou et al.,
2003; Tang et al., 2002). Yang et al. (2009b) claimed, for a given dataset,
fitting the GMM at each data point outlier can be detected, even if the
dataset contains noise, which was a major challenge in clustering-based
techniques. Therefore this technique is useful in real-world applications,
where environmental noise or intentional adversarial noise is embedded. It
is evident that the algorithm has higher capacity to detect unusual objects,
however, it incurs greater complexity: for single iteration model complex-
ity is O(n3) and for N iteration model complexity is O(Nn3). Future studies
shall improve the algorithm and reduce its computational complexity along
with increasing its scalability.

Tang et al. (2015) proposed an improved and robust statistical model;
they applied GMM with projections preserving locally. They applied the
model to disaggregate energy utilization by combining both outcome of
subspace learning (SL) and GMM. In this method, the LPP short for local-
ity preserving projection of SL is exploited to reveal the inherent diverse
structure, while at the same time keeping the neighborhood composition
intact. Saha et al. (2009) proposed a principality component analysis (PCA)
technique that points research gaps in local outlier factor (Breunig et al.,
2000) and connective-based outlier factor (Tang et al., 2002) that fails to
achieve multi-Gaussian and multiple state OD. The method shows im-
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proved performance, however, the authors barely discussed anything about
their model’s computational complexity.

Regression models: Regression OD models, depending on the context, are
either linear or non-linear. They are a direct approach to detect outliers.
Generally, the training stage involves fitting the given datapoints into a con-
structed regression model. The regression models are evaluated at the test
stage. Outliers are labeled if the difference between actual output and pre-
dicted outcome of the regression model is too high. For the last few years,
OD using regression analysis applied several standard techniques as Maha-
lanobis distance, mixture models, robust least squares, and Bayesian alter-
nate vibrational methods (Zhang, 2013). Satman (2013) in contrast to other
algorithms, proposed a different one, one that has a covariant matrix that is
non-interactive. It has less computational complexity, which makes it cost
effective as it can detect multiple outliers quickly. For future research di-
rections, and as regression models often portrayed as minuet preference,
variance and bias of the intercept approximator can be minimized to im-
prove the result.

Another regression model proposed by Park and Jeon (2015) detects out-
liers in sensor network. The method observes the values from the model
outcome and create an independent variable using a weighted sum ap-
proach. Since the model only applied on a single sensor environment,
measuring outliers accurately from multiple sensor environment can be
an interesting topic (as a future direction). Dalatu et al. (2017) studied a
comparison between linear and non-linear model, where their accuracy
and misclassification were examined with receiver operating characteristic
(ROC) curves. This case study provided necessary information for OD for
two popular kinds of regression models. Non-linear models showed more
accuracy (accuracy 93%) compared to linear regression models (accuracy
63%), therefore it’s mostly a better option to select non-linear models over
linear regression models.

7.2.1.2 Non-parametric distribution models
Non-parametric distribution models don’t assume any underlying data dis-
tribution (Eskin, 2000) for given datasets. Kernel density estimation (KDE)



Chapter 7 • Outlier detection using AI: a survey 241

models are a popular non-parametric approach; they are unsupervised
technique to detect outliers that utilizes kernel functions (Latecki et al.,
2007). The KDE model compares each objects’ density with neighbors’ den-
sities, where the idea is similar as some of the prevalent density-based tech-
niques (Papadimitriou et al., 2003; Breunig et al., 2000). Although, it has
improved performance, the curse of dimensionality reduces its applicabil-
ity. Gao et al. (2011) offered a superior solution to overcome the problem.
They applied kernel-based technique that has lower run time compared to
(Latecki et al., 2007; Breunig et al., 2000), also presented better scalability
and performance for large datasets. This method solves another limitation
of the local outlier factor (Breunig et al., 2000): sensitivity on parameter k,
where it measures the weights of local neighborhoods by utilizing weighted
neighborhood density estimations.

A good real-world application by Samparthi and Verma (2010) also ap-
plied KDE to measure infected nodes in a sensor network. Boedihardjo et al.
(2013), in another study, implement the KDE method in time series dataset,
although it was a challenge using KDE for data streams. They proposed an
accurate estimation of probability density function (PDF) by using adap-
tive KDE. The computational cost associated with the method is O(n2), and
showed better estimation results compared to original KDE. The method is
suitable for strict environment, therefore further research may improve the
method for adopting multivariate data. Uddin et al. (2015) applied the KDE
method in power grid environment. Although, the KDE methods are bet-
ter at targeting outliers, they are computationally expensive. Later, Zheng
et al. (2016) applied KDE in a multimedia network for outlier detection on
multivariate dataset. In another study, Smrithy et al. (2016) introduced a
non-parametric method for outlier detection in big data. Later, an adaptive
kernel density-based approach, a nonlinear method, based on Gaussian
Kernel, is proposed by Zhang et al. (2018). Later, Qin et al. (2019) proposed a
unique OD approach that perfectly applies KDE to effectively identify local
outliers from continuous datasets. This method facilitates to detect outliers
from high data stream, irrespective of data complexity and unpredictable
data update, which was a challenge earlier. They derived an approach to
successfully identify top-N outliers based on KDE on continuous data. Af-



242 AI Assurance

terwards, Ting et al. (2020) modified the KDE approach to identify similarity
between two distribution named isolation distribution kernel. Compared
to other kernel-based algorithm, the proposed method outperforms most
point anomaly detection. Although, KDE-based approach performs better
compared to other non-parametric models, they suffer from high dimen-
sionality in the feature space. Additionally, in general, they have high com-
putational cost too.

7.2.1.3 Miscellaneous statistical models
Among many proposed OD algorithms, most straightforward techniques
in statistical method are trimmed mean, boxplot, Dixon test, histogram,
and extreme studentized deviate (ESD) test (Goldstein and Dengel, 2012;
Walfish, 2006). The Dixon test works well with small size dataset, as no
assumption is required about data normalcy. The trimmed mean is not
a good approach among all others for OD, however, ESD test is a better
choice. Pincus (1995) introduced several optimization tests for OD that
could depend on parameters such as number and expected space of out-
liers. A histogram-based OD technique, HBOS (histogram-based outlier) is
proposed by Goldstein and Dengel (2012), which can create model of uni-
variate feature space by utilizing dynamic and static histogram bin width.
Here, each data point is scored as degree of outlierness. The algorithm
showed improved performance, especially faster computational speed over
traditional OD approaches (Jin et al., 2006; Tang et al., 2002; Breunig et al.,
2000). Nevertheless, the method faces difficulties finding local outliers with
its density approximation technique.

Hido et al. (2011) introduced a novel statistical methodology by apply-
ing guided density ratio approximation to detect outliers. The main idea
of the algorithm is to select density ratio between training set and test set.
A natural cross validation method was applied to optimize the value of
parameters: regularization and kernel width. To achieve better cross vali-
dation performance, unconstrained least square method was applied. This
method has an advantage over non-parametric kernel density estimation,
because hard density estimation isn’t required here. The method, in terms
of accuracy, shows improved performance in most cases. Improving density
ratio estimation of this method is an important research direction.
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Robust local outlier detection (RLOD), another method that adopts sta-
tistical measures to detect outliers is proposed by Du et al. (2015). This
pipeline assumes the fact that OD is sensitive to parameter tunning (Geb-
hardt et al., 2013) and most OD methods are focused to detect global out-
liers. The whole pipeline can be divided into three stages. At the first stage,
it applies three standard deviation measures to find density peaks of the
dataset. In the 2nd stage, remaining data points are labeled to the closest
higher density neighbors by assigning them in matching clusters. In the 3rd

and final stage, it applies density reachability and Chebyshev’s inequality
to locate local outliers for each collection. Campello et al. (2015) showed
that RLOD can both detect local and global outliers; they experimentally
showed that RLOD outperforms some former OD algorithms (Breunig et
al., 2000; Zhang, 2013) in terms of detection rate and execution time. RLOD
performance can be improved more by adopting parallel and distributed
computing. Later in another study, Li et al. (2020) proposed an effective
copula-based OD.

7.2.1.4 Advantages of statistical and probabilistic based methods
The fundamental mathematics behind statistical OD algorithms make
them easy to use. Due to their compact form, the models exhibit improved
performance in terms of detection rates and run times for a particular prob-
abilistic technique. For quantitative ordinal and real-valued data distribu-
tion, the models usually fit well, although results could be more improved
if ordinal data can be preprocessed. Despite some targeted issues, such as
high dimensional feature space, the models are convenient to deploy.

7.2.1.5 Disadvantages of statistical and probabilistic based methods
The parametric models assume underlying density distribution, which re-
sults in poor performance and often might bring unreliable outcomes
in real-world applications, such as managing data streams from a com-
plex network. Statistical-based approach is applicable mostly for univariate
datasets; therefore they don’t perform well for multivariate feature spaces.
If the models are applied to multivariate feature space, high computational
cost incurs, which make them a poor choice for multivariate data stream.
Additionally, the histogram cannot capture the interaction between fea-
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tures, which makes it a poor choice for high-dimensional data as well.
Therefore statistical methods that can investigate simultaneous feature
space can be promising research. To deal with the curse of high dimen-
sionality, specific statistical methods can be adopted, however, it results in
longer processing time and a misleading data distribution.

7.2.1.6 Research gaps and suggestions
Several common research gaps in statistical-based approach are poor accu-
racy, difficulties with high-dimensional datasets, and operational expense.
These gaps need to be addressed in the future to make the models more re-
liable. These methods, however, can be more effective if the applied model
is aware of the context. Time series data generated from critical infras-
tructures, such as smart grid and water distribution system, may contain
anomalous samples because of maintenance problems or intentional at-
tacks, however, their pattern is unknown to a learning model. In this sce-
nario, parametric methods fail to learn the underlying distribution, as it
constructs the model based on predefined data distribution. Therefore for
this case non-parametric methods are a better choice, as they don’t need to
know the underlying distribution of a given dataset. Also, parametric meth-
ods are not a better choice for large data stream, where outlier points are
dispersed evenly. Inaccurate labeling of outliers might occur if the thresh-
old is defined based on standard deviation to separate them. Using para-
metric methods for OD is a difficult task while applying GMM to manage
data stream and high-dimensional feature space. Therefore algorithms that
can easily manage data stream along with high-dimensional feature space
can make the model more scalable. High dimensionality also creates prob-
lem for regression models. To overcome this issue, targeted regression anal-
ysis can be adopted instead of ordinary regression analysis.

Non-parametric models, especially KDE are a better choice in most ap-
plications, however, they get computationally expensive in noisy environ-
ments. In contrast with parametric methods, KDE is scalable, although
computationally expensive for multivariate data. The histogram-based ap-
proach is a good fit for univariate data distribution, however, its inability
to investigate the interaction among features makes it a poor choice for



Chapter 7 • Outlier detection using AI: a survey 245

FIGURE 7.3 Density-based outlier detection (Aggarwal, 2016).

multivariate data. Despite statistical methods inability to adopt some re-
cent application areas, they are still a good choice for targeted domain and
data streams. PCA methods by Saha et al. (2009) and Tang et al. (2015)
are effective approaches for OD. Goldstein and Dengel (2012) proposed
a histogram-based outlier (HBOS); it shows improved performance when
compared to other clustering-based models, such as local outlier factor,
local correlation integral, and influenced outlier in terms of calculation
speed, therefore is a good choice for real-time data (Breunig et al., 2000; Pa-
padimitriou et al., 2003; Jin et al., 2006). OD models scalable to large dataset
proposed by Du et al. (2015) and Hido et al. (2011) also proved robust in an-
alyzing outliers.

7.2.2 Density-based methods

Density-based OD is one of the most popular and prevalent techniques.
The main principal is that an outlier point can be found in a sparse region,
whereas normal points can be found in denser region. Fig. 7.3 presents
a two-dimensional dataset, where labeled point “A” and “B” are consider-
ably separated from the rest of the densely populated clusters, therefore are
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outlier points in this dataset. The core idea for detecting outlier points “A”
and “B” is that these points remain in sparse populations, whereas the nor-
mal points are in higher denser populations. Density-based methods seek
for differences between densities of a point with their local neighborhood.
Usually, density-based methods are computationally expensive compared
to distance-based methods. Despite this problem, density-based methods
are widely popular because of their simplicity and efficiency to detect out-
liers. Some baseline algorithms utilizing these methods are presented in
Breunig et al. (2000); Jin et al. (2006). Zhang et al. (2009b); Tang and He
(2017) presented algorithms that are developed and modified version of
those baseline one’s.

Local outlier factor (LOF): LOF is a popular method proposed by Breunig
et al. (2000), which is the base algorithm that represents density-based clus-
tering method for detecting outliers. K-nearest neighbor (KNN) technique
is used in this process for each point in a KNN set. LOF measures local
reachability density (lrd) to differentiate each point with its neighborhood.
Mathematically, lrd can be defined as

lrd (p) = 1∑
o∈kNN(p) reach−distk(p←o)

|kNN(p)|
(7.2)

LOF score: LOFk (p) = 1

|kNN (p)|
∑

o∈kNN(p)

lrdk (o)

lrdk (p)
(7.3)

where, lrdk (p) = lrd of point p

lrdk (o) = lrd of point o

The main idea of the LOF is to determine the degree of outlierness of an ob-
servation, while comparing its cluster with local neighbors. The LOF score
gets higher for an observation if its lrd value is less than the estimated
nearest neighbor. Logging lrd value and computing LOF score using KNN
approach costs O (k) for each data point. It is wise to use a valid index, be-
cause a sequential search of a size n dataset can cost n2 if a proper indexing
is not applied.

Schubert et al. (2014) addressed this shortcoming and introduced a sim-
plifiedLOF method, which makes the density estimation simpler. The sim-
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plifiedLOF method adopts KNN distance instead of LOF’s reachability dis-
tance.

dens (p) = 1

k − dist (p)
(7.4)

The simplifiedLOF is more computationally complex than LOF, but im-
proved in performance.

Connective-based outlier factor (COF): Tang et al. (2002) realized an im-
proved method, COF, over methods proposed by Breunig et al. (2000); Schu-
bert et al. (2014). The COF is almost similar to the LOF, although density
estimation calculation is different. The COF applies chain distance to cal-
culate local densities of neighbors, but Euclidean distance is generally ap-
plied to LOF. Because of applying chaining distance for density estimation,
this process assumes predefined population distribution, which is a major
drawback, because it often results in wrong density estimation. The authors
applied a new term- “isolativity” instead of “low-density” to locate outliers.
Isolativity is a unique measure that represents the degree of connectedness
of an observation with the remaining points. At point p, the COF value can
be expressed mathematically, while applying the KNN approach is

COFk(p) =
∣∣Nk(p)

∣∣ac − distNk(p) (p)∑
o∈Nk(p) ac − distNk(p) (p)

(7.5)

where ac−distNk(p) (p) = Average chain distance between point p and Nk(p).
In the neighborhood, COF modifies density estimation of the Simpli-

fiedLOF to verify the connectedness using a method called minimum span-
ning tree (MST). The computational cost is O(k2) that occurs for calculating
MST from KNN set. Except in circumstances, where datasets are character-
ized by connective data patterns, COF takes similar time as LOF for detect-
ing outliers.

Local outlier probabilities (LoOP): The LOF algorithm uses scores for each
datapoint of KNN. However, threshold selection for labeling datapoints was
a growing question. Therefore Kriegel et al. (2009b) proposed LoOP that
generates score with statistical probabilistic approach. In this method, den-
sity is estimated using distance distribution. LOF scores are presented as
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statistical probabilities. They compare the advantages of assigning proba-
bilities of a datapoint over outlier score in LOF. Mathematically LoOP can
be expressed as

LoOPs(O) = max

{
0, erf (

PLOFλ,S(O)

nPLOF.
√2

)

}
(7.6)

where, PLOFλ,S(O) = LOF probability wrt importance of λ, r

nPLOF = aggregated value

Normal points that are in denser population will have LoOP value almost
zero, whereas LoOP value towards 1 indicated loosely connected points
or outliers in the dataset. Just as simplifiedLOF (Schubert et al., 2014),
the LoOP also has same computational complexity for each point: O(k). A
significant difference for calculating local densities compared to previous
density-based methods is that it assumes and applies half-Gaussian distri-
bution for density estimations.

Local correlation integral called (LOCI): Papadimitriou et al. (2003) pro-
posed a method called LOCI that correctly handles multi-granularity issue,
where LOF (Breunig et al., 2000) and COF (Tang et al., 2002) both were un-
able to solve the problem. They defined an outlier metric-MDEF, short for
multi granularity deviation factor. According to the method, outliers are
points that are away from the neighbor of MDEF by at least three standard
deviations. Not only does this method find both remote cluster and con-
cealed outliers, but also deals with feature space local density variation. The
MDEF can be defined mathematically on a point pi within a radius r:

MDEF(pi, r,α) = 1 − n(pi,αr)

n̂(pi, r, α)
(7.7)

where, n(pi,αr) = αr neighborhood objects number

n̂(pi, r, α) = All the objects p’s average at r-neighborhood of pi

To get faster result from MDEF, the right side fraction needs to be mea-
sured after getting the value of numerator and denominator. So far, all the
OD algorithm we have discussed are based on KNN algorithm; detection
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of number of k is crucial to find outliers properly. The LOCI algorithm is
better, because it applies a maximization process to find out optimal k-
value. It is because for estimating local densities LOCI applies half Gaussian
distribution that mimics LoOP (Kriegel et al., 2009b). Instead of measur-
ing distances for density estimation, they aggregate the local neighborhood
records. Also, LoOP is different, because it of its unique neighbor compar-
ison. Although LOCI shows good results, it has longer run time. Papadim-
itriou et al. (2003) developed a different approach to increase the speed by
introducing quad tree with several constraints between two neighbors.

Relative density factor (RDF): Ren et al. (2004b) proposed a new technique
for effective OD by pruning datapoints located in deep cluster. This algo-
rithm takes advantage of large datasets and provides scalability. RDF adopts
a data model to identify anomalies, called P-tree. Higher RDF values indi-
cate greater outlier behavior of datapoints in the population. RDF can be
mathematically expressed on point p and radius r as

RDF(p, r) = DFnbr(P, r)

DF(P, r)
(7.8)

where, DFnbr (P, r) and DF(P, r) are both density factor

Influenced outlier (INFLO): INFLO is another technique based on LOF
(Breunig et al., 2000) and proposed by Jin et al. (2006). The method de-
tects outliers by assuming symmetric relationship between neighbors. One
shortcoming of LOF (Breunig et al., 2000) is that it fails to correctly de-
fine scores for datapoints at cluster border, where the clusters are related
closely. INFLO solves this problem by distinguishing different neighbor-
hood of context and reference set. The scores are calculated by both reverse
nearest neighbor and KNN. INFLO adopts both reverse nearest neighbors
and nearest neighbors techniques to achieve accurate neighborhood distri-
bution. Here outliers are observations that have higher INFLO values.

High contrast subspace (HiCS): Almost all the previous algorithms de-
scribed (LOF, COF, LOCI, and INFLO) suffer when calculating distances of
large dimensional feature spaces. However, a method proposed by Keller et
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al. (2012) for large dimensional dataset can successfully sort and rank out-
liers and their score: high contrast subspace method (HiCS).

Global-local outlier score from hierarchies (GLOSH): Campello et al.
(2015) proposed a method that includes beyond local outliers and extends
the investigation to detect global outliers. This method applies statistical
interpretation to find both local and global outliers. Although GLOSH isn’t
a generic algorithm, often it provides better results. The baseline algorithm
is KNN; therefore it has some common setbacks, which can be solved by
further improving density estimation.

Dynamic-window outlier factor (DWOF): Momtaz et al. (2013) proposed a
unique algorithm that detects top n number of outliers by assigning outlier
score called DWOF. This method deviates from its ancestor algorithms in
density-based methods. However, it closely complements Fan et al. (2009)
proposed resolution-based outlier factor (ROF). ROF performs better in
terms of accuracy and sensitivity to hyperparameters.

Algorithms for high-dimensional data: With the increment in data vol-
ume and complex networks, its highly required to design sophisticated and
efficient algorithms. Keeping that in mind, Wu et al. (2014) implemented
an algorithm that can handle high-dimensional data. The algorithm intro-
duces a new technique, called RS-forest, which is faster and more accurate.
It includes one class semi-supervised machine learning (ML) model. Later,
Bai et al. (2016) proposed a similar technique as Wu et al. (2014), which
can discover outliers in parallel. LOF (Breunig et al., 2000) is the base al-
gorithm, but a new computing method is introduced, called distributed
computing for density estimation. This algorithm works in two steps: at
first it partitions using grid-based technique, and then distributed comput-
ing identifies the outliers. Unfortunately, this algorithm doesn’t scale well;
earlier Lozano and Acuna (2005) fixed this issue by suggesting a technique
called PLOFA (parallel LOF algorithm), which improves scalability for big
data.

Other density-based algorithms: Tang and He (2017) proposed a method
to estimate density using kernel density estimation for measuring local
anomalies; a scoring process is introduced, called relative density-based



Chapter 7 • Outlier detection using AI: a survey 251

outlier score. The model applies KDE that pays more attention on shared
neighbor and reverse neighbors, rather than KNN to compute density dis-
tribution. Distance measure is the same as UDLO (Cao et al., 2014a), which
is Euclidean distance. However, they need to compare different distance
measures to observe the changes before applying this method to real ap-
plications. Iglesias Vázquez et al. (2018) introduced a detection algorithm
for data that have low density population, called sparse data observation
(SDO). The SDO is a hungry learning algorithm that tries to learn quickly
and reduces computation time for each object compared to previous al-
gorithm in density-based methods that we have discussed so far. Ning et
al. (2018) proposed relative density-based OD method, which is a similar
method to Tang and He (2017); it’s a new technique to compute neighbor-
hood density distribution. Su et al. (2019) implemented local OD algorithm
on scattered dataset, instead of using the term LOF, they used local devia-
tion coefficient (LDC), because the LDC focuses on distribution of object
and neighbors. The algorithm removes normal points in a safe way and
keeps the outlier points as reminder; the process is called RCMLQ (rough
clustering based on multi-level queries. Since, it prunes the normal objects,
it is useful for local OD in large dataset. It showed better efficiency and ac-
curacy over previous local OD algorithms.

7.2.2.1 Advantages of density-based methods
Density-based OD algorithms apply non-parametric method to measure
density, therefore they don’t assume any predefined distribution model to
manage the dataset. LOF (Breunig et al., 2000), LoOP, INFLO (Jin et al.,
2006), and DWOF (Papadimitriou et al., 2003) are some of the baseline algo-
rithms that serve as the fundamental model. Density-based algorithms can
both identify local and global outliers, which make them useful for real-
world application and often outperform other statistical-based algorithms
(Wang et al., 1997; Akoglu et al., 2014; Hido et al., 2011). Additionally, the
fundamental concept is to estimate neighborhood density that provides
more flexibility to investigate crucial outliers, which can be easily mea-
sured by several other modern OD algorithms. Density-based algorithms
also facilitate excluding outliers from nearby denser neighbors. They hardly
require any primary knowledge, such as probability distribution, which
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makes the algorithm easy for hyperparameter tuning. In fact, only single
hyperparameter tuning brings good results. The algorithms are also useful
and efficient when it comes to detecting local outliers (Su et al., 2019).

7.2.2.2 Disadvantages of density-based methods
Although some of the density-based algorithm showed good performance,
they are computationally expensive and complicated when compared to
many statistical-based methods, including ones presented by Kriegel et al.
(2009a). Also, these methods are sensitive to the shape of the neighbors;
when cautiously tuning the size hyperparameter, they become computa-
tionally expensive, including increased runtime. It is also evident from the
applications that neighbors varying density creates complicated models
and generally generates poor result. Few density-based methods, such as
MDEF and INFLO, because of their complex density estimation process,
cannot handle datasets resourcefully, such as defining outleirness of an
object. Also, density-based models face challenge when it comes to man-
aging high-dimensional time series data. However recent algorithms seem
to overcome the problems by introducing pruning (Ren et al., 2004b) and
elimination (Su et al., 2019) techniques, among others.

7.2.2.3 Research gaps and suggestions
In general, since density-based OD’s are non-parametric methods, sam-
ple size is considered small for high-dimensional feature space. This chal-
lenge can be resolved by resampling the objects to enhance the process.
As density-based algorithms are based on k-nearest neighbors, therefore
proper selection of hyperparameter k is important to evaluate these algo-
rithms. Generally, computational expense using KNN is O(n2). However,
LOCI has greater complexity because of adding an extension, radius r;
therefore computational cost becomes O(n3). So, LOCI, when applied to
big data, gets very sluggish to compute OD. Goldstein and Uchida (2016)
compared LOF and COF. They concluded that applying spherical density
estimation using LOF creates a poor-quality process for OD. However, COF
applies connectivity feature to estimate density pattern to solve the issue.
INFLO, when applied to closely related clusters with varying densities, per-
forms better by generating enhanced outlier scores.
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7.2.3 Clustering-based methods

Clustering-based OD differentiates between clusters and outlier points. A
simple description would be: each datapoint in a given dataset that belongs
to a cluster is either an outlier or a normal point. The goal for clustering is to
separate the points from denser and sparse population; generally, a sparse
region contains most of the outliers. Therefore most clustering algorithms
get outliers as a side product of their analysis. While detecting outliers using
clustering-based approach, a score is provided that represents the degree of
outlierness of a sample. Outlier score can be calculated using the distance
between a datapoint and nearest cluster centroid. Because of different clus-
ter shape, Mahalanobis is a good distance measure that scale well for the
clusters. Mathematically, Mahalanobis distance from datapoint X to cluster
distribution with centroid μ and covariance matrix � is

MB(X,μ,�)2 = (X − μ)�−1(X − μ)T (7.9)

Here, X = dataset,

� = covariance matrix,

μ = attribute wise means of d dimensional row vector

After scoring each datapoint with the Mahalanobis distance, binary labels
can be assigned by selecting extreme comparison. Mahalanobis distance
can be visualized as the Euclidean distance between a sample and a cluster
centroid. This distance measure indicates data locality characteristics by
providing statistical normalization.

Fig. 7.4 illustrates the effects of identifying outliers, while considering
data locality. Here, Euclidean distance measure will consider point “A,” an
outlier over point “B,” because of the normal distance measure. However,
Mahalanobis distance, considering data locality, provides point “B” as more
anomalous than point “A,” which makes sense visually (Fig. 7.4). Therefore
defining a proper number of clusters and a suitable distance measure re-
sults in successful outcome of the OD algorithm.

Detecting outlier using clustering-based approach is dependent on
properly defining cluster structure of normal instance (Al-Zoubi, 2009),
which comes from the effectiveness of the algorithm. These algorithms
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FIGURE 7.4 Clustering-based OD method (Aggarwal, 2016).

are unsupervised since they don’t need any previous knowledge of fea-
ture distribution. Many OD techniques are introduces based on clustering
algorithms; Zhang (2013) categorized several of them. Clustering-based ap-
proach is a broad category and can be grouped into several subgroups as
following:

Clustering methods based on partitioning: These clustering methods are
based on distance-based technique, where cluster numbers are selected
initially or provided randomly. Algorithms belong to this subgroup are pre-
sented by MacQueen (1967); Ng and Han (1994); Kaufman and Rousseeuw
(2009).

Clustering methods based on density: In contrast to partitioning-based
clustering approach, defining initial number of clusters for these models
isn’t required. However, they can model the cluster into denser and non-
denser groups given the radius of a cluster. Algorithms belonging to this
subgroup are studied by Hinneburg and Keim (1998), including density-
based spatial clustering of applications with noise (DBSCAN) by Ester et
al. (1996).
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Clustering methods based on hierarchy: In this subgroup, the algorithms
partition the cluster into different levels structured like a tree. Algorithms
belonging to this subgroup are presented by Karypis et al. (1999); Guha et
al. (2001); Zahn (1971).

Clustering methods based on grids: Algorithms belonging to this subgroup
are presented by Zhang et al. (2005); Sheikholeslami et al. (2000); Wang et
al. (1997).

Clustering methods based on high dimensional features: Algorithms be-
longing to this subgroup are presented by Agrawal et al. (1998); Aggarwal
et al. (2004). Besides that, Cao et al. (2006) proposed a two-stage algorithm
called DenStream. They applied density-based approach for both offline
and online OD. The first stage summarizes the given time series dataset,
then the second phase organizes clusters from the summarized data. The
DenStream creates a microculture to separate outliers and normal data
points. A micro cluster is a real outlier if its weight is less than the predefined
threshold and being pruned by the model afterwards. The authors per-
formed a comparison between DenStream and CluStream (Aggarwal et al.,
2003) to present their models’ effectiveness. DenStream shows improved
performance, because it avoids using memory space and utilizes taking
snapshots on a disk. However, the model faces difficulties when adjusting
dynamic parameters in time series datasets and locating arbitrary cluster
shapes with multiple levels of granularity. Solving these issues can be a good
future study. Later, Chen and Tu (2007) proposed an algorithm like the Den-
Stream, regarding offline and online OD, called D-Stream; the only differ-
ence is that D-Stream is a grid-based OD algorithm. Outliers, compared to
previous algorithm, can be found easily by exploiting the definition of noise
in terms of dense, sparse, and sporadic grid. A density threshold is selected
to which the sporadic grids are compared, if less than the threshold the
datapoints are considered outliers. Also, the algorithm performs better in
terms of clustering and runtime compared to CluStream. In another study,
Assent et al. (2012) implemented an algorithm called AnyOut for computing
outliers from data stream anytime. The AnyOut algorithm builds a precise
tree topology, ClusTree, to identify outliers at any time, whether the data are
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constant or varying. ClusTree is a special feature of the model; it plays a part
in creating the clusters.

A clustering-based approach using k-means was proposed by Elahi et al.
(2008); it detects outliers by splitting data streams into chunks. Although
the model doesn’t perform well for grouped outliers. They experimentally
presented following: comparison with some existing approach (Angiulli
and Fassetti, 2007b; Pokrajac et al., 2007) demonstrates that the model has
improved performance for investigating outliers from data streams. The au-
thors suggested that combining distance-based methods with their cluster-
ing model will yield better results. However, the model merely discovers the
outliers, but doesn’t assign any outlier scores. MacQueen (1967) presented
a pipeline to investigate outliers in varying data streams by utilizing similar
approach as k-means. The model assigns weights for each feature based on
their significance. The weighted features are significant, during algorithm
processing they restrain noise effect. Comparing the algorithm with LOF
(Breunig et al., 2000), it showed better detection rate, including low time
dissipation and low false positive rates. However, the algorithm doesn’t de-
fine the degree of outlierness; therefore it might be a good future study to
extend the pipeline and make it scalable over different data types. Later in
another study, Morady et al. (2013) tried to implement cluster-based al-
gorithm for big data, applying k-means algorithm to build an advanced
pipeline; it was deemed successful.

Bhosale (2014) combined both partitioning and distance-based ap-
proach to build an unsupervised model for data streams. They used par-
titioning clustering scheme (Ng and Han, 1994), which provides weights
to the clusters according to their adaptivity and relevance by utilizing
weighted k-means clustering. The concept of the model can evolve and
adapt incrementally. The authors mentioned that it has higher OD rates
than Elahi et al. (2008), and they suggested to include both categorical and
mixed data as part of a future study. Another interesting method proposed
by Moshtaghi et al. (2014) showed a clustering algorithm that can identify
outlier beyond the cluster boundary. To observe the primary change is data
stream distribution, the model continuously updates mean and covariance
matrices. In another study by Moshtaghi et al. (2015), they proposed an-
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other framework on top of their previous one (Moshtaghi et al., 2014). The
authors applied elliptical fuzzy logic to model the streaming data, to iden-
tify outlier; fuzzy parameters are updated by same style as in Moshtaghi
et al. (2014). For evolving dataset, Salehi et al. (2014) implemented an ar-
chitecture based on ensemble learning. Ensemble methods create several
clustering models instead of modeling the data streams and updating it
from time to time. Evaluating all the clustering models, few are selected
to measure the degree of outlierness for each datapoint. An efficient algo-
rithm, based on clustering technique, was proposed by Chenaghlou et al.
(2017). It showed improved memory usages and lower run time by present-
ing the concept of an active cluster. For any given data, they are divided into
chunks, where active clusters are analyzed in each chuck of data; the un-
derlying data distribution also gets revised. Rizk et al. (2015) implemented
an algorithm that investigates outliers in both small and large clusters. In
another study, Chenaghlou et al. (2017) modified the method to perform
detection in real time by Chenaghlou et al. (2018). Additionally, the model
can detect cluster evolution sequentially. An effective algorithm, a clus-
ter text OD algorithm, is proposed by Yin and Wang (2016). If the chance
of recognizing a cluster is low, it’s highly probable to be an outlier. The
model presents a technique (GSDPMM: Gibbs sampling of Dirichlet pro-
cess multinomial mixture) to find if a document that held in a cluster is
an outlier. Relating GSDPMM with incremental clustering can be a worthy
research direction, as GSDPMM has a potential in incremental cluster-
ing. Later, Sehwag et al. (2021) proposed a unique framework, called self
supervised detection (SSD), based on unlabeled distributions. They ex-
perimentally showed that their method, when it comes to unlabeled data,
outperforms some of the traditional OD algorithms, and even performs bet-
ter than supervised detectors.

7.2.3.1 Advantages of clustering-based methods
Clustering-based methods are unsupervised, therefore if underlying distri-
bution knowledge is not necessary, then these models are a suitable choice.
After the models learn about the clusters, they can test additional data-
points for detecting outliers. Again, the unsupervised nature is suitable for
incremental model as underlying distributions aren’t required. They are
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robust algorithms and can manage versatile data types. For example, the
hierarchical clustering methods for OD are good choices for different data
types; they produce nested multiple partitions, which is helpful for users to
select partitions belonging to a certain level.

7.2.3.2 Disadvantages of clustering based methods
A major drawback of clustering-based algorithm is that the outliers aren’t
assigned a score, but binary labeling, where score represents degree of out-
lierness for a sample. Scoring is necessary, because it helps to back track
model actions; therefore the actions of a model become final and cannot
be undone. Declaring the best number of clusters initially is a difficult job,
and most of the clustering algorithm often face difficulties with it. Also, if
the cluster shape is arbitrary, the algorithms face problems understanding
exact clusters from a given dataset. Therefore to perform well, the shapes of
several clusters need to be defined initially, although it is a daunting task to
provide the shape and distribution of multiple clusters. Partitioning-based
methods are very sensitive to initialization of parameters, such as density-
based methods. Nevertheless, they are inadequate to describe clusters and
in most cases are not suitable for very large dimensional datasets. Addition-
ally hierarchical-based clustering methods showed expensive simulations
in methods proposed by Karypis et al. (1999) and Zahn (1971), which makes
them a poor choice for large datasets.

7.2.3.3 Research gaps and suggestions
It is important to note that, when designing any cluster-based models sev-
eral questions need to be answered. In relation to an object defined as
outlier: does it belong to a cluster, or is it located outside of the cluster
boundary? If the distance between the object and the cluster centroid is dis-
tance, can it be labeled as outlier? If an object fits in a sparse or insignificant
cluster, how can the labeling be performed within the cluster? Although
clustering-based models have several drawbacks, they are good choices for
most cases. Data stream is an interesting area for many researchers to apply
cluster-based algorithms. For hierarchical- and partitioning-based cluster-
ing methods, speeding up the calculation process for large dataset and re-
ducing CUP usage could be a suitable research direction. Detecting outliers



Chapter 7 • Outlier detection using AI: a survey 259

from lower density populations or within a low density cluster can make the
algorithms robust.

7.2.4 Distance-based methods

Distance-based OD methods are popular in many application domains,
the foundational technique behind this method is nearest neighbor model.
A straightforward example of this method would be to apply KNN to a
dataset, and based on distance of a data point, it’s either reported as an
outlier or non-outlier. By closely relating to density-based assumptions,
distance-based methods have underlying assumptions that outlier points
KNN distances are large compared to normal data points. In contrast, with
clustering-based approach, they are more granular in their analytical pro-
cedure. Therefore these models are more effective in separating strong and
weak outliers from malicious datasets. Again, referring to Fig. 7.1, it is ev-
ident that clustering-based methods face difficulties detecting outliers in
noisy data. According to the definition of clustering-based outlier defini-
tion, outlier point “A” and nearest centroid of a cluster will be similar for
both Figs. 7.1(a) and 7.1(b). On the contrary, distance-based methods con-
sider distances from point “A,” and noisy data are handled accordingly in
terms of distance estimation. However, cluster-based methods can be mod-
ified to address the issue of noisy samples, in that case, these two methods
have the same organization, as they are closely related. The distance-based
algorithms provide scores to each datapoint incurring operational com-
plexity proportional to O(n2). If binary labeling is expected as the outcome
of the model, pruning techniques can be used to speed up the model sub-
stantially.

7.2.4.1 K-nearest neighbor models
KNN is one of the fundamental algorithms for distance-based OD ap-
proaches. Initially, nearest neighbor methods detect global outliers, and
then assign them outlier scores. In KNN classification, distance informa-
tion is investigated form a point to its neighbor, whether it’s close or not.
The fundamental idea is to utilize distance estimation to identify outliers.
Knorr and Ng (1998) proposed a novel approach based on a non-parametric
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technique that showed significant improvement over state-of-the-art OD
algorithm at the time, especially for large dataset. Their approach differs
from some of the previous method proposed by Yang et al. (2009b) and Sat-
man (2013), where a user doesn’t know about the underlying distribution
of the dataset. Their computational complexity is O

(
kN2

)
, where N is the

number of the datasets and k is the dimensionality. In Knorr and Ng (1998),
nested loop and indexed-based algorithm were applied to design OD mod-
els. Afterwards, Ramaswamy et al. (2000) proposed an improved technique
that addressed the shortcomings of OD model by Knorr and Ng (1998), ad-
dressed computational cost, ranking method, and distance. They adopted
the kth nearest neighbor that helps to ignore assigning distance parameter
for the OD model. In another study, Knorr et al. (2000) expanded OD model
proposed by Knorr and Ng (1998), modified nearest neighbor estimation by
applying X-tree, KD-tree, R-tree, and indexing structure. For each example,
the index structure is queried for nearest k points. Finally, top n number
of outlier candidates are selected. However, the model falls apart when ap-
plied to large dataset of index structure.

Angiulli et al. (2006) proposed a technique that detects top-n number
outliers from an unlabeled dataset. After that, the model predicts if a par-
ticular point is either an outlier or not. Top outliers get the highest weights;
this is done by observing if a sample’s calculated weight is higher than the
top-n highest weights. Their approach incurs an O(n2) computational com-
plexity. Later, Ghoting et al. (2008) developed an algorithm to address draw-
backs of OD methods by Knorr and Ng (1998) and Ramaswamy et al. (2000),
where they tried to improve the run time for high-dimensional feature
space. They named the model recursive binning and re-projection (RBRP).
In 2009, Zhang et al. (2009b) took a different path and projected an algo-
rithm called local distance-based outlier factor (LDOF), which manages
local outliers. Their study presented significant improvement compared to
LOF (Breunig et al., 2000) in terms of range of neighbor size. This algo-
rithm is similar in performance to KNN OD methods, such as COF (Tang et
al., 2002). However, sensitivity on parameter value is insignificant. Later in
2013, a new model, called rank-based detection algorithm (RBDA), was pro-
posed by Huang et al. (2013) to rank neighbors. It understands the meaning
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and nature of high-dimensional dataset by providing a feasible solution.
The key assumption of the model is this: objects will be similar and close
to each other, thereby sharing similar neighborhood if they are generated
from the same apparatus. Instead of taking object distance information
from neighbors, the model considers individual objects ranks which are
close to the degree of proximity of the object. Another method, proposed
by Bhattacharya et al. (2015), applies reverse nearest neighbor and nearest
neighbor as an extended study of RBDA.

Dang et al. (2015) applied an OD algorithm using KNN in large traffic data
in big cities. The model they proposed detects outliers by exploiting the
information among neighborhoods in which outliers are far from neigh-
bors. This pipeline shows improved accuracy (95.5%), which is better than
some statistical methods, such as GMM (80.9%) and KDE (95%). Despite
improved accuracy, it has trouble keeping a single distance-based measure.
Wang et al. (2015) used a least spanning tree to increase searching mecha-
nism of neighbors of KNN algorithm. In another paper, Radovanović et al.
(2015) proposed a reverse nearest technique to manage high-dimensional
feature space. They presented the pipeline that can both manage low- and
high-dimensional datasets. In terms of OD rates, this method works bet-
ter than the original KNN method presented in Ramaswamy et al. (2000).
Their method shows good performance on high-dimensional datasets. In
contrast to OD model proposed by Ramaswamy et al. (2000), Jinlong et al.
(2015) modified a technique to get the neighborhood information using a
natural neighbor concept. In another study, Ha et al. (2015) implemented
a heuristic technique to achieve k value by employing random iterative
sampling. Recent study on OD in local KDE is investigated by Tang and
He (2017). Several types of neighborhood information were examined by
them, including k nearest, shared nearest, and reverse nearest neighbor.
The KNN-based approaches are easy to implement despite their sensitiv-
ity to parameter selection and less superior performance.

7.2.4.2 Pruning techniques
Pruning technique is popular tool in ML models. A method, utilizing prun-
ing technique method and randomization rule, based on nested loop, is
presented by Bay and Schwabacher (2003). They modified the nested loop
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technique, which was earlier known as quadratic O(n2) in performance
and transformed into almost linear for most of the datasets. However, vari-
ous assumptions in this pipeline resulted in poor performance. In another
study, Angiulli and Fassetti (2007a) presented a generic pipeline, where
outliers are detected by pushing data in an index. While developing the
algorithm, they focused on minimizing input and output cost as well as
CPU cost, because these costs were a major challenge in previous research
(Knorr and Ng, 1998; Knorr et al., 2000; Ren et al., 2004a), where they
achieved both demands simultaneously. Ren et al. (2004a) implemented
a model to improvise the model proposed by Ramaswamy et al. (2000);
they added pruning and labeling techniques to present a vertical distance-
based OD algorithm. The method is implemented on both with and without
pruning method, while adopting P-tree. Applying P-tree technique to other
density-based OD can be a good future work. Later, another technique was
developed to improvise OD model proposed by Ren et al. (2004a) for speed-
ing up the detection process by Vu and Gopalkrishnan (2009), where similar
pruning techniques are applied.

7.2.4.3 Time series data
Time series continuous data naturally create problems, such as uncertainty
(Shukla et al., 2015), multidimensionality, notion of time, and concept drift,
while applying them to an OD model. Usually, time series data are seg-
mented by a time window. Two popular time series window methods are:
a) sliding window (Angiulli and Fassetti, 2010), where two sliding endpoints
are used to mark a window, and b) landmark window, where time points
are identified to analyze from-to timeframes. A novel pipeline, proposed by
Angiulli and Fassetti (2010), utilizes distance-based approach, where three
different algorithms were developed for OD in time series data. They named
the pipeline STORM (stream outlier miner). STORM utilizes two modules:
data structure and stream manager, where the later collects continuous
data streams, and the former is applied by the stream manager. However,
sorting cost of window is a shortcoming of the algorithm, and colossal
memory creates a burden, as it cannot fit properly into memory. Later, Lai
et al. (2021a) performed OD time series benchmarked dataset and defined
new context aware OD.
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In another study, Yang et al. (2009a) developed several methods: Extra-
N, Exact-N, Abstract-C, and Abstract-M to detect outliers based on neigh-
borhood pattern information in the sliding window. This approach makes
proper use of incremental OD by utilizing neighbor pattern in the slid-
ing window of the dataset, which was not studied in earlier algorithms,
such as DBSCAN (Zhang, 2013). This algorithm shows improved perfor-
mance, linear memory utilization per object in a sliding window along
with lower computational cost. Abstract-C applies a distance-based ap-
proach, whereas Extra-N, Exact-N, and Abstract-M utilize density-based
cluster methods.

In another study, Angiulli and Fassetti (2007a), several issues were dis-
cussed in event detection, which were tackled by Kontaki et al. (2011), along
with sliding window issues on time series data (Yang et al., 2009a). Angiulli
and Fassetti (2007a) applied step function for processing the OD, wherein
two algorithms parallelly utilize the sliding window. The primary focus in
Kontaki et al. (2011) was to make the method flexible, lower storage usages,
and enhance model efficiency. To support these ideas, three algorithms
were proposed: COD, ACOD, and MCOD, short for continuous, advanced
continuous and micro-cluster-based advanced OD, respectively. COD has
two versions that support multiple values of k and a fixed radius R, where k
and R are the parameters for OD algorithm. On the other hand, both multi-
ple radius and k values are supported by ACOD. MCOD needs less distance
calculation done for OD by minimizing query range. COD, compared to
STORM and Abstract-C algorithm, reduces the number of objects in each
window and requires less memory space. Another method was developed
to process large data volume proposed by Cao et al. (2014b); it optimizes
the range queries by not storing the objects in same window of same index
structure. It is experimentally proven by the authors that MCOD is the most
successful performing OD among COD, ACOD, and MCOD.

7.2.4.4 Advantages of distance-based methods
These methods don’t rely on underlying distribution of data to detect out-
liers, thereby are straightforward algorithms. They also perform better com-
pared to statistical-based methods and scale well for high-dimensional
dataset because of their robust architecture.
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7.2.4.5 Disadvantages of distance-based methods
Although distance-based methods perform better on high-dimensional
feature spaces than statistical-based methods, the increasing dimensions
issue reduces their performance. This is because different objects have
distinctive attribution in the given dataset, which make it difficult for the
model to measure distance among such objects. Also, if KNN is applied for
computing distance-based OD, then the model becomes computationally
expensive and unscalable. For data streams, distance-based methods face
difficulties in both data distribution in local neighborhood and investiga-
tion of KNN in the time series data.

7.2.4.6 Research gaps and suggestions
Distance-based algorithm are effective mathematical tools to seek anoma-
lies in a dataset. One major challenge is to scale for high-dimensional
dataset (Aggarwal and Yu, 2001). Very large feature spaces and object’s ran-
dom attributions force models to underperform. Not only increasing fea-
ture space reduces the ability of the model to describe by distance mea-
sures, but also makes it difficult to comprehend the indexing approach to
assigning neighbors. Additionally, multivariate data make the model less
scalable when calculating distance measures. The models can be modified
further by both improving execution time and memory usages. Another
challenge is the quadratic complexity of the models, where researchers de-
veloped many techniques, including pruning and randomization (Bay and
Schwabacher, 2003) and compact data structure (Bhaduri et al., 2011; van
Hieu and Meesad, 2016). Distance-based methods are unable to detect lo-
cal outliers, therefore often global information is calculated instead. To
achieve desired scores from KNN algorithms, datasets need to be appro-
priate and properly processed. Selecting appropriate parameters, including
proper k value, dictates performance of the model, and optimizing value of
k and other parameters isn’t easy always.

7.2.5 Ensemble methods

Recently, many domains, such as healthcare and technology, apply meta-
algorithms for data mining problems, such as classification or clustering
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to improve the solution. Such meta-algorithms create a series of multi-
ple learning techniques: combinedly acts as a robust algorithm known as
ensemble. Ensemble methods are mostly used in ML for their superior
solutions compared to other traditional methods. These approaches are
relatively new, and applied mostly on clustering and classification prob-
lems. The main idea behind this method is to train a dataset with multiple
weak learners, while each learning outcome gets improved by a subsequent
learner, therefore reducing the loss function. This working architecture lets
the model be independent of dataset localizations. Although, detecting out-
liers using ensemble is not straightforward, many algorithms are proposed
in recent years: bagging, boosting, bagged outlier representation ensem-
ble (BORE), extreme gradient boosting OD (XGBOD), and isolation Forest
(Lazarevic and Kumar, 2005; Rayana and Akoglu, 2016; Micenková et al.,
2015; Zhao and Hryniewicki, 2019b; Liu et al., 2008). Bagging and boosting
algorithms solve classification problems; for sequential methods XGBOD is
applied; for hybrid and parallel models, BORE and isolation forest are ap-
plied.

One of the first ever ensemble method is known as bagging, refined
recently by Lazarevic and Kumar (2005); it shows improved performance
over large dimensional dataset by utilizing feature bagging techniques. This
technique splits and creates random subsets of features and combines the
outcome of multiple detection algorithms applied separately onto the sub-
sets of features. Each algorithm is randomly assigned a small subset of
feature to provide an outlier score; these scores are labeled to all the dat-
apoints. They experimentally showed that bagging has improved perfor-
mance, because it focuses on the outcome of multiple algorithms, where
each algorithm targets a small portion of a feature.

In another study, an ensemble method is presented for outliers’ detec-
tion by Aggarwal (2013), which was later discussed by many others (Kirner
et al., 2017; Campos et al., 2018). Others proposed bagging (Lazarevic and
Kumar, 2005) and boosting (Campos et al., 2018) from a classification con-
text for ensemble analysis; also, alternative clustering (Müller et al., 2010)
and multi view (Bickel and Scheffer, 2004) methods were proposed from a
clustering context. Some critical questions were answered, such as how to
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categorize if ensemble methods are independent or sequential, and how
to categorize if ensemble methods are model- or data-centered? Ensem-
ble algorithms are generally classified based on component independence.
For instance, the components in boosting algorithms are not independent
of each other, because results in each stage depend on prior executions,
whereas bagging is the opposite, which makes their components indepen-
dent of each other. Also, if the methods are model-centered, then the com-
ponents of ensemble analysis are independent.

Later, several succeeding works have performed using ensembles for
OD, including Nguyen et al. (2010), Kriegel et al. (2011), and Schubert
et al. (2012), which face various challenges. One of the issues is to score
comparison provided by mixture models and various functions for out-
liers and combine them to get a general outlier score. In another study,
Schubert et al. (2012), based on outlier scores, compared the outlier rank-
ing by observing similarity events. Their approach is a greedy technique
that achieved good performance through differentiating actions. In another
study, Nguyen et al. (2010) addressed problems with high-dimensional
dataset and combined non-compatible OD method to form a unified ap-
proach. They implemented various scoring technique, each time to de-
termine the degree of outlierness of a sample instead of using same ap-
proach repeatedly. Because of their heterogeneous approach, they called
their method heterogeneous detector ensemble (HeDES), which represents
combination of functions and heterogeneity affair. The HeDES, in contrast
to methods proposed by Lazarevic and Kumar (2005), assign score types
and scores for different outliers. The method shows improvement on real-
world dataset. However, modification on the algorithm to handle large di-
mensional dataset can be a good research experiment.

Later in another study, Zimek et al. (2013) applied an arbitrary subsam-
pling approach to calculate local density of nearest neighbors. When sub-
sampling techniques are used on a dataset, usually training objects can be
obtained without replacement, therefore they enhance OD performance.
Also, subsampling technique with other OD can give good results as well.
Zimek et al. (2014a), later investigated an ensemble learning approach for
OD; the pipeline brings a perturbation technique to account for different
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diversities in different outlier detectors as well as adopting a method that
considers outlier rankings combinedly and distinctively.

As we suggested earlier, Pasillas-Díaz and Ratté (2016) did apply both
feature bagging and subsampling technique together. Each technique is
assigned to a different task: feature bagging extracts various information
during each iteration, whereas subsampling technique scores different sets
of data. However, getting variance of objects by using feature bagging was
a drawback and the result depends on the size of the subsample. Except
for these shortcomings, the method has improved in performance. An-
other method that dynamically combines the score values, an unsupervised
framework, is proposed by Zhao and Hryniewicki (2019a); they developed a
way to combine and select outlier scores, even if the ground truth is absent.
Zhao et al. (2018) proposed a similar approach as Zhao and Hryniewicki
(2019a), and implemented four variations of it.

7.2.5.1 Advantages of ensemble methods
The ensemble analysis is better for investigating outliers because of their
much better prediction models. Bagging and boosting are two popular and
efficient algorithms. They are robust and less dependent on a particular
dataset in data mining processes. Ensemble methods are suitable for adopt-
ing high-dimensional datasets, which used to be a burden for traditional
OD algorithms.

7.2.5.2 Disadvantages of ensemble methods
Mathematically, ensemble analysis isn’t that much robust as other data
mining techniques, it is because they are not properly developed yet. This
results in poor feature evaluation along with difficulties in selecting contex-
tual meta-detectors. Various algorithms are combinedly working, and since
the sample space is smaller, researchers face challenges managing real data
in some cases using these methods.

7.2.5.3 Research gaps and suggestions
Although ensemble analysis has shown robust results, there are still is-
sues that need to be fixed. They show good performance when streaming
data has noise in it, because individual classifiers face difficulties when it
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comes to the quality of data and processing time. However, combinedly,
those classifiers yield good outcome. Zimek et al. (2014b) addressed multi-
ple challenges along with data quality and processing time, which has been
brought under consideration by developing models, such as Nguyen et al.
(2010), Aggarwal and Sathe (2015), Liu et al. (2008), and Kriegel et al. (2011),
to improve ensemble analysis for detecting outliers. Also, several research
gaps have been addressed by Zimek et al. (2014b), although ranking out-
liers from different detectors and diversifying principal proposals remains
an open research challenge. Several techniques (Zimek et al., 2014b; Rayana
and Akoglu, 2016) don’t require detector selection process, therefore these
methods, in absence of detector selection process, hardly help in speeding
up identifying unknown outliers.

7.2.6 Learning-based methods

Learning-based methods are applied to different sub-discipline in ML. In
this section, we discuss four categories: Subspace, Active, Graph-based and
Deep Learning (DL).

7.2.6.1 Subspace learning models
OD models that have been discussed so far, usually identifies outliers from
all the space and dimension. However, outliers often represent different
attributes in the local neighborhood on declining dimensional subspace.
To address this issue, Zimek et al. (2013) presented that appropriate selec-
tion of a subset carries significant attribute information. On the contrary,
residual attributes have less importance or sometime has no importance
at all, and they delay the OD process. Subspace learning in OD is popu-
lar for high-dimensional areas. The fundamental focus is to identify dis-
similar dimension subsets and meaningful outliers form a given data. We
can further categorize these studies into two subcategories: relevant sub-
space methods (Huang et al., 2013; Muller et al., 2008) and sparse sub-
space methods (Zhang et al., 2009a; Dutta et al., 2016). The sparse sub-
space learning techniques project high-dimensional datasets onto sparse
and low-dimensional subspace. The outliers are the ones located in sparse
subspace, because they are characterized as lower density. Projecting high-
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dimensional space onto sparse subspace is time consuming, therefore a
big challenge. Aggarwal and Yu (2005) addressed this issue and proposed
a method for effective subspace exploration, where an evolutionary al-
gorithm gathers the subspaces. Here, initial population dictates the algo-
rithms performance evaluation.

Later, Zhang et al. (2009a) proposed a method that focuses on spares
subspace technique’s path. The method applies the idea of lattice to de-
note subspace relationship; sparse subspace is related to lower density co-
efficient. Applying the idea of lattice makes the model perform poorly and
complex in architecture. A new way to get sparse space is implemented
by Dutta et al. (2016), here sparse encoding is used to transform objects
to multiple linear space. Relevant subspaces are used by outlier detectors
to find local information as they are essential features in this case. A rele-
vant subspace method is proposed by Huang et al. (2013), called subspace
OD (SOD). The method examines correlation of every object with its shared
nearest neighbor; instead of taking distance from objects to its neighbors,
the model considers ranks of each object that is close to the proximity of
the object. Here, primarily the variance of the features is focused by SOD.
Another method, in contrast to SOD, signifies the relationship between fea-
tures is proposed by Müller et al. (2011).

In another but similar study, Kriegel et al. (2009c) presented OD method
that achieve relevant subspace, where distances are computed by Maha-
lanobis technique through gamma distribution. Principal component anal-
ysis is used in this context. In contrast to Müller et al. (2011), the key differ-
ence is the requirement of large local dataset to recognize the abnormality
trend. This impacts the scalability and flexibility of the method in a grad-
ual manner. To tackle flexibility problem, a similar method is proposed
by Keller et al. (2012) that identifies subspaces and ranks the outliers. The
Monte Carlo method, a sampling technique, is implemented, called high
contrast subspace (HiCS), where LOF scores are combined based on HiCS
values. In another study by van Stein et al. (2016), after achieving HiCS in-
stead of using LOF scores, LoOP scores are used to calculate the degree of
outlierness.
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Nevertheless, though the subspace learning methods are highly efficient,
for OD, in several cases, they are computationally expensive. Searching for
subspaces in high-dimensional space is a daunting task, which makes the
pipeline more complex.

7.2.6.2 Active learning models
Active learning methods are semi-supervised learners through input
sources or by interacting with users to get the desired outputs (Das et al.,
2016). For instance, for large dataset that require labeling, doing so manu-
ally is an exhaustive process. Since the method queries the user iteratively,
this supervised approach is called active learning. When an active learn-
ing algorithm is trained, it can find smaller portions of the dataset that
contain the labels. This helps the algorithm to re-train and boost for im-
provements. Also, by querying labels for instances from the user iteratively,
it provides better suggestions. Recently, researchers have been focusing on
this approach for OD in different domains (Zhang et al., 2009a; Dutta et
al., 2016; Yiyong et al., 2007; Muller et al., 2008). Aggarwal and Yu (2005)
applied active learning to unveil the reason for flagging the outliers and
the reason behind high computational demand for estimating density for
OD methods. The sampling process that was applied is called ensemble ac-
tive learning. Later, Görnitz et al. (2014) applied an active learning method
for OD; they alternatively repeated the learning process and updated the
model to improve prediction results. After training on improved and unla-
beled examples, the active learning method is applied.

In another study, input from a human analyst is provided to get better
result using active learning (Dutta et al., 2016; Yiyong et al., 2007). Although
they selected good portion of instances for the querying process, they didn’t
provide any explanation or clear insight or interpretation for the model de-
sign procedure. However, later they attempted to address the issues; a mod-
ified active learning approach is proposed by Das et al. (2019). They called
the method glocalized anomaly detection (GLAD). Their primary focus is
to adopt ensemble outlier detectors so that they can solve active learning
problems. The end users have the control to global outlier detector; GLOD
attains the local weights of data instance by learning automatically. Here,
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label feedback helps to implement this process. Also, proper tuning of en-
semble detectors helps to identify maximum number of accurate outliers.
This pipeline is also known as human-in-the-loop, where label feedback is
achieved by a human analyst in each iteration round. In another study, Zha
et al. (2020) proposed a deep reinforcement learning-based OD algorithm,
which detects outliers by achieving balance between long- and short-term
rewarding processes.

Even though active learning serves a great purpose in OD community,
there is still scope for improvement. Receiving inputs from human analyst
is a daunting task; an AI assurance method is required to minimize the ef-
fect of false positive labeling, while designing the model. Active learning
methods are better at identifying outliers. However, more interpretation
techniques should be adopted to explain the results.

7.2.6.3 Graph-based learning models
Graphs are known as data structure that can adapt various algorithm, es-
pecially neural network, to perform learning task, such as clustering, clas-
sification, and regression. Applications of graph data are getting popular
for OD in various sectors. Initially, these algorithms transform each vector
node into a real vector. Then the outcome is a vector representation of each
node, where information gets preserved in the graph. After achieving a real
vector, one can apply it to a neural network.

Many algorithms have proposed especially OD in graph data; a broad re-
view of graph-based OD approaches are presented by Akoglu et al. (2014)
and Ma et al. (2021). The authors have presented state-of-the-art tech-
niques and several research challenges. They also discussed the importance
of using graph-based OD, where graph-based approach shows the inter-
dependency state of the data, robust, and insightful distribution. A very
first graph-based detection framework, called “Outrank,” is proposed by
Moonesinghe and Tan (2008). They established entirely undirected graphs
using the original dataset and a technique is applied to the predefined
graph, called Markov random walk. Markov random walk stationary dis-
tribution values are used to score all samples. Later, a novel approach is
presented by Wang et al. (2018a), where objects’ local information together
with combined representation of the graph is adopted. They addressed the
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issue of false positive rates in OD, where graph-based method ignores lo-
cal information of an object around each node. Therefore local informa-
tion of each object’s surrounding of each node is collected, which helps to
construct the graph. Thereafter, outlier scores are provided by randomly
“walking through” the graph. This method adopts multiple neighborhood
graphs, where outlier scores are generated by walking through predefined
graph. The authors conclude that their model showed good improvement.
The graph-based OD methods are relatively new and promising technique,
having great potentials for OD in many domains.

7.2.6.4 Deep learning models
Deep Learning (DL) methods are a member of the ML family that are mainly
applied for representation and patterns learning by incorporating artificial
neural networks (ANN). Application of DL can be supervised, unsuper-
vised or semi-supervised. These methods are getting popular because of
their high accuracy on detecting outliers in critical infrastructure, health-
care, and defense (amongst many other domains). A survey in DL presented
by Chalapathy and Chawla (2019) reviewed multiple DL-based OD tech-
niques and their evaluation. These models are effective for large dimen-
sional dataset and can understand hierarchical information on features.
Additionally, they are better for separating the boundary conditions be-
tween normal and abnormal behavior in time series dataset. Supervised DL
models explore outliers by training and classifying the relationship between
features and labels. For example, supervised models, such as multiclass
classifier, are used to detect fraudulent transaction in healthcare (Chalapa-
thy and Chawla, 2019). Although, supervised models provide great results,
unsupervised and semi-supervised models are mostly utilized. This is be-
cause, supervised models require labeling for each sample, so it’s a daunt-
ing task to label each sample. Therefore unsupervised and semi-supervised
models are a better selection in real-world application with big datasets.

Semi-supervised DL methods for OD is the most appealing approach,
given it provides flexibility regarding labeling requirements. The models
use normal instances as references to identify outliers. Deep autoencoder,
a semi-supervised deep neural learning model that can be applied to a
dataset to find outliers. If enough training sets with normal events can be
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provided, the autoencoder can understand the inter-dependency of fea-
tures. It generates a reconstruction error for all input features by encoding
and decoding them, where the abnormal instances have higher reconstruc-
tion error.

Unsupervised DL OD techniques focus on essential features to find out-
liers form dataset. They label the dataset, which is initially not labeled.
The autoencoder is a popular unsupervised DL OD technique (Chen et
al., 2017). In recent research (Zhou and Paffenroth, 2017; Chalapathy et
al., 2017), unsupervised DL OD algorithm shows great effectiveness. Un-
supervised models can be divided into two subcategories, such as model
architecture embracing hybrid models (Erfani et al., 2016) and autoen-
coders (Andrews et al., 2016). The autoencoder-related models measures
the degree of outlierness by observing reconstruction error of each feature
space through adopting the value of residual vector. Hendrycks et al. (2018)
implemented an approach for improving the OD technique called outlier
exposure. They identified a classification model by performing iteration to
understand the heuristics; it helps to distinguish between distributed sam-
ples and outliers.

A universal framework that utilizes DL technique to log online OD and
analysis, called Deeplog, was presented by Du et al. (2017). To model the
system log, Deeplog applies long short-term memory architecture. The al-
gorithm learns and encodes the whole logging process. In contrast to other
methods where outliers are detected in each session, Deeplog learns out-
liers for every log entered. In high-performance computing system, Borgh-
esi et al. (2018) developed OD technique using autoencoder (Neural Net-
work). A set of autoencoders are trained with the supercomputer nodes to
learn the normal behavior, afterwards those autoencoders can identify ab-
normal behaviors.

Based on training mechanism, deep leaning OD methods can engage
either one class neural network or deep hybrid models (Chalapathy and
Chawla, 2019). Adopting deep neural networks, deep hybrid models mainly
emphasize on extracting feature from the autoencoder after learning the
hidden representation from the autoencoders. Most OD algorithms use
them as inputs, such as one class SVM. Because of the shortage of labeled
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datasets for OD, hybrid approaches have notable limitations, despite their

performance maximization for OD. Therefore features that are rich and dif-

ferentiable are applicable for deep hybrid models. To address and solve this

problem, Ruff et al. (2018) introduced deep one class classification, and

Chalapathy et al. (2018) introduced one class neural network.

7.2.6.5 Advantages of learning-based methods
In graph-based approach, interdependency of datapoints gets revealed by

exhibiting an intuitive representation for OD. DL methods, however, are

good for investigating the hierarchical discrimination between features in

each dataset. Also, they have improved performance on large dimensional

time series data. For time series data, they have effective ways to set bound-

aries between normal and outlier data.

7.2.6.6 Disadvantages of learning-based methods
Learning-based model, especially subspace learning is computationally ex-

pensive. Generally, not all traditional DL methods are good on increasingly

large amount of feature spaces, therefore detection of outliers could be-

come more challenging.

7.2.6.7 Research gaps and suggestions
Not all methods in neural network can effectively differentiate the bound-

ary between normal and outlier points, which is a vital task for data mining.

Moreover, further research is required for recurrent neural networks, long

short-term memory, deep believe network for OD. Kwon et al. (2019) and

Chalapathy and Chawla (2019) are surveys on deep neural network OD that

present further insights.

7.3 Tools for outlier detection

There are many of the shelf libraries and tools available to apply OD re-

search and development. Among many tools, we include the most popular

ones that are frequently used by the research community:
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a) Scikit-learn (Python): Scikit learn is a well-known tool for AI research.
This tool has some popular algorithms, including isolation forest (Liu
et al., 2008) and local outlier factor (Breunig et al., 2000) etc.

b) Python outlier detection (PyOD) (Python): PyOD is another popular
tool for OD in multivariate data. This library is widely used in academic
research and some commercial purposes; it includes ensemble meth-
ods and several DL techniques (Ramakrishnan et al., 2019; Kalaycı and
Ercan, 2018).

c) ELKI (Java): ELKI, which stands for environment for developing KDD-
applications supported by index-structures, is a Java-based open-
source platform for developing KDD applications and other data min-
ing OD algorithms. The source code is written in Java, it provides bench-
marking and simple fairness assessment test for the algorithms (Achtert
et al., 2010).

d) Python streaming anomaly detection (PySAD) (Python): PySAD is an
open-source Python-based library for streaming data to identify out-
liers. It contains a collection of algorithms, including more than 15 on-
line detector algorithm and two PyOD detectors setting for data (Yilmaz
and Kozat, 2020).

e) Scalable unsupervised OD (SUOD) (Python): SUOD works on top of
PyOD; it’s an unsupervised learning OD acceleration framework for
large-scale dataset training and predictions (Zhao et al., 2020).

f) Rapid miner (Java): Rapid miner (Kalaycı and Ercan, 2018) is a Java-
based OD extension. It adopts unsupervised approach, including COF
(Tang et al., 2002), LOF (Breunig et al., 2000), LOCI (Papadimitriou et
al., 2003), LoOP (Kriegel et al., 2009b).

g) MATLAB®: MATLAB is a user-friendly commercial software that sup-
ports many OD algorithms.

h) Time-series outlier detection system (TODS) (Python): It’s a python
based full-stack environment for detecting outliers in multivariate data
streams (Lai et al., 2020).

i) Skyline (Python): Skyline detects anomalies in near real-time.
j) Telemanom (Python): Telemanom adopts long short-term memory ar-

chitecture for multivariate time series data to detect outliers.
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k) DeepADoTS (Python): A collection of DL benchmarking pipelines for

OD for time series data.

l) Numerical anomaly benchmark (NAB) (Python): For real-time and

streaming data; NAB is used to evaluate multiple algorithms for bench-

marking purpose.

m) Datastream.io (Python): Datastream.io is an open-source tool for de-

tecting outliers in real time data.

7.4 Datasets for outlier detection

In data mining problems, two types of data are used to train any OD models,

including real data and synthetic data. Real data are expensive to gener-

ate and distribute because of their security and commercial aspect. In this

chapter, we enlist multiple real datasets to begin modeling OD problems.

Some of the most popular OD datasets are as following:

a) University of California Irvine (UCI) repository: The UCI repository

(https://archive.ics.uci.edu/ml) provides more than hundreds of data-

sets; many researchers use these datasets for evaluating their algorithm.

However, this server mostly contains dataset for classification algo-

rithms.

b) ELKI dataset: (http://elki-project.github.io/datasets/outlier): ELKI has

numerous

available datasets that can be used for different type of OD algorithm

and for assessing model parameters.

c) Outlier detection datasets (ODDS) (http://odds.cs.stonybrook.edu/

#table1): ODDS contain various types of datasets and they constitute

a good source for training-testing OD algorithms. Some of the popu-

lar datasets from this server are time series multivariate and univariate

datasets, high-dimensional data, and time series graph data.

d) Anomaly detection meta-analysis benchmarks (http://ir.library.

oregonstate.edu/concern/datasets/47429f155): Oregon State Univer-

sity has enriched datasets for evaluating various OD algorithm.

https://archive.ics.uci.edu/ml
http://elki-project.github.io/datasets/outlier
http://odds.cs.stonybrook.edu/#table1
http://odds.cs.stonybrook.edu/#table1
http://ir.library.oregonstate.edu/concern/datasets/47429f155
http://ir.library.oregonstate.edu/concern/datasets/47429f155


Chapter 7 • Outlier detection using AI: a survey 277

e) Harvard database: (dataverse.harvard.edu/dataset): This server con-
tains datasets that can be used for benchmarking unsupervised algo-
rithm. It also contains several datasets for supervised OD models.

f) Skoltech anomaly benchmark (SKAB) (http://github.com/waico/skab):
This repository contains approximately 34 datasets; authorities plan to
add more than 300 datasets in the near future for collective anomalies
and point anomalies.

All the above-mentioned sources provide many collective datasets to begin
with OD studies. However, most of the real-world datasets are not available
publicly, because of security and privacy concerns. For instance, data from
critical infrastructure, such as electricity transmission, water distribution,
and healthcare aren’t available publicly. Therefore synthetic data are an al-
ternative and next best option for creating specific domain-related models.
For example, BATADAL (http://batadal.net/data.html) presents a synthetic
data by creating virtual supervisory control and data acquisition system
(SCADA) on top of a water distribution system network (Daneels and Salter,
1999). Since most real SCADA data aren’t publicly available, this synthetic
dataset is a good choice for researchers. In data mining problems, various
evaluation techniques are implemented for the OD algorithms to measure
“goodness.” These evaluation techniques focus on OD rates and run times
of the algorithm. Mostly adopted evaluation measurements are Precision,
R-Precision, Area Under the Curve (AUC), Average Precision, Receiver Op-
erating Characteristics (ROC), Correlation Coefficient, and Rank Power (RP)
(Domingues et al., 2018).

7.5 AI assurance and outlier detection
In this chapter, we discuss several working algorithms for OD in data min-
ing problems for AI assurance. According to (Batarseh et al., 2021), AI assur-
ance can be defined as:

“A process that is applied at all stages of the AI engineering lifecycle en-
suring that any intelligent system is producing outcomes that are valid,
verified, data-driven, trustworthy and explainable to a layman, ethical in
the context of its deployment, unbiased in its learning, and fair to its users.”

http://github.com/waico/skab
http://batadal.net/data.html
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Additionally, in their review paper, the authors added ten metric scoring
schemes to present a systematic comparison among existing AI assurance
approaches. To verify an AI model, six assurance goals need to be verified
for an AI system: fairness, trustworthiness, ethics, safety, security, and ex-
plainability. The authors address the complexity of recent AI algorithms and
the necessity of investigating algorithm variance, bias, clarity, and aware-
ness to measure these AI assurance goals. In general, AI assurance goals can
be achieved by either model specific or model agnostic approach. Model
specific approaches target specific AI algorithms for quantifying or validat-
ing assurance goals, whereas model agnostic approaches are generic and
have universal frameworks that can verify all AI algorithms for assurance
goals. Despite the challenges, AI assurance is necessary. OD is at the heart
of assurance, as it improves the overall quality of the data.

Data quality needs to be assured as well. If the underlying data is invalid,
then AI algorithms will have undesirable outcomes. OD algorithms mea-
sure two important aspects of data assurance: safety and security. This is
because, analyzing a dataset for outlier not only means investigating ab-
normal samples, but also represents faults or intrusions in the system by
adversaries. For instance, ANN autoencoders detect outliers using a recon-
struction error, where the errors are generated during encoding and decod-
ing process of a dataset. Higher reconstruction errors are an indication of an
object being an outlier or an attack on the system. Therefore reconstruction
errors, in this context, can be considered as safety and security measure.
Other data assurance goals can be achieved depending on the context of
application domain and AI algorithm used.

Assurance goals, especially fairness and ethics, can be achieved by re-
moving bias in the dataset. However big data generated by real-world
source almost always have bias (Verma et al., 2021). Some of the most com-
mon data biases are activity bias, selection bias, bias due to system drift,
omitted variable bias, and societal bias. For identifying the reason behind
any bias, one should investigate how the data are generated. Most common
practice of data bias identification is to perform Exploratory Data Analysis
(EDA) (Tukey, 2020). In a recent study, Amini et al. (2019) presented a de-
biasing technique during post processing after training with AI algorithm.
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Their method adopts DL-based model to understand the latent data distri-
bution during training stage in an unsupervised manner, thereby making
the approach robust for debiasing. In another study, Bolukbasi et al. (2016)
showed a debiasing technique to mitigate gender bias. For model assur-
ance, in a recent study, Shekhar et al. (2020) applied a novel framework
based on deep-autoencoder for fairness called fairness-aware OD (FairOD).
They focused on formalizing the definition of fair OD algorithm with de-
sirable properties. Data bias can yield unfair, unethical, and untrustwor-
thy decisions by AI algorithms, therefore bias needs to be identified before
training the AI model. Data bias can be also detected using OD algorithms.

7.6 Conclusions
This chapter reviews the state-of-the-art in approaches for outlier analysis.
We group OD methods into several categories: Distance, Statistical, Density,
Clustering, Learning and Ensemble-based methods. For each category, we
present relevant algorithms, their significant importance, and drawbacks.

For distance-based methods, especially ones that use KNN based mod-
els, are sensitive to the parameter selection process, including the value of
k. Therefore an appropriate k parameter selection is important for the mod-
els that rank neighbors for OD. Clustering-based methods generally are not
explicitly suitable as they were not designed to facilitate OD. However en-
semble methods that combine results from a collection of dissimilar detec-
tors provide much improved outcomes. Ensemble methods have lower ex-
ecution time, but high-quality OD results. Regarding model evaluation, ef-
fectively assessing an OD algorithm is still an open research challenge. Also,
in many cases, it’s a daunting task to evaluate a model when a ground truth
is absent and outliers aren’t that frequent. Deep neural network-based OD
models are gradually becoming popular because of their effective measures
and quality results. ANN-based autoencoders can detect outliers, even if
sensor network data are compromised and concealed by an adversarial at-
tack. Nonetheless, DL-based models are advanced and difficult to design.
Moreover, enough investigations are required to unlock the full potential of
DL-based models for detecting outliers in real-world applications. Lastly,
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an important notion to note, OD models need to be assured, because AI
algorithms ought to be safe and secure from unwanted outliers.
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Radovanović, M., Nanopoulos, A., Ivanović, M., 2015. Reverse nearest neighbors in un-
supervised distance-based outlier detection. IEEE Transactions on Knowledge and
Data Engineering 27 (5), 1369–1382. https://doi.org/10.1109/TKDE.2014.2365790.

Ramakrishnan, J., Shaabani, E., Li, C., Sustik, M.A., 2019. Anomaly detection for an
E-commerce pricing system. CoRR, arXiv:1902.09566.

Ramaswamy, S., Rastogi, R., Shim, K., 2000. Efficient algorithms for mining outliers
from large data sets. SIGMOD Record 29 (2), 427–438. https://doi.org/10.1145/
335191.335437.

Ranshous, S., Shen, S., Koutra, D., Harenberg, S., Faloutsos, C., Samatova, N.F., 2015.
Anomaly detection in dynamic networks: a survey. WIREs: Computational Statis-
tics 7 (3), 223–247. https://doi.org/10.1002/wics.1347.

Rayana, S., Akoglu, L., 2016. Less is more: building selective anomaly ensembles. ACM
Transactions on Knowledge Discovery from Data 10 (4). https://doi.org/10.1145/
2890508.

Ren, D., Rahal, I., Perrizo, W., Scott, K., 2004a. A vertical distance-based outlier detec-
tion method with local pruning. In: Proceedings of the Thirteenth ACM Interna-
tional Conference on Information and Knowledge Management, pp. 279–284.

https://doi.org/10.1111/coin.12097
https://doi.org/10.1002/bimj.4710370219
https://doi.org/10.1002/bimj.4710370219
https://arxiv.org/abs/1811.02196
https://arxiv.org/abs/1811.02196
https://doi.org/10.1109/TKDE.2014.2365790
https://doi.org/10.1145/335191.335437
https://doi.org/10.1145/335191.335437
https://doi.org/10.1002/wics.1347
https://doi.org/10.1145/2890508
https://doi.org/10.1145/2890508


288 AI Assurance

Ren, D., Wang, B., Perrizo, W., 2004b. RDF: a density-based outlier detection method
using vertical data representation. In: Fourth IEEE International Conference on
Data Mining (ICDM’04), pp. 503–506.

Rizk, H., Elgokhy, S., Sarhan, A., 2015. A hybrid outlier detection algorithm based on
partitioning clustering and density measures. In: 2015 Tenth International Confer-
ence on Computer Engineering Systems (ICCES), pp. 175–181.

Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller,
E., Kloft, M., 2018. Deep one-class classification. In: Dy, J., Krause, A. (Eds.), Pro-
ceedings of the 35th International Conference on Machine Learning, vol. 80. PMLR,
pp. 4393–4402. http://proceedings.mlr.press/v80/ruff18a.html.

Saha, B.N., Ray, N., Zhang, H., 2009. Snake validation: a PCA-based outlier detection
method. IEEE Signal Processing Letters 16 (6), 549–552. https://doi.org/10.1109/
LSP.2009.2017477.

Salehi, M., Leckie, C.A., Moshtaghi, M., Vaithianathan, T., 2014. A relevance weighted
ensemble model for anomaly detection in switching data streams. In: Tseng, V.S.,
Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (Eds.), Advances in Knowledge Discov-
ery and Data Mining. Springer International Publishing, pp. 461–473.

Samparthi, V., Verma, H., 2010. Outlier detection of data in wireless sensor networks
using kernel density estimation. International Journal of Computer Applications 5.
https://doi.org/10.5120/924-1302.

Satman, M.H., 2013. A new algorithm for detecting outliers in linear regression. Inter-
national Journal of Statistics and Probability 2, 101.

Schubert, E., Wojdanowski, R., Zimek, A., Kriegel, H.-P., 2012. On evaluation of outlier
rankings and outlier scores. In: Proceedings of the 2012 SIAM International Confer-
ence on Data Mining (SDM), pp. 1047–1058.

Schubert, E., Zimek, A., Kriegel, H.-P., 2014. Local outlier detection reconsidered: a
generalized view on locality with applications to spatial, video, and network out-
lier detection. Data Mining and Knowledge Discovery 28 (1), 190–237. https://
doi.org/10.1007/s10618-012-0300-z.

Sehwag, V., Chiang, M., Mittal, P., 2021. SSD: a unified framework for self-supervised
outlier detection. CoRR, arXiv:2103.12051.

Shahid, N., Naqvi, I.H., Qaisar, S.B., 2015. Characteristics and classification of outlier
detection techniques for wireless sensor networks in harsh environments: a sur-
vey. Artificial Intelligence Review 43, 193–228. https://doi.org/10.1007/s10462-012-
9370-y.

Sheikholeslami, G., Chatterjee, S., Zhang, A., 2000. WaveCluster: a wavelet-based clus-
tering approach for spatial data in very large databases. The VLDB Journal 8 (3),
289–304. https://doi.org/10.1007/s007780050009.

Shekhar, S., Shah, N., Akoglu, L., 2020. FAIROD: fairness-aware outlier detection.
CoRR, arXiv:2012.03063.

Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H., 2017. Fake news detection on social media:
a data mining perspective. SIGKDD Explorations Newsletter 19 (1), 22–36. https://
doi.org/10.1145/3137597.3137600.

Shukla, M., Kosta, Y.P., Chauhan, P., 2015. Analysis and evaluation of outlier detection
algorithms in data streams. In: 2015 International Conference on Computer, Com-
munication and Control (IC4), pp. 1–8.

http://proceedings.mlr.press/v80/ruff18a.html
https://doi.org/10.1109/LSP.2009.2017477
https://doi.org/10.1109/LSP.2009.2017477
https://doi.org/10.5120/924-1302
https://doi.org/10.1007/s10618-012-0300-z
https://doi.org/10.1007/s10618-012-0300-z
https://doi.org/10.1007/s10462-012-9370-y
https://doi.org/10.1007/s10462-012-9370-y
https://doi.org/10.1007/s007780050009
https://doi.org/10.1145/3137597.3137600
https://doi.org/10.1145/3137597.3137600


Chapter 7 • Outlier detection using AI: a survey 289

Singh, G., Masseglia, F., Fiot, C., Marascu, A., Poncelet, P., 2010. Mining common out-
liers for intrusion detection. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H.
(Eds.), Advances in Knowledge Discovery and Management. In: Studies in Compu-
tational Intelligence, vol. 292. Springer, Berlin, Heidelberg.

Smrithy, G.S., Munirathinam, S., Balakrishnan, R., 2016. Online anomaly detection us-
ing non-parametric technique for big data streams in cloud collaborative environ-
ment. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 1950–1955.

Su, S., Xiao, L., Ruan, L., Gu, F., Li, S., Wang, Z., Xu, R., 2019. An efficient density-
based local outlier detection approach for scattered data. IEEE Access 7, 1006–1020.
https://doi.org/10.1109/ACCESS.2018.2886197.

Tamboli, J., Shukla, M., 2016. A survey of outlier detection algorithms for data streams.
In: 2016 3rd International Conference on Computing for Sustainable Global Devel-
opment (INDIACom), pp. 3535–3540.

Tang, B., He, H., 2017. A local density-based approach for outlier detection. Neuro-
computing 241, 171–180. https://doi.org/10.1016/j.neucom.2017.02.039.

Tang, J., Chen, Z., Fu, A.W., Cheung, D.W., 2002. Enhancing effectiveness of outlier de-
tections for low density patterns. In: Chen, M.-S., Yu, P.S., Liu, B. (Eds.), Advances in
Knowledge Discovery and Data Mining. Springer Berlin Heidelberg, pp. 535–548.

Tang, X., Yuan, R., Chen, J., 2015. Outlier detection in energy disaggregation using sub-
space learning and Gaussian mixture model TT. International Journal of Control
and Automation 8 (8), 161–170. https://www.earticle.net/Article/A253913.

Ting, Ming, Kai, Xu, Bi-Cun, Washio, Takashi, Zhou, Zhi-Hua, 2020. Isolation distri-
butional kernel: a new tool for kernel based anomaly detection. In: Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 198–206.

Tran, Luan, Fan, Liyue, Shahabi, Cyrus, 2016. Distance-based outlier detection in data
streams. Proceedings of the VLDB Endowment 9 (12), 1089–1100. https://doi.org/
10.14778/2994509.2994526.

Tukey, John, 2020. Exploratory Data Analysis. Pearson Modern Classics.
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