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Abstract: Wastewater treatment plants (WWTPs) are critical infrastructures responsible for processing wastewater before discharging
effluent to rivers and other potential uses. WWTPs use large, connected deep tunnels for storing sanitary and wet-weather flows for treatment.
However, wastewater in those systems cannot exceed safe tunnel levels in order to prevent overflows of untreated wastewater into the envi-
ronment. Further, WWTPs are among the 16 national lifeline infrastructure sectors in which the utilization of sensor technology has increased,
making the sectors vulnerable to all forms of cyber threats. Considering these challenges, the work presented in this manuscript uncovers the
role of AI at WWTPs by focusing on two problems: tunnel water-level prediction and detection of security threats. This is done by proposing
an AI framework: P2O (prediction, protection, and optimization). The prediction module forecasts the tunnel water level using deep-learning
models based on the current wastewater flow in the tunnel and other inputs from the sensors and gauges. The protection module focuses
on classifying the intentionality of an anomaly, i.e., whether an attack is adversarial in nature or merely an outlier, using recurrent neural
network models. Last, the optimization module aims to provide actionable recommendations to pump operators using a genetic algorithm.
The experimental results of P2O indicate that the prediction module can predict the tunnel water level with 85% accuracy, and the protection
module can detect about 97% of intentional attacks on WWTPs. AI models within P2O are evaluated; the experimental results are presented
and discussed. DOI: 10.1061/JOEEDU.EEENG-7266. © 2023 American Society of Civil Engineers.

Practical Applications: This manuscript presents P2O, which is a novel AI framework that can predict about 85% of wastewater overflow
incidences and about 95% of intentional cyberattacks on a WWTP, as indicated in the experiments. The deployment of P2O at a WWTP is
essential, especially considering the adverse effects of overflowing wastewater on the environment (i.e., rivers and other water bodies).
Moreover, cyberattacks on WWTPs can be subtle, making them challenging to detect; on average, most of them are noticed within one
week to one month after the attack. This makes national infrastructure vulnerable to external and internal threats, influencing the well-being
of water bodies and overall national security. P2O provides a real-time monitoring interface and can recommend optimal actions in different
scenarios (i.e., outliers) for pump operators and process engineers at WWTPs.

Introduction

Wastewater treatment plants (WWTP) process the wastewater
collected from cities, households, factories, and more, before dis-
charging it (effluent) for reuse (such as reclaimed water or for agri-
culture) or to a river or another water body (Corominas et al. 2018).
Water plants are complex systems that utilize advanced network
devices to improve operational problems. It is common in WWTPs
(especially in populated areas) to use large connected tunnels for
storing sanitary and wet-weather flows for treatment (Owolabi et al.
2022). At WWTPs, the decisions on pumping the stored waste-
water from tunnels need to be made in a short time because the
wastewater cannot exceed the tunnel’s safe levels, which can cause

the overflow of the untreated water (Corominas et al. 2018; Schütze
et al. 2002) or an overuse of chemicals. This reason makes calcu-
lation time a critical issue (Schütze et al. 2002). The U.S. Environ-
mental Protection Agency (EPA) reports between 23,000 and 75,000
incidences (between 11,400,000 and 37,900,000 L of wastewater
annually) of overflowing untreated wastewater into the environment
(Robison 1991). This overflowed wastewater harms the soil, air, and
rivers (Owolabi et al. 2022). It also leads to public health issues, such
as gastrointestinal outbreaks (Sojobi and Zayed 2022). It has been
noted that wastewater treatment consumes about 12.6% of the total
energy by public utilities (Sanders and Webber 2012), which makes
up about 30% of the total operation and maintenance costs in a
WWTP (Robison 1991) and makes it essential to have a solution
that predicts the overflow of the wastewater while minimizing the
potential overflow risks and greatly helping critical decision-making
processes (such as pumping and adding chemicals). This can be
achieved using artificial intelligence (AI) for different downstream
tasks to provide sophisticated decision support at WWTPs.

Most modern WWTPs utilize cyberphysical mechanical actua-
tors, electrical sensors, and internet components communicating
via a computer network to supervise and configure the treatment
process. Large WWTPs have hundreds of sensors, actuators, and
complex connections between electrical devices to the control and
protection switching gear (CPSG), making it vulnerable to cyber-
attacks (Adepu and Mathur 2018). These cyberattacks are launched
with “minimum perturbation,” which deems them challenging to
detect (Adepu and Mathur 2016b). We present two examples of
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such cyberattacks on sensors, as plotted in Fig. 1. These examples
are based on the SWaT data set (Goh et al. 2016), and Goh et al.
(2016) present more details on these attacks. In Fig. 1(a), the two
vertical lines indicates that attackers manipulated level transmitter
sensor 101’s (LIT10) readings from the system in a marked time-
frame. An experienced operator might detect this anomaly only if
they monitor system values frequently. However, in some cases,
even under the supervision of an expert, an attack may not be de-
tected. Another example of an attack is shown in Fig. 1(b), in which
the attacker mimics the patterns of the system while manipulating
the data, which is a complex attack instance for an expert to detect.
These are examples of single-stage single-point attacks, focusing
on precisely one point in a CPSG. However, attackers can also
launch multistage multipoint attacks, which can occur at multiple

stages of the process from multiple attack points, making detecting
the attacks even more difficult.

This makes monitoring and interpretation of the data crucial for
operational decision-making while ensuring safety, security, and
efficiency at a water facility (Tuptuk et al. 2021). These reasons
constitute a need for a solution that forecasts the wastewater level,
detects potential cybersecurity threats, and utilizes these insights to
optimize the processes in WWTPs (Radanliev et al. 2021). Consid-
ering these aspects to assist treatment operators at WWTPs, this
paper presents an AI solution: prediction; protection; and optimi-
zation (P2O). Thus, the main contribution of this paper is to provide
a three-way solution using AI as a visual tool to provide actionable
insights into pump operators. P2O is developed by answering the
following two research questions (RQs).

Fig. 1. (a) Attack on the LIT101 sensor (vertical lines starting at 10:29), which manipulates the data collected from the sensor. (b) Attack on the
MV101 sensor, which began at 10:30 and ended at 10:45.
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RQ1: Which AI approach provides accurate predictions in P2O
for predicting tunnel water levels?

RQ1 compares ML and DL performance in predicting tunnel
water levels. It is based on Hypothesis 1 (H1): AccðDLðwlpÞÞ >
AccðMLðwlpÞ). This states that the accuracy (Acc) of predicting
the wastewater level (wlp) using a DL model is higher than that
in an ML model.

RQ2: How can DL models detect cyberattacks at WWTPs?
RQ2 focuses on the protection module of P2O. It is based on

comparing two recurrent neural network (RNN) models using clas-
sification metrics. RQ2 is answered based on Hypothesis 2 (H2):
AccðLSTMðACÞÞ > AccðGRUðACÞÞ. This states that the overall
accuracy (Acc) of detecting cyberattacks (Ac) of the long short-
term memory (LSTM) model is higher than the gated recurrent
units (GRU) model.

The structure of this paper is as follows: The next section presents
recent cyberattack examples on WWTPs by highlighting the need to
use DL models for detecting attacks. The “Methodology” section
presents P2O and explains the methods used in the prediction, pro-
tection, and optimization modules. “Results” section presents exper-
imental results by highlighting the performance and comparisons of
DL andMLmodels. The “Discussions” section presents the relevance
of results to decision-making and utilization of P2O. Lastly, the “Con-
clusions” section provides future work and other concluding remarks.

Literature Review

Cyberphysical systems (CPS) are “Intelligently networked systems
with embedded sensors, processors, and actuators that are designed
to sense and interact with the physical world (including human
users), and support real-time, guaranteed performance in safety-
critical applications” (Wang et al. 2015; Forest 2006). WWTPs are
CPSs, and safeguarding them is a national priority (Flynn 2020).
Adepu and Mathur (2016a) noted that cyberattacks have increas-
ingly targeted water treatment systems in recent years, and they
are ranked third in the Kaspersky ICS CERT vulnerability report
(Alanazi et al. 2022). Illyes et al. (2018) provide two reasons for
this pattern: (1) due to the expansion of the Internet of Things (IoT);
and (2) the proliferation of AI in the decision-making processes.
Further, Hassanzadeh et al. (2020) presented 15 disclosed, docu-
mented, and malicious cybersecurity incidents in the water sector,
among which two recent incidents are the Florida Water Supply
(FWS) hack in 2021 (Miller et al. 2021) and the Riviera Beach
Water Utility (RBWU) attack in 2019. In the FWS hack, the hacker
gained remote access to the programmable logic controller (PLC)
unit that controls sodium hydroxide levels in the water. The hacker
increased the amount of sodium hydroxide content in the water by
110-fold; fortunately, the attack was mitigated before the toxic lev-
els of chemicals were diffused into the distribution network. In the
RBWU incident, ransomware, a common type of cyberattack, was
launched, which paralyzed the computer systems controlling
pumping stations, water-quality testing, and payment operations.
The government authorities paid 65 bitcoins (approximately
$600,000) to the attacker in a few days; after two weeks, however,
water pump stations and water quality testing systems were parti-
ally available. Further, on January 15, 2021, an intrusion happened
at the water treatment plant that served parts of the San Francisco
Bay area (Collier 2021). The hacker had the username and pass-
word of an employee’s TeamViewer account. The hacker tried
to poison the drinking water by deleting the programs that treat
the drinking water. It took one day to discover this hack; the author-
ities acted by changing the password and reinstalling the programs.
In these examples, the systems were breached; yet, authorities

could notice the intrusions only after investigating traffic and data
flow. These incidents highlighted the vulnerability of these infra-
structures and high relevance to public safety. Considering these
details, Jian-Hua Li (Li 2018) made a case for developing and using
DL-based AI models for malware classification and intrusion de-
tection. Further, Hindy et al. (2019) used the modbus penetration
testing framework (SMOD) data set to improve security informa-
tion and event management of water infrastructures. In their study,
the authors used six ML models for scenario classification and
compared them based on classification accuracy. The authors noted
that the k-nearest neighbors indicated 94% accuracy in detecting
anomalies. In another study, Albahar et al. (2020) used the SMOD
data set to detect malicious acts from nonmalicious ones based on
neural networks. The authors compared different models by ana-
lyzing the confusion matrix generated from the results. The authors
reported greater than 60% accuracy in detecting malicious activities
and about 44% accuracy in detecting operational scenarios.
Moradbeikie et al. (2020) conducted experiments to improve safety
via fast and accurate hazard detection. For these experiments, the
authors categorized data into six classes: normal data; transient fail-
ure; permanent failure; random attack;stealthy attack; and false
alarm. The authors then compared the performance of different
ML models for attack detection. The authors further used precision,
recall, F-measure, false positive rate, and accuracy; they reported
about 97% accuracy on hazard detection and noted that it could
reduce about 60% of the time in the system recovery reconfigura-
tion. Sahu et al. (2021) proposed a fusion engine that can improve
detection accuracy by fusing features to detect cyberattacks in
power systems at CPSs. This study utilized F1 score, precision,
and recall for evaluating intrusion detection and classification.
The authors reported that the fusion engine could improve per-
formance by an average of 15% to 20% (based on F1 scores).
Faramondi et al. (2021) used ML techniques for detecting and
categorizing threats in CPS using a water distribution testbed.
The authors compared four ML techniques based on accuracy,
recall, precision, and F1 score. Based on these metrics, the authors
reported the highest accuracy (99%) for the random forest (RF)
model. Last, a study conducted by Perrone et al. (2021) for threat
recognition in critical CPS compared five ML models based on
accuracy, precision, recall, specificity, F-measure, and G-mean.
The authors reported that the RF model showed the best accuracy
(90.2%) for threat recognition compared with other models.
Considering these similar studies, our work primarily focuses on
DL-based models for detecting and classifying malicious activities
(while comparing that to other ML models), DL models proved
superior to ML and more scalabale than existing state-of-the-art
works. To achieve this, two DL models are developed and com-
pared based on accuracy, precision, recall, and F1 score to select
the best model for P2O’s protection module.

Methodology

The P2O solution consists of three major AI-driven modules,
i.e., prediction, protection, and optimization, as shown in Fig. 2.
Two data sets have been used to develop these modules, and their
details are provided in the subsection “Datasets.” The details of the
methodology used for the prediction module are presented in the
subsection “Prediction Module.” The protection module focuses on
classifying the intentionality of anomalies. To demonstrate its
application in a WWTP, SMOD, is utilized, and the details on
the methodology are provided in the subsection “Protection Mod-
ule.” Details of the optimization module are presented in the sub-
section “Optimization Module,” which aims to provide actionable
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recommendations, such as when to start pumping water from the
tunnel, how many pumps to operate, and with what capacity these
pumps should be run (Batarseh et al. 2022).

Data Sets

The data set for water-level prediction and optimization is obtained
from a WWTP (name not revealed due to nondisclosure reasons),
while for the protection module, the SMOD data set is utilized. The
SMOD data set (Laso et al. 2017) is obtained from the open-source
water testbeds because there are no publicly available real data sets
with sufficient complexity of a modern water infrastructure (Goh
et al. 2016; Laso et al. 2017). The SMOD data set is useful to build
AI for designing and evaluating defense mechanisms for water

infrastructures (Laso et al. 2017), making it a suitable choice for
this work. The details of the data sets are presented in the next
section.

Data Set for Prediction and Optimization Modules
The data for the tunnel water-level prediction is collected from one
of the largest advanced WWTP in the world (which cannot be
shared due to a nondisclosure condition from the WWTP). This
plant treats about 1,135.62 million liters of wastewater daily, but at
a peak flow, it can treat up to 3.79 billion liters daily. To fulfill the
tunnel water-level prediction objective, data from March 1, 2018,
to March 26, 2022, with 5 min intervals, are collected. The col-
lected data includes six spreadsheets, with each providing details
on (1) major flows coming in the tunnel; (2) overflow from the

Fig. 2. P2O consists of three modules: prediction; protection; and optimization.
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tunnel system to the river; (3) level sensors in the tunnel; (4) rainfall;
(5) flow meters associated with pumps used for dewatering the tun-
nel; and (6) the other critical main plant flows. Each file has 243
columns and 428,244 rows, i.e., the overall dimension of the data
used in the analysis is 1,458 columns and 2,569,464 rows. Most of
the columns (about 95%) in each file have NAvalues that indicate a
need to preprocess the data. Further, the data on pump utilization,
overflow from the tunnel to the river, and water mass have been
used in the optimization module.

Data Set for Protection Module
The SMOD (Laso et al. 2017) data set has been utilized for the
intention classification and attack situation detection at a WWTP.
The authors (Laso et al. 2017) of the SMOD data set provide a
temporal series representing details on 15 situations, affected
components, and five operational scenarios: normal; anomalies;
breakdown; sabotages; and cyberattacks. They also note that
SMOD is useful in surveillance and security applications for
CPSs, especially in training the algorithms that assess data alter-
ation and service degradation. The SMOD data set is generated
using an ultrasound depth sensor, four discrete sensors, two
pumps, and two tanks for storing water. The data were collected
at every 0.1 s, but the execution time for each operational scenario
was different. For intention classification, the details are presented
in Table 1.

Prediction Module

This subsection focuses on ML and ANN-based DL models for
tunnel water-level prediction. A schematic diagram of the method-
ology used for this module is shown in Fig. 3. As shown in the
figure, this module has five components: data preprocessing;
exploratory data analysis (EDA); model development; hyperpara-
meter tuning; and model evaluation and selection. Details on these
components are as follows.

Data Preprocessing for Wastewater-Level Prediction
The data used for this study include 243 columns in each file;
thus, the first task was to understand the not available (NA) sensor
readings in the data. The reason for NAs is due to the format of the
data produced by the reporting tool while fetching the data. Thus,
NAs were removed from the data, and the output is identified.
After preprocessing, selecting output, and combining the data into
a dataframe, there were 42 columns in the data. This combined
dataframe also had NAs in the first 60,301 rows, which were
removed. Finally, at the end of the preprocessing phase, the data
consisted of 42 columns and 367,943 rows.

In the next step, two different versions of the preprocessed data
were created, based on principal component analysis (PCA) and
sampling, to understand the effects of data-processing techniques
and maintain AI assurance. Abdi and Williams (2010) provided
evidence that PCA is a widely used technique that provides a

Table 1. Fifteen attack situations and associated labels were used for classification using the SMOD data set

Situation Affected component Operational scenario Label

Normal None Normal Normal
Plastic bag Ultrasound sensor Accident/sabotage Intentional attack
Blocked Measure 1 Ultrasound sensor Breakdown/sabotage Unknown
Blocked Measure 2 Ultrasound sensor Breakdown/sabotage Unknown
Floating objects in main tank (two objects) Ultrasound sensor Accident/sabotage Intentional attack
Floating objects in main tank (seven objects) Ultrasound sensor Accident/sabotage Intentional attack
Humidity Ultrasound sensor Breakdown Outlier event
Discrete Sensor 1 failure Discrete Sensor 1 Breakdown Outlier event
Discrete Sensor 2 failure Discrete Sensor 2 Breakdown Outlier event
Denial of service attack Network Cyberattack Intentional attack
Spoofing Network Cyberattack Intentional attack
Wrong connection Network Breakdown/sabotage Unknown
Person hitting the tanks (low intensity) Whole subsystem Sabotage Intentional attack
Person hitting the tanks (medium intensity) Whole subsystem Sabotage Intentional attack
Person hitting the tanks (high intensity) Whole subsystem Sabotage Intentional attack

Source: Data from Laso et al. (2017).

Fig. 3. Schematic diagram of the methodology used for tunnel water-level prediction.
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set of uncorrelated variables from a set of correlated variables.
Thus, considering collinearity in the data, the PCA technique for
preprocessing was selected. The second data set was produced
based on downsampling and was performed by selecting the obser-
vations based on intervals of 30 mins. This way, two versions of
the data were produced based on the raw data at the end of the
preprocessing phase.

Summary Statistics and Graphical Representations
EDA helps to find or understand patterns in the data; it is a fun-
damental step after data collection (Komorowski et al. 2016). To
achieve this, four techniques, i.e., summary statistics, visualization,
correlations, and variance inflation factor (VIF), have been used
for the tunnel water prediction level. First, the summary statistics,
such as minimum, maximum, median, interquartile range, mean,
and standard deviation, are calculated for all the sensors. Next,
time-series plots of different sensors are produced to understand the
visual patterns in the data. Next, Pearson’s correlation coefficient
(Ratner 2009) is used to uncover the strength of a linear relationship
between every two sensors. Finally, a multicollinearity check in the
data is performed using VIF analysis. The literature (James et al.
2013) indicated that a VIF value higher than or equal to 5 indicates
multicollinearity, which affects the regression models negatively
(Alin 2010). This recommendation was followed while performing
a multicollinearity check.

Model Selection and Development for Prediction Module
Ardabili et al. (2020) pointed out the rise of DL and ML appli-
cations for data-driven decision-making at WWTPs. A survey con-
ducted by Corominas et al. (2018) revealed that artificial neural
network (ANN) and PCA are the top-two widely used methods in
the literature. Furthermore, the authors noted that ANN, PCA, and
regression, along with four other techniques, reached the plateau of
productivity; these methods have a large number of citations and
are well-established in the research field (Corominas et al. 2018).
Generally, ML models are simple, computationally efficient, and
can perform better when the amount of data is small (Thompson
et al. 2020). On the other hand, DL models are complex, computa-
tionally expensive, and less explainable but provide accurate results
on large data sets (Thompson et al. 2020). This makes it challeng-
ing to select a correct model that provides accurate predictions
while maintaining complexity. Based on these reasons and con-
sidering a scenario of high-stake decision-making, a comparison
among ML-based models, ANN, and RNN-based DL models for
water-level prediction is performed.

Explainability can help improve scientific understanding and
create trust by showing the importance of different variables to
the decisions (Batarseh et al. 2021; Doshi-Velez and Kim 2017;
Gilpin et al. 2018; Adadi and Berrada 2018). According to Kabir
Sikder et al. (2022), SHapley Additive exPlanations (SHAP)
(Lundberg and Lee 2017), a game theory-based black box ex-
plainer, has recently gained traction in DL models’ deployments.
It also has been revealed that the tree-based ML models and
LSTM with SHAP provide the best approach in explaining the
model predictions for multivariate time-series data (Zanzotto
2019). Accordingly, considering the multivariate aspect of time-
series forecasting, three ensemble tree-based ML models and
two DL models are selected to predict the tunnel water level.
Three selected ML models are RF, eXtreme gradient boosting
(XGBoost), and light gradient boosting machine (LightGBM),
while two selected DL models are feed-forward ANN (FF-ANN)
and LSTM. The equations (Bruce et al. 2020) used in modeling
RF and boosted trees (XGboost and LightGBM) are presented in
Eqs. (1) and (2)

F̂B
rf ¼ 1

B

XB
b¼1

Tðx; θbÞ ð1Þ

where B = a number of trees; Tðx; θbÞ = a forest of b trees where
θb characterizes the bth RF tree in terms of split variables, cut-
points, and terminal-node values

F̂ ¼ α1f̂1 þ α2f̂2þ · · · þαMf̂M ð2Þ

where α1;α2; : : : ;αM = the weights to train f̂1; f̂2; : : : ; f̂M mod-
els that minimize the error em to provide the ensemble model F̂.

The equations used in developing FF-ANN (James et al.
2013) and LSTM (Yu et al. 2019) are presented in Eqs. (3) and (4)

FðXÞ ¼ β0 þ
Xk
k¼1

βkg

 
wk0 þ

Xp
j¼1

wkjXj

!
ð3Þ

where k = hidden layers; β = bias values; function gð..Þ = the
activation functions for p variables; and w = the weight values

yt ¼ g2ðW3g1ðW1at−1 þW2at þ baÞ þ byÞ ð4Þ

where t = a time-step; W1, W2, W3 = the coefficients; and ba, by =
the bias values temporally shared with two activation functions,
i.e., g1 and g2, which produce an output yt for that time-step.

Hyperparameter Tuning of Tunnel Water-Level
Prediction Models
This process started by splitting the preprocessed data into training
(70%) and testing (30%) sets. The training data set was used
further for hyperparameter tuning, i.e., an optimization process.
Kochenderfer and Wheeler (2019) provided a general philosophy
for hyperparameter tuning, i.e., “determine which hyperparameters
to tune and their search space, adjust them from coarse to fine,
evaluate the performance of the model with different parameter
sets, and determine the optimal combination.” Yu and Zhu (2020)
noted different search algorithms, i.e., grid search, random search,
Bayesian optimization and its variants, and tree parzen estimators,
which can help to determine the optimal combination of hyperpara-
meters. For P2O, a grid search and random search algorithms are
used for this purpose. A grid search algorithm is an exhaustive ap-
proach that provides the most accurate prediction with the optimal
combination (Yu and Zhu 2020). It is a widely used algorithm
because of its mathematical simplicity (Bergstra and Bengio 2012);
it is also used for tuning tree-based models. The random search
algorithm is a randomized search technique that improves grid
search (Bergstra and Bengio 2012). As noted by Yu and Zhu (2020),
random search is more effective than grid search in most cases, and
flexible resource allocation and parallelization are the main advan-
tages of this method (Feurer and Hutter 2019). Thus, for these rea-
sons and considering the computational complexity of DL models, a
random search technique is selected for tuning hyperparameters of
DL models.

For tree-based models, a grid search is performed using three-
fold cross-validation (CV) on the training set (Asadollahfardi et al.
2022), consisting of 70% of the original data (Rahnama et al.
2020). Usually, the cross-sectional CV methods split the data ran-
domly using random seeds in training and validation sets. The data
obtained from these methods do not mimic the temporal uncer-
tainty, creating gaps in the time series (Willemain 2013). Further,
these methods may also lead to information leakage in the model,
which affects the model’s performance on unseen data (Willemain
2013). Therefore, the CV process should be based on a temporal
partition. A figure (Fig. S1) explaining this concept is provided in
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the Supplemental Materials. The temporal partition can be per-
formed using a time-series split in which the observations are split
along with sequences (Hyndman and Athanasopoulos 2018). After
performing the CV using a time-series split, the training data are
divided into training and validation sets. Next, the training set is
used for building RF, XGBoost, and LightGBM models, while the
validation set is used to assess each model’s performance in the
hyperparameter tuning process. The details on the selection of hy-
perparameters are provided in Table 2, which are based on guidance
provided by Kuhn and Johnson (2013).

The hyperparameter tuning for FF-ANN and LSTM is performed
using a random search algorithm as suggested by Asadollahfardi
et al. (2018) based on a time-series CV. The hyperparameter tun-
ing for DL models can be categorized into two groups: (i) model
training; and (ii) model design (Yu and Zhu 2020). The most criti-
cal hyperparameters for model training are batch size and learn-
ing rate because they determine convergence speed; for the model
design, the number of neurons and number of hidden layers
are important (Yu and Zhu 2020; Charu 2018). In this study,
the hyperparameters from both groups are tuned to find the best
suitable configuration. This task is performed using the last
20% of the training data as a validation set to assess the model’s
performance in predicting tunnel water level. Details on the
hyperparameters of FF-ANN and LSTM are provided in the
Supplemental Materials.

Model Evaluation and Selection Metrics
The selection of evaluation metrics is based on the performance
measures and evaluation criteria for hydrologic and water quality
models provided by Moriais et al. (2007). The AI models are evalu-
ated based on three metrics: root mean squared error (RMSE);
RMSE-observation standard deviation ratio (RSR); and Nash–
Sutcliffe efficient (NSE) (Park et al. 2022). The formulas for these
metrics are provided as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðyi − piÞ2

n

r
ð5Þ

RSR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðyi − piÞ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðyi − p̄Þ2

p ð6Þ

NSE ¼ 1 −
P

n
i¼1 ðyi − piÞ2P
n
i¼1 ðyi − ȳÞ2 ð7Þ

In Eqs. (5)–(7), yi = the observed value; pi = the predicted
value; n = total data points in the data set; p̄ = the average of pre-
dicted values; and ȳ = the average of observed values. RMSE is the
square root of the average squared error (Chai and Draxler 2014),
which ranges from 0 to ∞. RSR ranges from 0 to 1, where the
smaller the RSR the better the model, and a value <0.7 is consid-
ered satisfactory (Moriasi et al. 2007; Bennett et al. 2013). The
value of NSE ranges from −∞ to 1, and the model is considered
a better fit if it reaches 1 (Moriasi et al. 2007).

Protection Module

The detection and classification of malicious activities are per-
formed using the SMOD data set. For this study, the data are
collected through PLC using three registers: Register 2 (stores the
binary state of the four discrete sensors); Register 3 (records
the binary state of Pumps 1 and 2); and Register 4 (contains the
value of the ultrasound depth sensor). These data are then used
for classifying the attack intentions. A schematic diagram of the
methodology used for detecting and classifying malicious activities
using SMOD is shown in Fig. 4. The details on data preprocessing,
model development, and evaluations are presented next.

Data Preparation for Protection Module
Data preprocessing is performed in four steps: (1) data conversion;
(2) data normalization; (3) datatype conversion; and (4) oversam-
pling. In the first step, the sensor values from Register 2 are ex-
tracted and converted into a binary format, resulting in seven new
columns. In the second step, data normalization is performed using
min-max normalization to ensure that all the sensor values have
the same scale. Next, the normalized data are converted into a time-
stamp, so each data point forms a time-series window for the model
to learn. After analyzing the data, it was found that there is an im-
balance in the data, i.e., unequal class distribution (Kulkarni et al.
2020). Considering this data quality issue, an oversampling tech-
nique, i.e., a data-level method, is applied to increase the minority
class instances to match them with the majority class instances.

Table 2. Hyperparameter details for RF, XGBoost, and LightGBM

Parameter Description Values

RF model hyperparameters
n_estimator Number of trees in the forest 100, 200, 300, 400, 500
max_depth Maximum depth of the tree 5, 10, 20, 30, 40,50
max_features Number of features to consider when looking for the best split auto, sqrt
min_samples_split Minimum number of samples required to split an internal node 2, 3, 5, 7, 9
min_samples_leaf Minimum number of samples required to be at a leaf node 1, 3, 5

XGBoost model hyperparameters
eta Learning rate or step size shrinkage 0.05, 0.1,0.2,0.3
n_estimator Number of boosting rounds 10, 20, 50, 100, 200, 300
max_depth Maximum depth of a tree 2, 4, 6, 7, 8, 10
colsample_bytree Subsample ratio of columns when constructing each tree 0.5, 0.7, 0.9, 1
alpha L1 regularization 0, 0.5, 1

LightGBM model hyperparameters
learning_rate Learning rate 0.05, 0.1, 0.2, 0.3
num_leaves Complexity of tree model 50, 60, 70, 80, 100
num_iterations Number of iterations 10, 20, 50, 100, 200, 300
max_depth Maximum depth of a tree 2, 4, 6, 8, 10
bagging_fraction Subsample ratio of columns when constructing each tree 0.5, 0.7, 0.9, 1
lambda_l1 L1 regularization 0, 0.5, 1
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The oversampling is performed using the synthetic minority over-
sampling technique (SMOTE) (Chawla et al. 2002), a popular over-
sampling method in data mining literature (Fernández et al. 2018).
After applying SMOTE, each minority class was oversampled to
23,287 instances to match the majority class. Details about unequal
class distribution in the data set are provided in the Supplemental
Materials (Fig S2).

Model Development for Classifying Cyberphysical Attacks
Model development is started by dividing 80% of the prepossessed
data as a training set and the remaining 20% as a test set. Next,
two DL models, i.e., GRU and LSTM, have been selected with
a softmax activation function to detect and classify malicious
activities. The GRU model is also an RNN-based model suitable
for predicting sequences and time-series-based data (LeCun
et al. 2015). It has also been noted that GRU is similar to LSTM
but computationally inexpensive (Hettiarachchi and Ranasinghe
2019); both, however, are popular to use for time-series (Lim and
Zohren 2021). Considering these reasons, GRU and LSTM models
are compared. In this study, the hyperparameters from both groups,
i.e., model training (learning rate) and model design parameters
(number of hidden layers and neurons), are tuned to find the best
suitable configuration. This task is performed using the last 20%
of the training data as a validation set to assess the model’s per-
formance. For the hyperparameter tuning, the weights and biases
(W&B) (Biewald 2020) platform is used, which automates the hy-
perparameter optimization using the grid-search method. Details on
the range of hyperparameters used for tuning are provided in the
Supplemental Materials.

Model Evaluation Metrics
Model evaluations are performed using a confusion-matrix-based
approach. A confusion matrix compares the difference between
the observed and predicted values (Kulkarni et al. 2020). It also
provides details on true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN), which offer more in-
sights into the classifier. Further, using the values from the con-
fusion matrix, the accuracy, precision, recall, and F1 score are
calculated. Accuracy indicates the overall accuracy of the classi-
fier, while precision shows the accuracy of the model in predict-
ing positive instances, and recall denotes the strength of a model
predicting positive outcomes (Bruce et al. 2020). The F1 score is
a weighted harmonic mean between precision and recall, which
provides the trade-off between correctness and coverage. The for-
mulas for accuracy, precision, recall, and F1 score are provided as
follows:

Accuracy ¼ TNþ TP
TNþ FPþ FNþ TP

ð8Þ

Precision ¼ TP
TPþ FP

ð9Þ

Recall ¼ TP
TPþ FN

ð10Þ

F1score ¼ 2 � Precision � Recall
Precisionþ Recall

ð11Þ

This way, GRU and LSTM are compared based on these clas-
sification evaluation metrics.

Optimization Module

The optimization module in P2O aims to minimize the amount
of wastewater sent to the wet-weather treatment process using an
optimization technique, as shown in Fig. 5. It can be achieved by
controlling the influent flow to the tunnel and the wet-weather treat-
ment plant by optimizing the actions and using industrial pumps in
the WWTP. Currently, the total depth of a tunnel at the WWTP is
137 ft, which is 120 ft below sea level. The WWTP uses five large
industrial pumps that can move water between 189 and 315Ml=d
(million liters per day), and one lesser capacity pump can move
water between 11 and 37 Ml=d. These pumps directly control
the amount of wastewater treated by chemical means. Thus, this
module applies an optimization technique for finding the optimal
actions and their expected effect on the level of wastewater in the
tunnel. The optimization module uses inputs from sensors, actua-
tors, pump states, and forecasted water levels. It provides action-
able recommendations such as when to start pumping water to
the tunnel, how many pumps to operate, and what capacity these
pumps should be run for the operators. This is achieved using a
genetic algorithm (GA), i.e., a classical metaheuristic algorithm
inspired by natural selection (Hingston et al. 2008). Dokeroglu et al.
(2019) noted that GA is a widely used optimization algorithm com-
pared with other methods; due to its popularity, GA is selected for
this task. To perform optimization, the GA follows selection, cross-
over, and mutation (Katoch et al. 2021). Based on Zhong et al.
(2005), the tournament selection operator is suitable for the prob-
lems in which an individual’s fitness is essential. Thus, tournament
selection is suitable considering individual pumps’ importance.
Next, the half-uniform crossover operator is selected because it pro-
vides fast convergence to local minima and enables a fast search of
solution space (Picek et al. 2012). Finally, the multiple-bit flip op-
erator is used for the mutation because it provides a high variance
between generations (Chicano et al. 2015), which is especially im-
portant considering the water flow variable. The schematic diagram
of the optimization module of P2O is shown in Fig. 5. It can be seen
that the GA takes input from the AI model (tunnel water-level pre-
diction) and WWTP data (pump capacity, pump threshold, current
tunnel water level, and water mass). The data from the WWTP are
provided as input to the GA model via interpolation. The interpo-
lation unit is responsible for estimating a function value (Lunardi
2018) fðxiÞ for n inputs, i.e., x1; x2; : : : ; xn, and to make the water
level into water mass conversion; measurement samples from the
tunnel from different time steps have been used. This is performed

Fig. 4. Schematic diagram of the methodology used for detecting and classifying malicious activities using SMOD.
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in Python using polynomial interpolation by dividing 50% of the
data for training and the remaining 50% for measuring an empirical
error for the models. Based on the approximation error, Newton’s
divided differences method (Das and Chakrabarty 2016) provided
the lowest approximation error and was selected in the interpolation
unit. Based on this data, the GA creates the chromosomes of each
pump P for n pumps such that the pump’s start time (S) ½00∶00;
23∶55� → ½0,287� encoded with nine bits, run time (R) ½00∶00;
23∶55� → ½0; 48�, and operation capacity (C) ½0%,100%� → ½0,100�
combined into a binary string, as shown in Eq. (12). For example, the
encoding for the P2 can be shown as P1∶fS1 ¼ 12∶00;R1 ¼ 00∶35;
C1 ¼ 50g, P2∶fS2 ¼ 13∶05;R2 ¼ 00∶15;C2 ¼ 25g, which provides
010010000,000111; 0110010j010011101,000011; 0011010

S1;R1;C1jS2;R2;C2j : : : jSn;Rn;Cn ð12Þ

Considering this information, the formulation for the optimiza-
tion problem is provided in Eq. (13). In this formulation, the ob-
jective is to minimize

P
n
i CiRi, with the constraints 0 ≥ Ci ≥ 100

where Ci ∈ Z, 0 ≥ Si ≥ 287 where Si ∈ Z, and 0 ≥ Ri ≥ 48 where
Ri ∈ Z.

IðwltÞ − IðdÞ ≤ 1

12

Xn
i

XminððSiþRiÞ;tÞ

j¼Si

Ci; ∀ t ∈ ð0; 48� ð13Þ

where the tunnel water-level prediction from the prediction model
at a time (t) = wlt; the danger level threshold = d; and the water
level to mass conversion interpolation function = IðlÞ.

Results

This section presents the results of three modules, i.e., prediction,
protection, and optimization, implemented in P2O. The prediction

module uses preprocessed data for the experiments, with 42 col-
umns, i.e., sensors, and 367,943 rows. The results of the prediction
module are presented next, focusing on comparisons and selecting
an AI model for wastewater prediction. After that, the results for the
protection module are presented; they show a performance com-
parison of LSTM and GRU for intention classification and attack
situation detection. Finally, the results of the optimization module
are discussed, providing details on the simulated scenarios based on
GA for actionable recommendations to pump operators.

Results: Prediction Module

This section presents the prediction module’s results by providing
details on summary statistics, visualizations, hyperparameter tun-
ing, and model performance.

Summary Statistics and Visual Inspection
The summary statistics, i.e., minimum, maximum, median, inter-
quartile range, mean, and standard deviation, are calculated for all
the sensors. For the tunnel water-level depth sensor (output), the
observation ranges from −121.21 (0 is sea level; negative values
indicate below sea level) to 15.76, while the mean and standard
deviation values are −114.125 and 10.413, respectively. Further,
sensor observations are also visualized to check the patterns, as
shown in Fig. 6. Based on the visual inspection, it is easy to identify
that most values are negative (367,058) while very few are posi-
tive (851). Information from one of the WWTP’s process engineers
notes that the overflow from the tunnel occurs when the wastewater
level observation reaches 3. Thus, based on the EDA, it can be seen
that, in the last four years (2018–2022), there have been 94 inci-
dences at the WWTP when the wastewater overflowed from the
tunnel.

Next, Pearson’s correlation coefficients are calculated to inves-
tigate the relationship between the wastewater level depth sensor
and other sensors. The coefficients indicated that the outflow sensor

Fig. 5. Schematic diagram of the methodology used to perform optimization for providing actionable recommendations to pump operators.

Fig. 6. Wastewaterlevel sensor observations from 2018 to 2022.
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showed the highest (0.57) and rain gauges showed the second high-
est (0.56) significant positive correlations with the wastewater level
depth sensor. Overall, most of the variables (24) showed weak pos-
itive correlations (between 0 and 3), while some (15) variables in-
dicated a moderate positive correlation (between 0.3 and 0.7). The
summary statistics show that the minimum and maximum values
for the rain gauge and wastewater outflow sensor were 0, 5.01,
and 0, 221.95, respectively. The time-series plots of these three
variables, i.e., wastewater level, rain gauge, and wastewater out-
flow, are shown in Fig. 7. Based on the correlations, the VIF analy-
sis indicated the multicollinearity between all the rain gauges
and some sensors measuring the other critical main plant flows.
Thus, three sensors from the rain gauge and four sensors from
the other critical main plant flows are removed to eliminate multi-
collinearity. After performing VIF analysis, the final version of
the data included 35 sensors (output sensor and time axis), and the
same seven sensors were also removed from the data derived from
downsampling.

Further, PCA is performed on the preprocessed data with 41
sensors (without the dependent variable), and a Scree plot is used
to visualize the explained variance ratio for every principal com-
ponent (PC). It was observed that the first PC contributes the most
(about 20%); then, there is a gradual increase in the explained vari-
ance after PC 10. Thus, a threshold of 70% of cumulative explained
variance was set after visual inspection, and 15 PCs were selected
for the model development.

Hyperparameter Tuning for ML and DL Models
The hyperparameter selection for RF, XGBoost, and LightGBM is
performed for three versions of the preprocessed data. The details
of the selected hypermeters for each version of the data are pro-
vided in Table 3. This hyperparameter tuning procedure resulted
in 10,800, 17,280, and 86,400 model fits to find the optimal
combinations for the RF, XGBoost, and LightGBM models,
respectively. For the FF-ANN, a random search algorithm was
executed for five trials, and five different model configurations
were tested in each trial. Thus, a total of 100 FF-ANN models
are developed and evaluated based on mean absolute error (MAE)
to find the optimal configuration of hyperparameters. During the

training process, the batch size was set to 500; epochs were set
to 200, and 20% of the data from the training set were used as
a validation set. Further, the loss was set to MAE during training
phase. The optimal hyperparameters obtained from the experiments
are provided in Table 4. A random search algorithm was executed
for tuning hyperparameters in the development of a multivariate
LSTM model. The LSTM model is trained for 500 epochs with
a batch size of eight. Further, a cubic loss function is used as
an objective function for minimization in this process. The results
indicated that the LSTMmodel with a configuration of 512 neurons
with one hidden layer and a learning rate of 0.001 performed the
best. The architecture of LSTM used for predicting wastewater
level is shown in Fig. 8.

Table 3. Tuned hyperparameters for RF, XGBoost, and LightGBM

Hyperparameter
All
data

Downsampled
data

PCA processed
data

RF model
n_estimator 200 300 100
max_depth 10 10 5
max_features sqrt sqrt auto
min_samples_split 7 2 3
min_samples_leaf 1 1 5

XGBoost model
eta 0.05 0.2 0.3
n_estimator 100 50 20
max_depth 4 2 2
colsample_bytree 0.5 0.5 1
alpha 1 1 0.5

LightGBM model
learning_rate 0.1 0.1 0.2
num_leaves 50 50 100
num_iterations 200 300 10
max_depth 2 2 8
bagging_fraction 0.5 0.5 0.5
lambda_l1 0.5 0.5 1

Fig. 7. Visual patterns of wastewater level, rain gauge, and wastewater outflow.
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Model Comparison Based on RMSE, RSR, NSE, and R2

The RF, LightGBM, XGBoost, and FF-ANN results are presented
in Table 5. It can be observed that the RF model performs better
with the downsampled data compared with other versions. The
same pattern can also be observed for the LightGBM model, but
XGBoost and FF-ANNmodels perform better with all the columns.
For the LSTM models, three input sequences (12, 24, 30) and four
output sequences (2, 4, 6, 8) are evaluated. The results for these
configurations are shown in Fig. 9. The important results noted
from the experiments are as follows:
• After comparing four models, the least RMSE (7.515) and

RSR (0.771) values are noted for the LightGBM model with
downsampled data.

• The LightGBM model with downsampled data indicates the
highest NSE (0.413) compared with other models.

• For the test set, for 30 h input sequence, the NSE values are
negative for all the output sequence hours.

• The LSTM model with a 12 h input sequence and 2 h output
sequence indicates the lowest RMSE (0.036), RSR (0.276), and
highest NSE (0.723) values.

• The 24 h input sequence and 2 h output sequence indicate the
lowest RMSE (0.036), RSR (0.260), and highest NSE (0.739)
values for this configuration.

• Overall, it can be noted that the LSTM model with a 24 h
input sequence and a 2 h output sequence manifests the best
performance.

In the WWTP, the sea surface level (equal to 0) is used as a
reference to measure the wastewater level. The stored wastewater
is collected in the underground tunnels below the sea surface level
(less than 0, which makes it negative). Considering this, a threshold
is selected to provide soft warning predictions to check the model’s
performance. For a soft warning, a threshold of –50 m (50 m below
sea level; total tunnel depth is 120 m below sea level) is selected for
the potential effluent overflow. Based on this threshold, the selected
LSTM model correctly predicted 85% incidence of overflow in the
test data set. The results for the overflow threshold are visualized
and shown in Fig. 10.

Intention Classification and Attack Situation
Detection

The results from the hyperparameter tuning have indicated that the
LSTMmodel with two hidden layers, with 600 neurons and a learn-
ing rate of 0.001, provided the best configuration. This selected
model is trained for 1,000 epochs with a batch size of 200 to
perform two experiments. In the first experiment, intention classi-
fication is performed using the SMOD data set with four labels
(i.e., normal, intentional attack, outlier event, and unknown) using
two RNN models: GRU and LSTM. The SMOD data set is imbal-
anced data, and oversampling is performed to tackle this data
quality problem. Due to this reason, the DL models are developed
for both versions of the data set, i.e., oversampled and original. For
model comparisons, accuracy, precision, recall, and F1 score are
calculated and presented using a bar plot, as shown in Fig. 11(a).
Further, confusion matrices are calculated to compare the perfor-
mance of LSTM and GRU on oversampled data, which are pre-
sented in Tables 6 and 7, respectively. The important results noted
from the experiments are as follows:
• The result indicates higher values of evaluation metrics for

LSTM and GRU when the data are oversampled.
• The results also show that the LSTMmodel performs better than

the GRU model on oversampled data based on all the evaluation
metrics.

• Based on the confusion matrix, the GRUmodel shows the maxi-
mum accuracy while predicting normal operations (99.55%)
and the least accuracy (17.52%) for outlier events.

• For the LSTM model, the maximum accuracy can be noted for
predicting normal operations (98.97%) and the least for outlier
events (33.48%).

Table 4. Details on the optimal hyperparameters obtained using the ran-
dom search algorithm for the FF-ANN model

Data
No. of hidden

layers
No. of
neurons

Activation
functions

Learning
rate

Execution
time

All (96,801) 2 480 linear 0.0001 4:23:31
160 tanh

Downsampled
(68,417)

4 32 relu 0.001 3:56:30
160 tanh
320 tanh
32 relu

PCA
(56,033)

4 352 relu 0.0001 7:10:23
128 linear
32 relu
32 relu

Fig. 8. Architecture of LSTM used for wastewater-level predictions.
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• For outlier events, the GRU model classifies most labels as
unknown (43.94%), and a similar pattern can be observed
for the LSTM model, which also classifies most labels as
unknown (31.13%).

• Overall, the GRU model can classify about 97% of the inten-
tional attacks, while LSTM can classify about 95% correctly.
The second experiment is performed to classify 15 attack situa-

tions using LSTM and GRU models. This experiment also uses
oversampled and normal versions of the data for model develop-
ment. The results for both models are calculated and shown using
a bar plot in Fig. 11(b). Further, confusion matrices are calculated
to compare the performance of LSTM and GRU models on over-
sampled data and are presented in the Supplemental Materials
(Figs. S3 and S4). The important results noted from the experi-
ments are as follows:

Fig. 9. LSTM model with a 24 h input sequence and a 2 h output sequence shows the best performance on the test data set.

Fig. 10. LSTMmodel (24 h input sequence and 2 h output) prediction on test data set with –50 m (85% accuracy at 50 m below sea level) as the peak
threshold.

Table 5. Comparison of RF, LightGBM, XGBoost, and FF-ANN using
RMSE, RSR, NSE, and R2

Model Data RMSE RSR NSE R2

Random
forest

All 7.628 0.784 0.385 0.41
Downsampled 7.577 0.774 0.395 0.43

PCA 7.857 0.807 0.347 0.36

LightGBM All 7.548 0.775 0.398 0.42
Downsampled 7.515 0.771 0.405 0.42

PCA 7.824 0.771 0.405 0.01

XGBoost All 7.450 0.765 0.413 0.40
Downsampled 7.615 0.781 0.389 0.39

PCA 7.984 0.820 0.326 0.37

FF-ANN All 8.195 0.842 0.290 0.33
Downsampled 8.228 0.844 0.287 0.29
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• The bar plot in Fig. 11(b) indicates higher values of all evalu-
ation metrics for LSTM and GRU models for the oversampled
version of the data, which matches the pattern also observed in
the previous experiment.

• The results show that the LSTM model performs better than the
GRU model based on accuracy, recall, and F1-score metrics,
while the GRU model performs better considering the precision
metric.

• The confusion matrix for the GRU model denotes low accuracy
for most attack situations (11 out of 15), while the highest
accuracy is noted for the Blocked Measure 1 situation.

• For the LSTM model, the confusion matrix denotes only four
attack situations with low accuracy, and the highest accuracy is
noted for six attack situations: Blocked Measure 1; Blocked
Measure 2; denial of service attack; Hits 1; Hits 2; and Hits 3.

• The GRU and LSTM show similar performance in classifying
the normal operation scenarios.

• Overall, the LSTM model also performs better classifying
spoofing (89.03%) and Poly 7 (86.05%) scenarios than the GRU
model.

Results: Optimization Module

The predictions produced by the LSTM model with a 24 h input
and a 2 h output sequences are used as inputs in the optimization

Fig. 11. (a) LSTM model performs better than the GRU model for the intention classification. (b) LSTM model performs better than the GRU model
for the attack situation classification.

Table 7. Confusion matrix for the GRU model indicates the maximum
accuracy while predicting normal operations (99.57%) and the least accu-
racy (2.59%) for outlier events

Actual

Predicted

Normal
(%)

Intentional
attack
(%)

Outlier
event
(%)

Unknown
(%)

Normal 99.57 0 0.30 0.15
Intentional attack 0.21 96.74 0.53 2.52
Outlier event 14.49 24.05 17.52 43.94
Unknown 23.44 2.45 5.03 69.07

Table 6. Confusion matrix for the LSTM model indicates the maximum
accuracy for predicting normal operations (100%) and the least for outlier
events (13.44%)

Actual

Predicted

Normal
(%)

Intentional
attack
(%)

Outlier
event
(%)

Unknown
(%)

Normal 98.97 0 1.30 0
Intentional attack 0.12 94.89 4.17 0.82
Outlier event 15.46 19.33 33.48 31.13
Unknown 23.29 1.39 3.78 71.54
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module. The optimization module generated the optimal pump op-
eration times based on the input predictions, pump specifications,
and the safety threshold. Also, the prediction inputs were perturbed
by 5% for testing the optimization module. Next, the GA model
was executed 100 times, resulting in less than 3% deviation from
the optimum after 50 generations with an initial solution population
of 50. After 100 generations, the deviation from the optimal value
becomes less than 1%. The simulation showed that following the
actions suggested by the GA model reduced the amount of influent
directed to the wet-weather treatment plant by 23% as opposed
to the status quo. Additionally, it prevented any overflow incident
under extreme wet weather conditions for five years of data over
100 iterations with 5% perturbation each.

Discussion

AI for Wastewater-Level Prediction

The experiments for the prediction module focus on developing and
comparing ML and DL models to select the most accurate model
for predicting tunnel water levels at WWTPs. The results indicate
that the selected ML models (RF, LightGBM, and XGBoost) could
not perform well in the prediction task. The literature has indicated
that a model with an RSR value <0.7 is considered satisfactory; if
the NSE reaches 1, then the model is considered a better fit (Moriasi
et al. 2007; Bennett et al. 2013). Considering these criteria, ML
models and FF-ANN fail to consider satisfactory or good models
for predicting tunnel water levels. The unsatisfactory performance
is due to the lack of predictive power in predicting the peaks,
i.e., overflow of the wastewater from the tunnel. The data set in-
dicates 262 incidences of water overflow (223 in the training set
and 39 in the test set) due to which these models could not learn
these patterns from the data. Further, the time-series aspect of the
data was also not included during the development of these models,
which may also have affected the prediction ability of the models.
For the LSTM models, all the configurations show RSR values
<0.7, and most also show higher NSE values than tree-based and
FF-ANN models. In the LSTM models with a 30 h input sequence,
the NSE values are negative, indicating they are the worst fit for the
prediction task. If only the NSE values are considered, overall, the
LSTM models with a 30 h input sequence indicate the worst per-
formance. Considering this, the LSTM model with a 24 h input
sequence and a 2 h output sequence is the best model and can cap-
ture 85% incidence of overflow in the test data set. This answers
RQ1 and provesH1, which states that the accuracy of predicting the
wastewater level using a DL model is higher than an ML model.
These experiments also highlight the importance of hyperparameter
tuning, especially while using DL models. The top-five variables
that affect the selected LSTM model’s predictions are tunnel water
level (30%), water flow sensor (18%), total flow (12%), Pump 5
(11%), and treatment flow (10%). These insights and predictions
can help a WWTP devise action plans to promote the desired opera-
tional outcomes.

AI for Detecting Security Threats at WWTP

RQ2 is answered by exploring the capability of AI in detecting
security threats at a WWTP. The literature (Hassanzadeh et al.
2020) has already exposed how frequently attacks occur at
WWTPs, primarily when an attacker attacks the sensors and
manipulates the data (Tuptuk et al. 2021). Thus, to explore the
capability of AI for detecting security threats, two experiments,
i.e., intention classification and attack situation detection, are per-
formed using the SMOD data set. The results for both experiments

are mentioned in the previous section. The intention classifica-
tion experiment helps to classify whether the occurred situation is
normal, an outlier event, an intentional attack, or something else,
i.e., unknown. Overall, the results of this experiment indicate that
the LSTM model performs better than the GRU model, considering
higher accuracy, recall, and F-1 score. Considering these values,
one downside of the LSTM model is the misclassification of inten-
tional attacks as outlier events. The LSTM model misclassifies
about 4% of intentional attacks as outlier events, while the GRU
model misclassifies about 0.5% of intentional attacks as outlier
events. Overall, the GRU model is more accurate (96.74%) when
classifying intentional attacks indicating the most accurate for
detecting cyber-related adversaries.

The second experiment’s results highlight the DL models’ ca-
pability to detect attack types in WWTPs. It can be inferred that
the LSTM model performs more accurately than the GRU model.
The LSTMmodel can detect six attack scenarios correctly, i.e., with
100% accuracy, and detect normal operations with about 99%
accuracy. For misclassification, the GRU model misclassified two
attacks, i.e., high blocked (0.02%) and Hits 1 (0.04%), as normal
operations, but the LSTM misclassifies three attacks, i.e., high
blocked (0.02%), Hits 1 (0.04%), and spoofing (0.13%), as normal
operations. This highlights an important point: the GRU model
misclassifies lesser attacks as normal operations, but overall accu-
racy is lesser than the LSTM model. Considering this, for both
experiments, the LSTM model indicated higher accuracy than the
GRU model, proving H2.

The EPA establishes policies and thresholds for WWTP’s
effluent discharge, which, if not followed, these plants will get
penalized under the Clean Water Act (Robison 1991). Let’s take
an example of hospital wastewater, which has a higher con-
centration of pharmaceuticals (antibiotics and heavy metals)
and pathogen counts, which increases the dangerous substance
concentration in related urban effluent (Khan et al. 2020, 2021).
The processes in a WWTP, such as aeration, chemical coagula-
tion, activated sludge process, trickling filters, and rotations
biological contactors, affect the degree of microbe destruction
(Luo et al. 2014). Thus, if an attacker compromises one of these
processes, it may affect the quality of the wastewater treatment
and, therefore, the environment (which causes EPA penalties,
too). WWTPs must detect intentional attacks more accurately be-
cause the cost of an undetected intentional attack is higher and
more disastrous than misclassifying a normal operation as an at-
tack (i.e., false alarm). In this case, the pump operators and pro-
cess engineers should be on high alert and then take substantial
action to halt some pats of the system. The GRU model presented,
however, can help with detecting such incidents and minimizing
such related misrepresentations.

GA for Actionable Recommendation

One of the problems faced in WWTPs is to decide how much of
the influent will be treated in a wet-weather treatment plant rather
than the complete chemical treatment during extreme weather
events. The wet-weather treatment plant uses many chemicals to
treat wastewater (Reardon 2005). This process is much faster than
the complete treatment process, but it is also more costly, labor
intensive, and produces a suboptimal effluent quality (Throneburg
et al. 2014). Using a wet-weather treatment process is still neces-
sary to handle the large amounts of wastewater incoming to the
facility during these disaster scenarios without any overflows
(Peters and Zitomer 2021). The results of the optimization module
indicate the effectiveness of the proposed model for optimal oper-
ation. This is partially due to the real-time updates of the proposed
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model, and, as time passes, i.e., as more data are collected, the re-
sults can keep improving.

Decision-Making Using P2O

P2O provides a web-based real-time monitoring interface (best
viewed in colors), as shown in Fig. 12. It provides real-time
insights into prediction, protection, and optimization. The first
plot on the top left indicates wastewater level in the tunnel. In
this plot, the horizontal dashed line is sea level, the top line
represents the water-level prediction (from the prediction mod-
ule), and the bottom line represents the simulated water level after
following the optimal actions recommended by the optimization
module. The target safety level decided by a WWTP is the sea
surface level (dotted line), and P2O aims to prevent rising the
wastewater level above this defined level. Thus, the red zone
above the dotted line represents this risk associated with operating
above the level. The vertical dashed line of different colors indi-
cates the optimal pump operation markers (six pumps), indicating
the start and stop times for running the pumps. These details
are presented at the bottom right, indicating the time and capacity
of the six pumps used in the WWTP. The plot on the top right
indicates the percentage of different operational scenarios based
on the SMOD data set, which may occur during everyday oper-
ations. This plot includes 15 operational situations, and the
percentage for every situation is calculated by the protection
module. Details of the operational situations can change based
on the data collection from the WWTPs. The plot in the lower
right corner details the important sensors or variables that affect
the wastewater-level predictions. These insights are also derived
from the prediction module and explained in terms of their impor-
tance. In this way, the pump operators can use these insights
to support their decisions by using P2O as a decision-support
solution.

Conclusion and Future Work

The framework presented in this paper explores AI’s role in pre-
venting wastewater overflow and in detecting security threats.
To achieve these objectives, P2O is proposed and developed. Three
decision-tree-based (RF, LightGBM, and XGBoost) and two NN-
based (FF-ANN and LSTM) models were developed to constitute
a prediction module in P2O. The results showed that the LSTM
model predicts tunnel water levels better than the other AI models
used in the experiments. The LSTM model with a 24 h input se-
quence with a 2 h output sequence is selected as the best model for
the protection module based on RMSE (0.036), RSR (0.260), and
NSE (0.739) evaluation metrics. SHAP analysis is also performed,
which revealed that the top-five important variables that affect
the prediction the most are water level sensor data, overflow indi-
cator sensor, total water flow sensor, pump five, and wastewater
treatment flow sensor. Further, the SMOD data set is used to de-
velop the P2O’s protection module for detecting security threats at
WWTPs. For this purpose, two experiments focused on intention
classification and attack situation detection are performed. These
experiments are executed using LSTM and GRU models. For the
intention classification, the LSTM model showed 94% accuracy,
while the GRU model showed 96% accuracy in identifying inten-
tional attacks. Further, the LSTM model misclassifies about 4% of
intentional attacks as outlier events, but the misclassification rate
for the GRU model is only about 0.5%. The LSTM model misclas-
sified three attack scenarios for attack situation detection as normal
operations, while the GRU model misclassified only two attacks
as normal operations. These results revealed that the LSTM model
showed higher misclassification than the GRU model. These ex-
periments conclude that the GRU model is the best suitable for
detecting security threats considering the accuracy and severity of
not detecting an attack at WWTP. Finally, the simulation results
of the optimization module indicate a reduction in the amount of
influent directed to the wet-weather treatment plant by 23% while

Fig. 12.Graphical user interface of P2O that provides insights needed for decision-making. (Reproduced from Batarseh et al. 2022, with permission.)
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preventing overflow incidents under extremely wet weather condi-
tions based on five years of data.

In the future, we would like to focus on three objectives for
improving the framework: context; AI assurance; and attention-
based modeling. In the first objective, we would like to understand
the effect of the utilization of weather variables (e.g., snow, air
temperature, humidity) and demographic data on the models, as
a “context” for improved water-level predictions. In the second ob-
jective, we would like to evaluate the AI models further against
implicit bias and cyberattacks with minimum perturbations such
as adversarial networks, especially via threat-detection solutions.
Finally, in the third objective, we would like to use an attention-
based model to understand the effect of existing and new variables
on water-level predictions, especially for predictions during wet
seasons.

Data Availability Statement

The code for P2O will be made available based on requests to the
corresponding author. The SWaT (Goh et al. 2016) (https://itrust
.sutd.edu.sg/itrust-labs_datasets/) and SMOD (Laso et al. 2017) are
open-source data sets that can be obtained by contacting the origi-
nal owners of the data. The third data set cannot be shared due to a
nondisclosure agreement with the WWTP.

Notation

The following symbols are used in this paper:
Ac = accuracy of detecting cyberattacks;
B = number of trees;
C = pump’s operation capacity;
d = danger level threshold;

em = error;
F̂ = ensembled model;

F̂B
rf = decision tree model;

gð..Þ = activation function;
IðlÞ = water level to mass conversion interpolation function;

k = hidden layers;
n = total data points in the data set;
P = pump;
pi = predicted value;
p̄ = average of predicted values;
R = pump’s run time;
S = pump’s start time;

Tðx;θbÞ = forest of b trees;
w = weight values;

wlp = wastewater-level prediction;
x = input parameter to the model;
yi = observed value;
ȳ = average of observed values;
α = weight;
β = bias; and
∞ = infinity.

Supplemental Materials

There are Supplemental Materials associated with this paper online
in the ASCE Library (www.ascelibrary.org).
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