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AI Methods for Anomaly Detection in Cyber-Physical Systems: With
Application to Water and Agriculture

Md Nazmul Kabir Sikder

(ABSTRACT)

In today’s interconnected infrastructures, Cyber-Physical Systems (CPSs) play a critical

role in domains including water distribution, agricultural production, and energy manage-

ment. Modern infrastructures rely on a network of cyber-physical components—mechanical

actuators, electrical sensors, and internet-connected devices—to supervise and manage op-

erational processes. However, the increasing complexity and connectivity of these systems

amplify their vulnerability to cyberattacks, necessitating robust cybersecurity measures and

effective Outlier Detection (OD) methods. These methods are essential to prevent infras-

tructure failures, reduce environmental waste, and mitigate damages caused by malicious

activities. Existing approaches often lack the integration of multiple operational metrics and

context-driven techniques, hampering their effectiveness in real-world scenarios. In large

CPSs—comprising hundreds or thousands of sensors, actuators, PLCs, IoT devices, and

complex Control and Protection Switching Gear (CPSG)—the challenge of ensuring data

quality, security, and reliability is costly.

Cyberattacks frequently appear as outliers or anomalies in the data and are launched with

“minimum perturbation,” making their detection significantly challenging. This dissertation

proposes a novel framework, multiple pipelines, and AI-based methods to develop context-

driven, data-driven, and assurance-focused OD solutions. Emphasis is placed on water

and agricultural systems, illustrating the proposed framework’s effectiveness, particularly

through enhanced decision-making, operational efficiency, and cybersecurity measures.



A comprehensive survey of OD methods that employ Artificial Intelligence (AI) techniques

establishes the foundational understanding of OD. This survey underscores that successful

OD depends on domain knowledge, contextual factors, and assurance principles. Synthe-

sizing these insights, the dissertation leverages synthetically generated SCADA data and

GAN-produced poisoned data, as well as real-world SCADA data from Wastewater Treat-

ment Plants (WWTPs), to identify outliers and address critical problems—such as forecast-

ing tunnel wastewater overflows under extreme weather conditions—by applying Recurrent

Neural Network (RNN)-based Deep Learning (DL) methods. Additionally, an AI-based de-

cision support tool is introduced to detect anomalies in complex plant data and optimize

operational set-points, thereby aiding Operation and Maintenance (O&M) in Water Distri-

bution Systems (WDSs).

Similarly, in Agricultural Production Systems (APSs), which traditionally rely on reactive

policies and short-term solutions, integrating advanced AI-driven OD methods provides

farmers with timely, data-informed decisions that account for contextual changes result-

ing from outlier events. Machine Learning (ML) and DL methods measure associations,

correlations, and causations among global and domestic factors, aiding in the accurate pre-

diction of agricultural production. This contextual awareness helps manage policy, optimize

resource utilization, and support precision agriculture strategies.

The main contributions of this dissertation include introducing a novel framework that inte-

grates OD techniques with AI assurance and context-driven methodologies in CPSs; develop-

ing multiple pipelines and DL models that enhance anomaly detection, forecasting accuracy,

and proactive decision support in WDSs and APSs; and demonstrating measurable improve-

ments in cybersecurity, operational efficiency, and predictive capability using real-world and

synthetic data. These efforts collectively foster more trustworthy and sustainable CPSs. Ex-

perimental results are recorded, evaluated, and discussed, revealing that these contributions

bridge the gap between complex theoretical constructs and tangible real-world applications.
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Application to Water and Agriculture

Md Nazmul Kabir Sikder

(GENERAL AUDIENCE ABSTRACT)

Recent unprecedented AI and sensor technology advancements are transforming all do-

mains, including Water Distribution Systems (WDSs) and Agricultural Production Systems

(APSs). With Industry 4.0, WDSs and APSs are undergoing a significant digital trans-

formation to enable data-driven monitoring and control of utility operations. Incorporat-

ing cyber elements—such as sensors, actuators, data transmitters, receivers, Programmable

Logic Controllers (PLCs), and Internet of Things (IoT) devices—aims to make these Cyber-

Physical Systems (CPSs) more effective in Operation and Maintenance (O&M). However,

this progress comes with a trade-off, as CPSs become increasingly vulnerable to security and

safety threats. For example, in 2013, hackers seized control of a small Florida dam, releasing

unprocessed water into nearby communities. Furthermore, on February 5th, 2021, a Florida

water treatment plant (in Oldsmar, FL) was compromised when the hacker altered the levels

of sodium hydroxide (NaOH) in the water—a chemical that would severely damage human

tissue. Recent targeted attacks on infrastructure in Ukraine also highlight the risks facing

critical infrastructures worldwide, including WDSs. These events suggest that current con-

trol operations are largely exposed, necessitating sophisticated learning algorithms that can

estimate system states, detect anomalies, and mitigate the harm caused by such intrusions.

Technology has fundamentally transformed agriculture as well, significantly impacting this

domain. Agriculture, a vital occupation in numerous countries, now faces increasing global

population pressures. The United Nations (UN) projects the population to reach 9.7 billion



by 2050, intensifying the strain on limited arable land. With only a 4% increase in cultivable

land expected by 2050, farmers must do more with less. Traditional methods are insufficient

to meet the soaring demands, as a 60% increase in food production is needed to feed an

additional two billion people. This necessity for enhanced productivity and reduced waste

drives the integration of AI into the agricultural sector. AI adoption not only accelerates

efficiency but also increases production volumes, shortening the time from farm to market.

This dissertation proposes novel, data- and context-driven Deep Learning (DL)-based meth-

ods and decision-support tools to enhance cybersecurity and anomaly detection within WDSs

and APSs. Focusing on these critical infrastructures demonstrates how AI-driven strategies

can effectively address real-world challenges and improve resilience, operational efficiency,

and overall trustworthiness. The contributions of this dissertation include a framework

and pipelines that incorporate contextual insights and AI assurance principles to improve

anomaly detection and cybersecurity in these domains; the development of DL models tai-

lored for identifying complex outliers and providing actionable decision-support, thereby

optimizing resource allocation and ensuring sustainable operations; and validation of these

approaches through experimental evaluations using real-world and synthetic data. Collec-

tively, these efforts highlight significant improvements in reliability, efficiency, and scalabil-

ity for critical infrastructure management, bridging the gap between theoretical advances in

AI-driven anomaly detection and their practical application in WDSs and APSs.
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Chapter 1

Motivation, Background, and

Contributions

This chapter introduces AI methods and their relevance in CPSs. It outlines the significance

of using AI in WDSs and APSs, highlighting its pivotal role in today’s critical infrastructures.

1.1 An Introduction to AI and CPS

CPSs are- Intelligently networked systems with embedded sensors, processors, and actuators

that are designed to sense and interact with the physical world (including human users),

and support real-time, guaranteed performance in safety-critical applications” (Wang et al.

[9], DHS [10]). CPS is a multi-dimensional and complex scheme incorporating industrial

components and IoTs to construct advanced and automated production environments (Man-

sour [11]). The systems mostly comprise networking modules, sensors, and actuators that

are appropriate in the automation, power, civil structure, medicine, and development field

(Liu et al. [12]). In general, it’s a scheme where cyber applications and external operations

are supported in an integrated manner.

To elaborate further, CPSs operate concurrently through physical and cyber layers to achieve

enhanced operational performance. Figure 1.1 presents a basic schematic diagram of a CPS.

It consists of two major layers for operations: a physical layer and a cyber layer. The physical

1
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Figure 1.1: A Typical CPS System Schematic Diagram

layer typically encompasses a wide array of components, such as sensors and actuators, which

play a pivotal role in various domains. In the context of WDSs, these sensors monitor factors

like water flow rates, pressure levels, and quality parameters. In APSs, they might track

soil moisture, temperature, and crop health. These sensors continuously gather data from

the real-world environment and transmit it to the cyber layer, which is often a networked

infrastructure. Within the cyber layer, sophisticated algorithms and control systems process

this data in real-time, making intelligent decisions. For instance, WDSs can optimize the

flow of water to ensure efficient distribution while minimizing waste. In agricultural settings,

it can guide irrigation systems to provide crops with the precise amount of water they need

for optimal growth. The network layer then communicates the appropriate responses back

to the physical layer’s actuators through predefined protocols. In WDSs, this might involve

adjusting the flow of water pumps or opening and closing valves. In APSs, it could trigger

actions like activating irrigation equipment or adjusting the position of solar-powered trackers

for optimal sunlight exposure. CPSs integrate the physical and cyber layers to enhance the
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efficiency, reliability, and sustainability of various systems, including WDSs and APSs.

The rapid advancement of technology is leading to intelligent devices, enabling monitoring

of sophisticated tasks such as water flow and quality estimation in water systems, improv-

ing clean water supply management, and reducing environmental waste (Sikder et al. [5]).

Similarly, in agricultural systems, integrating smart components such as sensors to monitor

soil moisture, weather conditions, and crop health aids farmers in making data-driven deci-

sions for improved productivity (Kulkarni et al. [3]). While the interconnection of devices

presents opportunities for technological progress and automation, it simultaneously amplifies

vulnerabilities to cyber threats and compromises data privacy and security. This complexity

also diminishes system explainability to the naked human eye. As data flow among nodes

in the network, safeguarding the confidentiality, integrity, and authenticity of sensitive in-

formation becomes of utmost importance. The intricate network structure may introduce

vulnerabilities, raising the risk of cascading failures or disruptions with significant implica-

tions for essential operations (Jeffrey et al. [13]). Network components offer potential entry

points for adversaries to exploit sensitive data and undermine the critical infrastructure’s

functionality. Critical applications, such as water, agriculture, and energy systems, are being

targeted by intentional cyber threats and hacking state and non-state teams (Hassanalieragh

et al. [14]). Over the recent years, special consideration has been given to improving CPS

monitoring and security.

1.1.1 Definition of AI and Its Applications in CPSs

AI encompasses reasoning, planning, learning, processing, and the ability to manipulate

objects (de Fine Licht and de Fine Licht [15], Kammerer [16], Sun et al. [17]). It involves

the integration of cognitive architectures capable of human-like performance, encompassing
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aspects like motivation, emotion, and personality (Sun et al. [17]). In 1950, Alan Turing

introduced an acceptable operational interpretation of AI called The Turing Test (Turing

[18]). This test determines whether a computer has AI capabilities by assessing whether a

human interrogator can differentiate between written responses from a person or a computer

after posing questions. Turing deliberately designed the test to exclude direct interaction

between the interrogator and the computer, as simulating a person’s physical presence is

unnecessary to gauge intelligence.

The name AI was coined in 1956 by c computer scientist John McCarthy (McCarthy [19]),

and work started in earnest soon after World War II. AI encompasses various subfields,

ranging from the general (learning and perception) to the specific, such as playing chess,

proving mathematical theorems, writing poetry, driving a car on a crowded street, and

diagnosing diseases. AI is relevant to any intellectual task; it is truly a universal field. Also,

it is becoming more prevalent in every aspect of my life (Figure 1.2), especially aiding CPSs

to solve real-world problems across different application domains such as water, agriculture,

and energy systems (Russell [20]). Following are some examples of how AI is assisting CPSs

to address challenges, improving efficiency in real-world applications:

1. WDS Management: AI-powered CPS is revolutionizing the management of WDS

in urban areas. Water distribution networks are complex, and ensuring efficient O&M

while minimizing intentional anomalies and losses is a significant challenge (Batarseh

and Kulkarni [21]). AI methods can accurately analyze data from sensors in the

distribution network, including pressure, flow, and water quality data, and provide

necessary insights about the system’s health.

2. APS Management: AI-driven CPS in agriculture uses data from sensors, drones, and

satellite imagery to optimize irrigation, fertilization, and crop management (Gurrapu
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et al. [2], Dharmaraj and Vijayanand [22], Gurrapu et al. [23, 24]). By applying AI

methods, farmers can make data-driven decisions to enhance crop yield, reduce resource

wastage, and improve sustainability.

3. Energy Optimization: AI methods can optimize energy consumption in buildings,

manufacturing plants, and transportation systems (Kulkarni et al. [3], Zahraee et al.

[25]). Also, it can optimize energy usage to achieve energy efficiency and cost savings

by analyzing sensor data and external factors like weather conditions.

4. Predictive Maintenance: AI-powered CPS can analyze sensor data from machines

and equipment to predict potential failures or maintenance needs Kulkarni et al. [3],

Achouch et al. [26]. By detecting anomalies in the data, O&M can be scheduled

proactively, reducing system downtime after failure and minimizing costly breakdowns.

5. Environmental Monitoring: AI-powered methods can analyze environmental data,

such as air quality, water levels, and weather patterns, to monitor ecological health

(Himeur et al. [27]). This information helps predict and manage environmental risks

and address pollution and natural disasters.

6. Healthcare Monitoring: AI-powered tools in healthcare utilize wearable devices and

IoT sensors to monitor patients’ health conditions continuously (Alshamrani [28]). AI

methods analyze the data to detect early signs of health issues and provide timely alerts

to healthcare professionals, facilitating better patient care and timely interventions.

7. Smart Transportation: AI is revolutionizing the transportation domain by opti-

mizing traffic flow, predicting traffic congestion, and managing public transportation

schedules (Khawar et al. [29]). For autonomous vehicles, AI methods can enable real-

time decision-making to navigate safely and efficiently through traffic.
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8. Smart Grids: AI can aid in managing power distribution and consumption in smart

grids (Omitaomu and Niu [30], Usman et al. [31]). AI methods analyze data from

various sources to balance energy demand and supply, optimize grid operations, and

integrate renewable energy sources effectively.

9. Supply Chain Optimization: AI-powered applications optimize supply chain op-

erations by analyzing data from various stages, including manufacturing, inventory

management, logistics, and customer demand (Pournader et al. [32]). This optimiza-

tion reduces costs, improves delivery times, and enhances overall efficiency.

Figure 1.2: AI Applications in CPS

Water and agricultural systems are crucial among all infrastructures and are directly linked

to public health, safety, and food security. With Industry 4.0, they are becoming complex,
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and their interconnected nature makes them susceptible to cyber threats and anomalies,

necessitating the application of AI solutions for enhanced cybersecurity (Gurrapu et al.

[2], Kulkarni et al. [3]). The potential consequences of cyberattacks on WDSs can go beyond

the infrastructures to mass problems. For example, disruptions of clean water distribution

can lead to public health issues, while poor decisions on agricultural production pipelines

can disrupt food production and have significant economic impacts. AI-driven solutions can

safeguard these infrastructures against cyber threats, mitigating risks to public health and

the economy (Sikder et al. [5]).

1.1.2 Introduction to AI for Outlier Detection

An outlier or anomaly can be defined as an abnormality, deviant, or discordant data point

from the remaining dataset in data science literature. According to Hawkins [33], “an outlier

is an observation which deviates so much from the other observations as to arouse suspicions

that it was generated by a different mechanism.”

According to Aggarwal [34], in data mining literature, normal data are also known as “inlin-

ers”. Often, in real-world applications, such as fraud or intrusion detection systems, outliers

are sequential, not single data points within a sequence. For instance, a network intrusion

is an event in a sequence intentionally caused by an individual. Correctly identifying the

anomalous event helps to handle those sequences. In most conventional cases, OD methods

have two outcomes: binary labels and outlier scores (Aggarwal [34]). Outlier scores impose

each data point’s level or degree of “outlierness”. Scores naturally rank outlier points and

provide various information about the methods. However, they don’t represent a concise

summary with small group sizes. Binary labeling represents whether a data point is a strong

outlier or an inliner. OD methods can provide outlier scores, which can then be converted to
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binary labels for learning purposes. For that, a threshold is selected based on the statistical

distribution of the dataset.

Binary labels provide less information regarding the degree of outlierness; however, in most

applications, it is the desired outcome for decision-making. Defining how much deviation is

sufficient from a normal data point for an outlier is a subjective judgment. Datasets from

real applications might contain embedded noise; however, analysts might not be interested

in keeping such noise. Therefore, investigating significant deviation is a prime decision for

OD methods. To comprehend this problem clearly, Figure 1.3(a) and 1.3(b) illustrate two-

dimensional feature spaces. It is evident that clusters are identical in both figures. However,

considering a single data point “A” in Figure 1.3(a) seems different from the rest of the

data points. Therefore, “A” in Figure 1.3(a) is clearly an outlier. However, point “A” in

Figure 1.3(b) is surrounded by noise, and it’s quite difficult to say if it is noise or an outlier.

When designing OD algorithms, normal and outlier boundary conditions must be precise

and specific to application requirements.

Figure 1.3: Anomalies and Noise in Data
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Figure 1.4: A Typical Data Spectrum With Noise and Outliers

In unsupervised learning methods, noise is defined as weak anomalies that don’t meet the

criteria of being an outlier. For instance, data points close to the boundary are mostly

considered noise (as presented in Figure 1.4). Often, the separation criteria of these data

points are subjective and depend on the interest of application-specific demands. Real data

points generated from noisy environments are difficult to detect using scores. That is because

noise represents deviated data points and requires domain experts to select the threshold

between noise and outliers to satisfy application requirements. Success in OD depends

on data modeling, where every application has its unique data management requirements.

Evidently, the OD technique needs to process the attribution in the data and be sensitive

enough to understand the underlying data distribution model. By properly examining the

data model, contextual outliers can also be achieved. Aggarwal et al. [35] proposed a concept

of linkage outlier by analyzing social networks. Here, nodes that don’t show any connection

with each other are likely to be outliers; therefore, data distribution models play an important

role in designing OD algorithms.

AI excels in outlier/anomaly detection (Sikder and Batarseh [36]), continuously monitoring
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system data, and establishing baseline behavior. During the development of AI-based ap-

plications, data are created by several generational processes or observations collected from

one or multiple entities. in a CPS, outlier instances are generated when one or a collection of

entities behave in an unusual manner. Therefore, it is essential to understand the behavior of

outliers to diagnose a system’s health and predict potential system failures. Some of the most

popular OD applications are intrusion detection methods (Aggarwal et al. [35]), credit card

fraud detection (Porwal and Mukund [37]), medical diagnosis (Gebremeskel et al. [38]), sen-

sor events in critical infrastructure, precision agriculture, earth science, and law enforcement

(Bordogna et al. [39]); detailed discussions and examples are provided in Chapter 2. One of

the recently successful applications of OD is credit card fraud identification, where AI-based

OD algorithms are used to find if sensitive information, such as customer identification or

a card number, is fraudulent or stolen (Porwal and Mukund [37]). In this context, unusual

buying patterns are observed, especially large transactions or irregular buying activities.

1.1.2.1 Introduction of Cybersecurity for CPS

According to Aslan et al. [40], “The term cybersecurity refers to a set of technologies, pro-

cesses, and practices to protect and defend networks, devices, software, and data from attack,

damage, or unauthorized access”. The complexity of cybersecurity has grown due to the

rapid proliferation of interconnected devices, systems, and networks, compounded by ad-

vancements in digital infrastructure and the economy. This has led to a notable surge in

cyberattacks, many of which have severe consequences. Table 1.1 paints a picture of United

States cyber security statistics from the latest studies and reports by comparitech1.

Cyber adversaries continuously evolve and are associated with nation-states and criminal

groups, deploying increasingly sophisticated attack methods to target even the most knowl-
1https://www.comparitech.com/blog/information-security/us-cyber-crime-statistics/
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edgeable targets (Chithaluru et al. [41]). This ongoing evolution has amplified the scale

and impact of cyberattacks, prompting the need for intelligence-driven cybersecurity strate-

gies to counter evolving threats and effectively manage the abundance of data. Esteemed

bodies like the National Institute of Standards and Technologies (NIST) are promoting proac-

tive and adaptive approaches, advocating real-time assessments, continuous monitoring, and

data-driven analyses to identify, prevent, detect, respond to, and document cyberattacks to

mitigate future security breaches (Umezawa et al. [42]).

Table 1.1: Thirty-five United States Cyber Security Statistics (Source: omparitech.com)

Statistic Details

1. Almost 89.7% of United States organizations saw at

least one successful attack over a one-year timeframe

A 6.7% increase from 2020, higher than Mexico, Spain,

Germany, Colombia, and China.

2. Ransomware affected almost 78.5% of United States

organizations within a year

The Second most impacted country, behind Australia.

3. United States organizations upped security budgets

by almost 4% in 2021

3.8% increase, spending 13.7% of IT budgets on secu-

rity.

4. Nearly 89% of United States businesses prefer using

security products that utilize ML and AI

Moderate to strong preference; Saudi firms (98%) and

German companies (71.6%).

5. The United States endures the largest portion of

ransomware Trojan attacks

Highest share of attacked users, followed by Kaza-

khstan, Iran, and China.

6. Almost 59% of organizations were hit by ran-

somware in 2020 and dropped to 51% in 2021

This made the United States the second most attacked

country (up from 6th the year before) behind India

(68%) and Austria (57%)

7. Attacks were stopped before data were encrypted

in 25% of cases

20% less success in encrypting data during ransomware

attacks in 2021.

8. One-quarter of United States organizations paid the

ransom

25% paid, more than six times higher than Spain.

Continued on the next page



12 CHAPTER 1. MOTIVATION, BACKGROUND, AND CONTRIBUTIONS

Table 1.1 – Continued from previous page

Statistic Details

9. United States companies paid an average of

$620,000 in remediation costs

Average remediation cost increased by over 50% in

2021.

10. About 9 in 10 organizations have cyber security

insurance

90% have cyber insurance policy, and 75% have ran-

somware coverage.

11. Almost 12% of users tried to open a phishing link

in 2020

11.82% attempted to open a phishing link in 2020.

12. The United States was the third-largest source of

spam

Russia was the worst offender, with 21.27% of spam

originating in the country. Germany (10.97%) was in

second and the United States (10.47%) in third.

13. The United States tops the list of the most

COVID-related malicious file detections

Over 16 million detections since December 2020.

14. The United States ranks 45th out of 75 for cyber-

security performance

The United States scored 19.69, Denmark’s top scorer

and Tajikistan’s lowest.

15. The United States has the highest portion of firms

qualifying as cyber experts

25% qualify as cyber experts, 27% considered novices.

16. About 18% of firms had to pay a substantial fine

as a result of a breach

This was well over the global average of 11%.

17. Only 33% have standalone cyber insurance Hiscox found this number was unchanged from 2020.

18. The United States is the third most affected coun-

try by stalkerware

Despite the high prevalence of stalkerware, 86% of

adults are unaware of its existence or the danger that

someone in their household may be snooping on them.

19. Almost 75% of United States organizations expe-

rienced phishing attacks

35% of those affected experienced immediate financial

loss, twice the global average..

20. United States firms faced many and varied social

engineering attacks

81% of United States firms had faced smishing attacks

in 2020, 77% had experienced vishing schemes, and

80% had dealt with weaponized USB drives.

Continued on the next page
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Table 1.1 – Continued from previous page

Statistic Details

21. Only 52% of United States workers know what

phishing is

The global average was 63%. The UK performed the

best, with 69% knowing the correct definition.

22. Only 54% know the definition of malware This was well below the global average of 65%. In

its 2020 study, Proofpoint found that 30% of United

States workers think malware is a type of wifi-boosting

hardware.

23. ALMOST 75% give family members and friends

access to work-issued devices

Vulnerabilities associated with checking emails, read-

ing news, using social media, and shopping online.

24. Only 28% of United States businesses use Multi-

Factor Authentication (MFA)

Denmark (46%) heading the list and Italy (20%) at

the bottom.

25. The average employee has 75 passwords United States employees were about average. Employ-

ees in Belgium have to manage 115 passwords, and

those in Sweden, just 50

26. American company Google was issued the largest

GDPR fine to date

Google was fined $50,000,000 for not observing princi-

ples around transparency, the sufficiency of informa-

tion, and the presence of legal basis

27. The United States had the highest data breach

costs averaging $9.05 million

In the US, the average cost of a data breach rose from

$8.64 million per incident in 2020 to $9.05 million in

2021. This is by far the highest, with the Middle East

in second place with $6.93 million, followed by Canada

with an average cost of $5.4 million. World averages

were up 10% year on year.

28. Almost 24% of breaches are the result of human

error

The largest cause of breaches is malicious attacks, be-

hind 54% of incidents. System glitches cause a further

22%.

Continued on the next page
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Table 1.1 – Continued from previous page

Statistic Details

29. It takes United States companies an average of 186

days to identify a data breach

Average identification time is 207 days, and the time

to containment is 73 days; United States firms do a

little better here.

30. The IC3 received over 790,000 complaints in 2020 Since 2016, there have been a total of 2.2 million com-

plaints resulting in losses of $13.3 billion.

31. More than 70 top cyber criminals conspired

against the United States in 2020

These crimes include espionage, identity theft, wire

fraud, computer intrusions, and more.

32. There was a shortage of 377,000 IT security jobs

in 2021

ISC reported a staffing gap of 377,000 jobs in the

United States alone in 2021. Globally, the shortage

of IT security roles has reached 2.1 million.

33. Supply chain ransomware was the biggest threat

in 2021

The ransom of $4.4 million was paid to the hacking

group, who supplied a tool to restore the systems to

their original state, though the process took several

hours to complete.

34. DDoS Attacks in the United States increased by

7% in 2021

DDoS attacks grew by 11% in the first half of 2021

versus the first half of 2020. DDoS attacks were the

most significant in the United States in Q1 2021, con-

tributing to 7% of the reported attacks.

35. The United States continues to host the most

botnet-controlled servers

36% of the hosted botnets were in America, while 24%

were hosted in unidentified locations.

1.1.2.2 AI for CPS Cybersecurity

AI presents intriguing solutions that can offer insights and intelligence to counter the con-

stantly evolving landscape of cyber threats (Wirkuttis and Klein [43]). AI can predict and

proactively address potential issues by rapidly analyzing massive volumes of events and mon-

itoring diverse cyber risks. Consequently, AI is increasingly becoming an integral part of
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cybersecurity efforts, finding applications in various scenarios to automate security tasks or

augment human security teams. The fusion of the cybersecurity domain with AI has at-

tracted considerable research attention, resulting in numerous studies that tackle challenges

related to identifying, safeguarding against, detecting, responding to, and recovering from

cyberattacks. One of the key applications of AI in CPS security is intrusion detection and

prevention (Jamal et al. [44]). AI-driven OD algorithms can detect and prevent intrusion

attempts in real-time by analyzing network traffic patterns and system behavior. They can

identify unusual activities and recognize patterns indicative of potential cyberattacks (Sikder

et al. [5]). This enables rapid response to mitigate security breaches and protect CPS from

unauthorized access. AI can leverage threat intelligence data to recognize known outliers,

attack patterns, and signatures (Al-Hawawreh et al. [45]). By cross-referencing historical

data and current behavior, OD algorithms identify and could help defend against known

attack vectors, minimizing the impact of recurrent cyber threats. Also, they can perform

behavioral analysis to understand normal interactions between system components (Sikder

et al. [5]). Any deviation from the learned behavior can indicate a potential cyber threat,

enabling swift response and proactive defense mechanisms.

Similarly, AI could also forecast potential cyber threats and vulnerabilities by analyzing

historical attack data and emerging trends (Thakkar and Lohiya [46]). This predictive

capability enables organizations to proactively strengthen their cybersecurity posture and

implement preemptive measures to prevent potential attacks. Moreover, AI techniques are

also used to develop adversarial ML models that can identify and neutralize malicious activ-

ities and data poisoning (Goldblum et al. [47]). These models continuously learn from new

attack patterns to improve detection accuracy.
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1.1.3 Water Distribution and Agricultural Production Systems

AWDS is a CPS that encompasses both physical and cyber processes (Figure 1.5). It consists

of one or more physical processes, including interconnected tanks, pipes, pumps, storage

reservoirs, valves, and hydraulic components, meticulously designed to efficiently transport

potable water from water treatment plants to numerous points of use within communities

and urban areas. These physical processes are controlled and monitored through computing

systems (Lee [48]), often referred to as PLCs and Remote Terminal Units (RTUs), which

are interconnected via communication networks. This cyberinfrastructure, together with

SCADA monitoring systems, facilitates the effective control and management of the physical

processes (Bobat et al. [49]), ensuring the reliable distribution of safe and clean drinking water

to residential, commercial, industrial, and institutional consumers, encompassing homes,

businesses, schools, and healthcare facilities (Alperovits and Shamir [50]).

Figure 1.5: AI for Water Distribution Systems
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Unfortunately, the same networks expose the system to adversaries, as depicted in Figure 1.5.

Water distribution networks are often geographically spread and require automatic control

to operate. Automation makes the water distribution network vulnerable to cyber-physical

attacks (Slay and Miller [51]). Instances of malicious cyber activity targeting water and

wastewater systems have underscored the vulnerabilities within critical infrastructure. The

United States Department of Homeland Security (DHS) designates the water and wastewater

sector (WWS) as one of the primary targets for cyberattacks among the 16 lifeline infras-

tructure sectors (DHS [52]). Ensuring its protection from cybersecurity threats is recognized

as a matter of utmost national importance (WH [53]). Within the timeframe of 2012 to

2015, the WDSs underwent the highest count of evaluations carried out by the Industrial

Control Systems Cyber Emergency Response Team (ICS-CERT [54]) of the Cybersecurity

and Infrastructure Security Agency, which regularly conducts on-site cybersecurity assess-

ments for various critical infrastructure sectors. The singular exception occurred in 2014

when the number of evaluations slightly surpassed those in the energy sector. According to

ICS-CERT’s report in 2016 (ICS-CERT [54]), there were 25 cybersecurity incidents reported

by water utilities in 2015, ranking WDSs as the third most targeted sector. The fact that the

United States houses more than 151,000 public water systems (USEPA [55]) might suggest

that the cybersecurity risk within WDSs is low and most systems are adequately secure.

Nevertheless, the reality is quite different, as numerous cybersecurity incidents either re-

main unnoticed and consequently unreported (Walton [56]), or they remain undisclosed due

to the potential damage they could inflict on the victim’s reputation, customer trust, and

ultimately, financial gains (Cava [57]; Rubin [58]). Furthermore, the severity and ramifica-

tions of cyber-initiated incidents can rival those arising from operational technology incidents.

WDSs have embraced the digital era, but the absence of dedicated cybersecurity intelligence

to offer tailor-made security protocols, ensure system security and train employees remains

a prominent challenge.
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CISA [6] presented a few more cyber attacks (Table 1.2) in the United States WDSs in recent

decades. These real-world events vividly depict the high stakes in securing WDSs against

cyber threats, highlighting the pressing need for advanced protection mechanisms.

Similarly, The proliferation of emerging digital technologies has instigated a profound shift

towards digital transformation across various economic sectors, including agriculture. The

agricultural landscape and farming practices are undergoing substantial modifications due

to the assimilation of Information and Communication Technologies (ICT) and the growing

integration of the IoT. This phenomenon has fostered the emergence of the concept of ”Smart

Agriculture” (Ratnaparkhi et al. [59]; Colizzi et al. [60]). Forecasts from the United Nations

(UN) project that the global population will exceed 9 billion by 2050, precipitating an

expected surge of approximately 70% in food production demands (McKenzie and Williams

[61]). This anticipated escalation in food production rates intensifies competition within the

agricultural sector and heightens finite resources like land and water utilization.

Table 1.2: Examples of Cyber Attacks on WDSs (Source: CISA [6])

Date Attack Type Target Location Impact

August

2021

Ghost variant ran-

somware

Wastewater system

facility

California Ransomware message

on SCADA servers

July 2021 ZuCaNo ransomware Wastewater SCADA

computer

Maine Manual operation un-

til recovery

March

2021

Unknown ran-

somware variant

WDS facility Nevada SCADA and backup

system affected

September

2020

Makop ransomware WDS facility New Jersey Detection of potential

infiltration

March

2019

Unauthorized access WDS facility Kansas Former employee ex-

ploitation

Consequently, a demand arises for a novel agricultural paradigm harnessing advanced tech-
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nologies to cater to this exigency. Smart agricultural systems encompass intricate multi-

sensor configurations and Decision Support Systems (DSS) (Chichernea [62]; Gondchawar

et al. [63]) capable of capturing, analyzing, and processing extensive volumes of farm data.

This analytical capability empowers farmers to optimize product quantity and profits through

informed decision-making. These systems are poised to progressively enhance operations,

competitiveness, and profitability in the agricultural sector. Recent studies (Demestichas

et al. [64]) underscore the application of ML techniques for identifying data anomalies, com-

monly known as outliers. The integrity of the decision support system relies on uncorrupted

sensor data; hence, the objective is to identify and preclude anomalies from entering the

DSS, as anomalies could prompt the DSS to suggest actions detrimental to crop and live-

stock health.

Due to the unique focus of the research work in the agricultural domain, this dissertation in-

troduces the term “APS”. The following definition comprehensively encapsulates the essence

of the agricultural paradigm that this work examines and aims to address:

“An APS is a technological integration of agriculture’s physical and digital aspects that aims

to empower farmers to make AI-driven decisions, improving product quality & quantity and

maximizing resource efficiency by providing data-driven insights and eventually enhancing

their competitiveness and overall sustainability.”

The importance of WDSs and APSs, their complexity, real-time requirements, and potential

impact on public health and the economy highlight the significance of AI solutions for cyber

threat detection and anomaly monitoring. However, the current focus of AI research on

WDSs and APSs is imbalanced towards the AI application spectrum. This is primarily due

to the perception of lower potential economic revenue and higher complexity in generalizing

algorithms for these systems, given their inherent differences and limited transferability

of knowledge between them. However, in light of these systems’ unique challenges and
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increasing significance, the study of AI in the context of WDSs and APSs has become

critically needed.

1.1.4 Introduction to Context-driven AI for CPS

The management of wastewater treatment, includingWastewater Treatment Plants (WWTPs),

is becoming increasingly complex due to factors such as urban population growth, climate

change, and aging infrastructures (Gheisi et al. [65]). Operators face numerous challenges,

including the optimization of de-watering pump schedules, controlling energy and chemical

consumption costs during extreme weather conditions, and accurately interpreting sensor

data for water quality treatment (Malviya and Jaspal [66]). Events like heavy rainfall can

strain these systems beyond their capacities, leading to the overflows of untreated water

that pose significant environmental and public health risks, potentially violating the United

States Environmental Protection Agency (EPA) standards and regulations (Bastian et al.

[67]).

Municipalities are increasingly turning to sensor technology and Artificial Intelligence (AI)

for operational improvements, inspection, and data analysis (Chang et al. [68]). AI is rev-

olutionizing wastewater management by addressing operational challenges, mitigating risks,

and contributing to environmental sustainability (Matheri et al. [69]).

One key application of AI in this sector is predictive maintenance. AI algorithms moni-

tor equipment conditions to predict maintenance needs, reducing downtimes and emergency

repairs (Kulkarni et al. [3], Matheri et al. [69], Liu et al. [70]). Another significant applica-

tion involves optimizing treatment processes. AI analyzes sensor data to optimize chemical

dosing, energy consumption, and overall system efficiency, leading to cost savings and a re-

duced environmental footprint (Sreng [71], Alam et al. [72], Safeer et al. [73]). Additionally,
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AI enables real-time monitoring and alerts by continuously monitoring wastewater qual-

ity, detecting anomalies, and providing early warnings to prevent contamination and ensure

compliance with environmental regulations (Flores et al. [74], Nishan et al. [75], Mohanty

et al. [76]). Furthermore, pipeline inspections are enhanced through AI-powered drones and

sensors, which detect issues such as cracks, corrosion, or stageages more efficiently and ac-

curately than traditional methods (Aitken et al. [77], Sousa et al. [78], Rayhana et al. [79]).

Despite these significant advancements in AI applications, accurately forecasting short-term

fluctuations in complex WWTPs remains a considerable challenge (Kulkarni et al. [3])

1.2 Motivation and Research Background

This section further discusses the challenges, real-world applications, and AI solutions of

WDSs and APSs against cyber threats; it also comprehensively explains the necessity of

cyber-attack detection and OD methods.

1.2.1 AI For Water Distribution Systems

Ongoing transformations within water systems encompass a broad array of critical infras-

tructures, such as reservoirs (Bobat et al. [49]), WDSs and WWTPs (Spellman [80]), and

smart water networks – characterized as CPS. Smart water networks are built upon the

interplay between physical water assets and networked devices engineered to monitor, op-

erate, and supervise all aspects of the distribution system. These devices consist of sensor

networks (Ostfeld et al. [81], Hart and Murray [82]), mobile sensors (Gong et al. [83]), and

smart meters (Cominola et al. [84]). Integral components of smart water networks include

PLCs and SCADA systems. PLCs are embedded devices linked to sensors and actuators



22 CHAPTER 1. MOTIVATION, BACKGROUND, AND CONTRIBUTIONS

for data management and process control, while SCADA systems are centralized comput-

ers responsible for overseeing infrastructure operations, storing real-time process data, and

conducting analyses.

While enhancing the reliability, autonomy, and efficiency of modern WDSs, these networked

devices simultaneously expose both the physical and cyber infrastructures to cyber-physical

attacks (CPAs), as highlighted in a recent editorial (Rasekh et al. [85]). Such attacks encom-

pass a spectrum from accessing private consumer or operational information to intention-

ally damaging physical water assets such as pumps, valves, and tanks, leading to reduced

water supply and even compromising water quality. The pivotal role of WDSs in ensur-

ing safety renders them alluring targets for terrorism and cyber warfare (Lewis [86], Horta

[87], Moyer et al. [88]), elevating concerns regarding their vulnerability and potential impact

on economies and local communities.

1.2.1.1 Challenges in Water Distribution Systems

In a modern WDS, human observers cannot detect all anomalies; even when they become

aware of an anomaly, they often misinterpret it. The same human shortcomings in inter-

preting complex data are evident in after-action reports about the Deepwater Horizon oil

spill, which, among other things, recommend increased use of AI to prevent future spills

(Board et al. [89]). Modern WDSs are too complex to monitor effectively without AI. For

instance, many sewage spills result from leaks in antiquated underground systems that can

go undetected. In July 2020, an old pipe broke in New Haven, Connecticut. No one noticed

until a citizen saw raw sewage on the street the next morning and called it in. Two mil-

lion gallons of untreated sewage spilled into Long Island Sound over the next several days2.

This incident highlights the broader importance of AI in addressing various challenges in
2www.nhregister.com/news/article/Save-the-Sound-investigating-after-15396322.php
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infrastructure monitoring and public safety.

Additionally, the Maroochy Water Services incident in 2000 (Queensland, Australia) marked

one of the initial attacks in the water supply sector. A disgruntled contractor targeted the

SCADA of a sewage system, releasing nearly 1 million liters of wastewater into waterways

and parks (Slay and Miller [51]). Since then, instances of cyber-physical attacks have been

consistently on the rise. According to the United States Industrial Control Systems Cyber

Emergency Response Team (Taormina et al. [90]), multiple cyber-physical attacks have al-

ready been perpetrated against United States water utilities. Remedial measures are being

undertaken both at national and international levels; the United States Environmental Pro-

tection Agency (EPA) has been proactively addressing cyber threats for at least five years

(Taormina et al. [90]), while international collaborations between water and environmental

agencies have been initiated recently (Taormina et al. [90]).

Despite the recent advancements in computing technology, WDS has security flaws because

of its dependency on decade-old network devices. Therefore, an attacker can easily eavesdrop

on the communication between the network and the central control system. Additionally,

adversaries can send malicious attacks by spoofing sensor measurements, concealing the

intended attacks from the operators’ sight (Garcia et al. [91]) - also known as concealed

attacks. Another popular cyber-attack, replay attack (Mo and Sinopoli [92]), occurs when

a cybercriminal eavesdrops on secure network communication, intercepts, and delays signals

to misdirect the receiver. Fortunately, such attacks have a digital and physical footprint in

the network, such as sensor value deviation from the norm or water flow rate changes during

high-demand hours. Statistically, these abnormal events can be considered anomalies, which

a suitable learning algorithm can detect. In concealed attacks (Teixeira et al. [93]), since

attackers conceal the physical layer, it becomes difficult to detect these attacks by using ML

models. For example, (Taormina and Galelli [94]) presented difficulties associated with ML
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algorithms to detect concealed attacks in WDSs compared to DL algorithms. This concludes

that DL algorithms are superior in representing such complex ecosystems.

Similarly, WWTPs process the wastewater collected from cities, households, factories, and

more before discharging it (effluent) for reuse in some cases (such as reclaimed water or for

agriculture) or dumping to a river or another water body (Corominas et al. [95]). These

WWTPs are complex systems that utilize advanced network devices to improve O&M.

WWTPs use large connected tunnels for storing sanitary and wet-weather flows for treat-

ment (Owolabi et al. [96]). In the plant, the decisions on pumping the stored wastewater

from tunnels need to be made in a short time because the wastewater cannot exceed the

tunnel’s safe levels, which can cause the overflow of the untreated water (Corominas et al.

[95], Schütze et al. [97]) or overuse of chemicals. This makes calculation time a critical is-

sue (Schütze et al. [97]). The United States Environmental Protection Agency (EPA) reports

between 11,400 and 37,900 million liters of wastewater annually- of overflowing untreated

wastewater in the environment (Date et al. [98]). This overflowed wastewater harms the

soil, air, and rivers (Owolabi et al. [96]). It additionally leads to public health issues, such

as gastrointestinal outbreaks (Sojobi and Zayed [99]). It has also been noted that wastew-

ater treatment consumes about 12.6% of the total energy by public utilities (Sanders and

Webber [100]), which makes up about 30% of the total operation and maintenance costs in

a WWTP (Date et al. [98]). This makes it essential to have a solution that predicts the

overflow of the wastewater while minimizing the potential overflow risks and greatly helping

critical decision-making processes (such as pumping and adding chemicals). This can be

achieved using AI for different downstream tasks to provide sophisticated decision support

at WWTPs.
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1.2.1.2 Context-driven Deep Learning for Wastewater Management

There is an increasing demand for accurate short-term forecasting tools in WWTPs to sup-

port real-time decision-making and enhance emergency preparedness (Fu et al. [101]). In-

dustry experts and major utilities in the United States have noted that predictive models

with a forecasting horizon of 4 to 6 hours could substantially improve WWTP resource man-

agement and operational efficiency (Kulkarni et al. [3]). Despite this demand, conventional

statistical methods and many modern ML and DL solutions struggle to effectively capture

the complex non-linear behaviors and seasonal patterns inherent in WWTP data (Kulkarni

et al. [3], Yang et al. [102], Sathya et al. [103]).

Traditional ML models, such as Exponential Smoothing (ES) (Gardner [104]), Auto-Regressive

Integrated Moving Average (ARIMA) (Arora and Taylor [105]), XGBoost (Chen and Guestrin

[106]), often fail to capture temporal relationships in multivariate time series data due to

a lack of mechanisms, such as recurrence, to model dependencies between sequential data

points (Gardner [104], Drucker et al. [107]). Additionally, these models typically require

extensive preprocessing steps, such as decomposition or deseasonalization, which add com-

plexity to the forecasting process (Kontopoulou et al. [108]). Traditional ML models also

face limitations in capturing long-term and seasonal dependencies, given their restricted re-

ceptive fields (Lai et al. [109]). Furthermore, separate feature selection procedures are often

necessary, resulting in inefficient training processes (Kulkarni et al. [3]). A notable limita-

tion of many existing models is their focus on point forecasts, which restricts their ability to

assess predictive uncertainty (Yan et al. [110]).

The limited incorporation of external contextual factors further restricts the practical ef-

fectiveness of these models (Boussif et al. [111], Murugesan et al. [112], Solomon et al.

[113], Boyle and Ravenscroft [114], Miao et al. [115], Wang et al. [116], Stein and Gonzalez
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[117], Unger et al. [118]). Few models explicitly address seasonality, and existing solutions

frequently lack mechanisms to manage forecast bias, compromising reliability (Palmer and

Anderson [119]). In typical WWTP operations, external factors—such as weather conditions,

river flows, demographic shifts, and economic activities—exert significant influence yet re-

main unmonitored by internal systems. For instance, real-time weather data can predict

inflow surges from heavy rainfall, while demographic trends provide insights into monthly

or weekly water usage patterns.

In this study, I integrate these external variables into a forecasting model to enhance the

predictive accuracy of critical WWTP variables, such as wastewater tunnel levels (LT) and

nitrate concentrations (LNO3). Incorporating external context allows for more accurate short-

term forecasting, supports proactive operational decisions, improves system resilience, and

reduces operational costs.

1.2.1.3 Real-World Applications

Cyber-attack and anomaly detection models using AI require data representing the physical

structure and temporal behaviors of the WDSs. Despite the stochastic nature of the WDS

operational processes, many AI algorithms can help with early attack prediction or anomaly

detection (Taormina et al. [8]). In most cases, the models are developed using data streams

from SCADA systems to classify if the system is running safely or not. SCADA collects

real-time distributed field data measurements, including water flow rates, pump status, and

pressure sensor readings, and then transmits them (measurements) to a central server. Due

to the complex interdependencies among different nodes, DL models are better suited to

computationally represent the system (Bengio et al. [120]). ML models, including ensemble

learning models, are a good choice for small and simple networks (Sikder and Batarseh

[121]); however, the increasing number of nodes in a network (such as in WDSs) creates non-
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linear relationships amongst them. According to (Sikder and Batarseh [121]), DL models

can capture non-linear relationships in a distributed network system more effectively when

compared to ML models. Therefore, the dissertation aims to address the security of WDSs

by building assured, context-based, and generalized DL models.

DL algorithms can be trained on large amounts of data to identify patterns and anomalies

that may indicate a cyber-attack. For example, A DL algorithm can be trained to recognize

network traffic patterns typical of a denial-of-service attack and then use this information

to block similar traffic in the future Amin et al. [122]. DL intrusion detection systems (IDS)

are also used to detect and prevent cyber-attacks on WDSs. These systems can use a com-

bination of DL algorithms and rule-based systems to detect unusual activity in the network.

Moreover, AI can optimize the security of WDSs by automating many of the tasks cur-

rently performed manually. For example, security configurations and patch vulnerabilities

can be automatically updated using AI-based DSS, reducing the risk of successful attacks

(Tuptuk et al. [123]). Furthermore, monitoring and interpreting WWTP data are crucial

for operational decision-making while ensuring a water facility’s safety, security, and effi-

ciency (Tuptuk et al. [124]). These reasons constitute a need for a solution that forecasts

the wastewater level, detects potential cybersecurity threats, and utilizes these insights to

optimize the processes in WWTPs (Radanliev et al. [125])

It is important to note that the use of AI and DL in cybersecurity research for WDSs and

WWTPs is still in its early stages (Tuptuk et al. [123]), and more research is needed to

fully understand these technologies’ capabilities and limitations. However, these algorithms’

potential to enhance WDS security is significant, and their application is expected to continue

to grow.
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1.2.2 AI for Agricultural Production Systems

According to the United Nations, the world’s population is expected to increase by two

billion persons in the next 30 years, from 7.7 billion (current) to 9.7 billion in 2050, and

could peak at nearly 11 billion around 2100. To feed this growing population, a similar

increase in food production must also be achieved (Kamilaris and Prenafeta-Boldú [126]).

Several challenges exist in agriculture -with declining productivity of resources such as land,

the environmental footprint of production practices, and the ensuing need for sustainability–

limiting human abilities to scale up production to meet the global demand. Integrating

technology into the agricultural ecosystem is considered an important pathway for providing

adequate nutrition to the world and ensuring the sustainability of the resources for the benefit

of future generations (Liakos et al. [127]). Figure 1.6 illustrates how data-driven analysis

of anomalies in economic and weather data can enhance agricultural commodity production

and provide timely insights for policymakers to formulate optimized policies.

Figure 1.6: AI for Agricultural Production Systems
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APS uses various technologies, such as sensing, information technologies, and mechanical

systems, to manage different field parts separately (USDA, 2018). Adopting such practice

and applying it to day-to-day farm procedures is known as Precision Farming. Precision

Farming provides stability amidst conditions such as weather and market demands that are

natural actors within agriculture at the local and global level, protecting one’s commodities

and maximizing economic yield in the long run. Although farmers grow accustomed to such

conditions, there are instances where outlier events occur that overwhelm current monitoring

and forecasting tools, prohibiting farmers from making sound decisions. Therefore, this

work demonstrates how outlier data from contextual variables can be leveraged to predict

agricultural production data, offering valuable decision support for APS.

1.2.2.1 Challenges in Agricultural Production Systems

Precision farming tends to optimize complex multivariate farming practices by continuously

monitoring, measuring, and analyzing several variables such as weather, soil, and crop type,

enabling precise targeting and care for each specific agricultural commodity at a scale that

was impossible in the 20th century (Gebbers and Adamchuk [128]). However, with agricul-

ture highly susceptible to outlier events, e.g., floods, drought, and trade wars, predicting

the future while accounting for possible outlier events remains a major challenge (Gopinath

et al. [129]). During the COVID-19 pandemic, for instance, many farmers and producers

were struggling with the forecasts provided to them using traditional econometrics because

the models used to create such predictions don’t account for outlier events.

Formal acknowledgment of economic fluctuations is insufficient to understand how and why

the extremities of outlier events vary and occur. Instead, precision agriculture requires

the intersection of policy and economics to enable data scientists and public policymakers

to make more informed decisions. It is known that political events directly or indirectly
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affect the economy of the Volatility Index (VIX) (Shaikh [130]). COVID-19, which began

at the end of 2019, is an outlier event resulting in a vast disruption in the United States

economy and financial markets, which was unforeseeable for many (Brown et al. [131]).

Consumer consumption increased as states were advised to lockdown, which strained retailers

nationwide. The relationship between agriculture and this particular outlier event will be a

recurring example throughout this chapter because, for many, this obscure event is the most

relevant and well-known outlier in recent memory.

1.2.2.2 Real World Applications

Big data analytics in precision farming demonstrates the importance of recognizing and

extracting insights and trends from historical agricultural data to better guide commodity

production decisions and policy-making based on context (Storm et al. [132]). As the quan-

tity of data generated in the agricultural ecosystem continues to increase, ML and DL pro-

vide accurate predictive insights and guidance on operational decisions with real-time data

(Wolfert et al. [133]). ML and DL allow the machine to learn from the available data without

being explicitly programmed, thus revealing more insights than what is normally possible

through traditional data analytics. DL extends classical ML by adding more complexity to

the models with a large learning capacity, as it has a strong advantage in feature learning.

This makes DL models flexible and highly adaptable for various complex tasks. That notion

allows it to excel at classification and prediction problems in many domains (Kamilaris and

Prenafeta-Boldú [126]). The application of DL in agriculture is relatively recent and can

be a promising technique considering the impact and potential it has demonstrated in other

domains (Kamilaris and Prenafeta-Boldú [126]). Most studies and applications of APS today

are localized to the farm environment without much consideration of the impact of external

variables, specifically outlier events (Gurrapu et al. [24]).
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Returning to the example of the COVID-19 pandemic, it can be classified as a global and

political event directly influencing the production of goods. For instance, the distribution

of vaccinations, a relatively recent development aimed at curbing the spread of the coron-

avirus, is intricately linked to the well-being of agricultural operations. The Purdue Food

and Agriculture vulnerability index estimates nationwide that- “over 496,000 agriculture

workers have tested positive for coronavirus, with over 3000 in New York State alone”. The

management of their fields and crop production was jeopardized alongside their health. The

Purdue Food and Agriculture vulnerability index3, in collaboration with Microsoft, served as

a baseline for establishing the scholarly work that is already available and identifying what

can be improved upon. Purdue University combined data on the number of COVID-19 cases

in each United States county with the county’s total population, the United States Depart-

ment of Agriculture data on the number of farmers and hired farm workers in each county,

data on agricultural production of each county, and lastly was able to estimate the share

of agricultural production at risk. Visualizing loss of production within various states was

useful in developing a deeper understanding of the struggles within the agriculture industry,

specifically during an outlier event. Though the loss of production impact for a given com-

modity is an aspect of agriculture research, it’s not useful for predicting the other outlier

events considered in this work and their relationship with economic indices. In this sense,

this work can be distinguished from Purdue University and other existing scholarly work.

1.3 Summary of Contributions

This section provides a concise overview of the contributions in the fields of WDS and APS

achieved through the utilization of ML and DL algorithms. The comprehensive summary
3ag.purdue.edu/department/agecon



32 CHAPTER 1. MOTIVATION, BACKGROUND, AND CONTRIBUTIONS

of this dissertation’s contributions is illustrated in Figure 1.7, showcasing three primary AI

components: a well-defined model agnostic AI assurance framework; several AI methods

applied in the context of WDSs & APSs; and their corresponding pipelines, algorithms, and

applications. This dissertation, in Figure 1.7, introduces the ALSP framework, comprising

three AIA techniques encompassing DL/ML methods, context-aware OD techniques, and

predictive modeling approaches. While this section briefly outlines each component’s high-

level contribution, the intricate details are reserved for Chapter 4.

Figure 1.7: Summary of Contributions

This dissertation explores various AI concepts, including framework, pipeline, method, tech-

nique, and algorithm. I define them as follows: An AI framework is a software library

designed to support AI and ML development. It provides tools and predefined modules for

easier algorithm implementation. Examples include TensorFlow, PyTorch, and scikit-learn.

An AI pipeline is a structured sequence of tasks guiding AI application development, from
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data collection to deployment. It streamlines the end-to-end process, ensuring efficiency and

reproducibility. AI methods are high-level strategies for problem-solving, guiding the overall

approach. For instance, using RNNs in NLP is a common method. Techniques are specific

processes, tools, or procedures used to achieve goals within AI methods. Examples include

data augmentation and regularization techniques like L1 and L2. AI algorithms are precise

step-by-step procedures or formulas for computations. They are fundamental in AI and ML,

such as classification algorithms or DL neural networks.

1.3.1 AI Assurance for CPS

In a recent review work on AI Assurance (AIA) Batarseh et al. [134], assurance is defined

as “a process that is applied at all stages of the AI engineering lifecycle ensuring that any

intelligent system is producing outcomes that are valid, verified, data-driven, trustworthy, and

explainable to a layman, ethical in the context of its deployment, unbiased in its learning, and

fair to its users”. This subsection explores the necessity and contribution of Model Agnostic

Assurance (MAA) framework.

1.3.1.1 Definition of Assurance Goals

AIA goals can be achieved by either a model-specific or model-agnostic approach. A model-

specific approach manages a domain-specific AI algorithm, such as assurance of fairness-

aware OD (Mathew et al. [135]), whereas a model-agnostic approach is a generic and universal

approach that facilitates verifying AI algorithms irrespective of the domain of study. This

dissertation introduces measures to quantify scores for three AIA goals (Batarseh et al.

[134]), including explainability, fairness, and security. The goals are, however, quasi-mutually

exclusive, and trade-offs are often enforced when choosing amongst them. In literature, it
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has been highly arguable whether to make an AI model highly explainable and less safe.

The trade-off between goals depends on the requirements of each specific application. It is

subjective whether to compromise a model’s safety to achieve other assurance goals.

1.3.1.2 The Need for Model Agnostic Assurance

MAA aims to define empirical methods for evaluating subjective measures that are com-

monly domain-dependent, such as fairness and explainability (Sikder et al. [136]). For in-

stance, an AI model used for recruiting might exhibit bias towards specific candidates, but

quantifying that bias is very challenging. Measuring fairness would help ensure that the

model is suitable for use within organizational and legal constraints. Another critical ex-

ample of AIA is in APS. Trusting an AI model to make agricultural production decisions

that could have health-related consequences is a process that requires a high level of explain-

ability and trust in the model. Through the MAA framework presented in this work, one

can assess the explainability of an AI model applied in a specific domain. Additionally, one

can investigate security measures using the framework. The framework works better with

smaller datasets and simple ML and DL algorithms; otherwise, representing such subjective

measures in a quantified manner is undeniably complicated in real-world applications. The

presented framework serves as a proof of concept for quantifying assurance goals for small

data-driven models.

1.3.1.3 Contribution to AI Assurance Goals

Regardless of the challenges, considering a few trade-offs, this dissertation provides tools for

AI engineers to manage the three goals of assurance: explainability, fairness, and security.

Accordingly, the contribution is the MAA for domain-independent applications through the
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Adversarial Logging Scoring Pipeline (ALSP ) framework. ALPS includes three algorithms:

Weight Assessment, Reverse Learning, and Secret Inversion. It leverages game theory, DL

techniques, and action logging of an ML algorithm to provide different AIA goals. In this

dissertation, multiple empirical outcomes are presented that are deemed successful for AIA

goals. One use case presented is for a critical infrastructure: SCADA system in WDS.

1.3.2 Outlier Detection Methods for CPS

Traditional Industrial Control Systems (ICS) and SCADA setups have not fully embraced

the extensive connectivity introduced by Industry 4.0 (Alhaidari and Al-Dahasi [137]). Ad-

ditionally, security protocols within ICS often tend to be secondary or lower priority. This

phenomenon can be attributed to the outdated assumption that the ICS environment re-

mains isolated within a secure, air-gapped network (Hewage [138]), a notion that is no longer

accurate. The increased integration with potentially hostile networks has resulted in a signif-

icant rise in malevolent infiltrations in CPS, leading to considerable financial repercussions

and endangering human safety (Hewage [138]). In a CPS, outlier events are subjective and

depend on the unique properties of the CPS. It is important to investigate these events as

carefully as possible to avoid infrastructure failures because they can cause minor to se-

vere damage to the expensive infrastructure if they go unnoticed. This subsection discusses

categories of OD methods using AI and the proposed contributions.

1.3.2.1 Importance of Outlier Detection in CPS

The widespread use of CPS in the modern world has led to a concerning rise in malicious

attacks carried out by adversaries. These attacks have been occurring more frequently,

especially on critical infrastructure, making them even more susceptible to vulnerabilities.
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To emphasize the seriousness of this issue, Table 1.1 provides essential statistics regarding

historical cyber threats aimed at United States infrastructure. It is crucial to actively pre-

vent further attacks that could put both national and global infrastructure systems at risk.

Notably, cutting-edge applications of OD in the following domains are highly important:

1. IoT and critical infrastructure operations: IoT devices utilize wireless sensors to

collect various information on architecture, including smart grid, power distribution

system, water supply system, and healthcare diagnostic system. It’s crucial to know

correct and effective data are collected from IoT devices (Jeffrey et al. [13]). If the data

are being polluted with outliers because of a sensor fault or a cyber-attack, that should

be identified for securing the critical infrastructure. Additionally, OD algorithms need

to be trained against attack concealment.

2. Database and sensor network monitoring: Sensor networks require continuous

monitoring for effective wireless operations. Detecting outliers in sensor networks

Abid et al. [139], Feng et al. [140], body sensor networks Zhang et al. [141], and

target tracking environments Shahid et al. [142] ensures flawless operations with proper

routing in the network.

3. Fraud and intrusion detection: Intrusion detection is performed to check if a

computer network has any unauthorized access by observing unusual patterns Singh

et al. [143]. Additionally, detecting outlier instances is extremely important to secure

and safe a network.

4. Data streams monitoring: Research studies in Zhang et al. [141], Tamboli and

Shukla [144], Shukla et al. [145], Tran et al. [146]; Gupta et al. [147], Cateni et al.

[148] showed OD for data streams and time series datasets. Detecting outliers in data

streams is important because any abnormality may hinder applications’ fast computa-
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tional and estimation processes.

5. Surveillance and security: Security is an important aspect of computer administra-

tive networks. Cybersecurity is where researchers ensure methods for safe access and

proper authentication. An exciting and practical research in cybersecurity is surveil-

lance video OD (Xiao et al. [149]).

6. Data logging and data quality: Logging and processing data for commercial pur-

poses can go wrong because of unwanted concealment processes, which, if not detected,

might result in irrecoverable loss. Automated data mining models are applied to search

for abnormalities while processing large logs (Ghanbari et al. [150]). Proper anomaly

identification algorithms need to be applied to enhance data quality (D’Urso [151];

Chenaoua et al. [152]).

1.3.2.2 Categories of Outlier Detection Methods using AI

OD is a creative process; many researchers have been trying to answer the question of how

to correctly identify outliers as they provide important information about a system. It

is crucial to understand datatypes before applying OD methods; for instance, data can be

univariate or multivariate and need a different approach to begin with. In statistical analysis,

careful observation regarding feature selection needs to be considered to achieve the feature

to represent the data distribution models for both non-parametric and parametric analysis.

Moreover, during OD, one must make analytic arguments and intuitions before making any

conclusions (Ranshous et al. [153], Braei and Wagner [154], Lai et al. [155]). Besides, real-

world applications require context-aware and purpose-based detection because the outcome

of the result should benefit the requirements of outlier analysis in any given domain. Research

communities are trying to bring forward many innovative and novel algorithms for OD
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(Aggarwal [34];Hadi et al. [156]). According to Sikder and Batarseh [36], OD methods can

be classified into six categories: Statistical, Density, Clustering, Distance, Learning, and

Ensemble-based OD methods.

1. Statistical OD Methods: These methods identify outliers based on their statistical

characteristics, such as mean, standard deviation, or distribution (Yang et al. [157],

Hido et al. [158], Goldstein and Dengel [159]). Common approaches include the Z-

score, where outliers are data points that fall outside a certain number of standard

deviations from the mean, and the Grubbs test, which detects outliers based on the

maximum or minimum value deviating significantly from the mean.

2. Density-based OD Methods: These methods identify outliers based on the density

of data points in the dataset (Breunig et al. [160], Tang et al. [161], Kriegel et al.

[162]). Outliers are typically identified as data points in regions with low data density.

One popular density-based method is the Local Outlier Factor (LOF), which measures

the density of a data point relative to its neighbors, identifying outliers with low local

densities.

3. Clustering-based OD Methods: These methods first group data points into clusters

and then identify outliers as data points that do not belong to any cluster or belong to

small, sparse clusters (MacQueen et al. [163], Ester et al. [164], Karypis et al. [165]).

One well-known algorithm is the K-means clustering algorithm, which assigns data

points to clusters based on their distance to cluster centroids.

4. Distance-based OD Methods: These methods identify outliers based on their dis-

tance to other data points. Outliers are typically data points that are far away from

the majority of the data (Zhang et al. [166], Huang et al. [167]). The k-Nearest Neigh-

bors (k-NN) algorithm is commonly used, where outliers are detected based on their
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distances to the k nearest neighbors.

5. Ensemble-based OD Methods: These methods combine multiple OD algorithms

to achieve better performance and robustness (Campos et al. [168],Rayana and Akoglu

[169]). They leverage the diversity of different algorithms to improve OD accuracy. One

common ensemble method is the Isolation Forest, which constructs random decision

trees to isolate outliers by their ease of separation from normal data points.

6. Learning-based OD Methods: Learning-based OD methods use ML techniques

to build models that can distinguish between normal and outlier data points (Dutta

et al. [170], Aggarwal and Yu [171]). These models are trained on labeled data, where

outliers are marked as such. Common learning-based approaches include Support

Vector Machines (SVM) and Neural Networks.

Each OD method has its strengths and weaknesses and is suited for different datasets and

applications, which will be further discussed in Chapter 2. Choosing the appropriate method

depends on the specific characteristics of the data and the nature of the outliers being sought.

1.3.2.3 Contribution to Outlier Detection Methods for CPSs

This dissertation presents several OD methods that investigate anomalies in a model-specific

approach in WDS and APS, including DL and ML-based algorithms (Sikder et al. [5, 136]).

Key contributions are listed as bullet points as follows: (1) Introduction of the secret inver-

sion method, employing exhaustive feature comparisons via Autoencoder reconstruction; uti-

lization of reconstruction errors (r) to determine AIA scores, particularly focusing on SAI and

CAI goals. (2) The incorporation of AIA techniques, including custom hidden layers and con-

straints, for a robust and generalizable cyber outlier detection model called a high-confidence

autoencoder (HCAE). (3) Development of Multivariate Multi-step LSTM (MM −LSTM)
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for accurate anomaly detection from WWTP. (4) Development of an anomaly detection

model for APS called Isolation Forest to investigate economic and weather data outliers.

1.3.3 AI-based Decision Support Systems for Water Distribution

and Agricultural Production Systems

In the context of a WDS, timely information is crucial for informed decision-making that

minimizes operational risks and optimizes resource allocation, encompassing tasks like pump

scheduling and chemical mixing (Sikder and Batarseh [36]). Leveraging AI techniques, in-

cluding outlier identification such as detecting tunnel wastewater overflow (Gurrapu et al.

[2], Sikder and Batarseh [36]), and tunnel effluent level forecasting, facilitates the compre-

hension of complex nonlinear relationships among system components such as sensor data,

weather information, and reservoir water levels. AI methods can identify anomalies and

patterns indicative of overflow events in underground sewer networks. This proactive ap-

proach enhances the efficiency of response measures and minimizes the negative impacts of

overflows.

Within WDS operational processes, AI’s capabilities extend to reducing operational expenses

(OPEX) by forecasting energy requirements and optimizing resource allocation (Kulkarni

et al. [3]). Over the course of the historical development of hydraulic modeling, optimization

methodologies have played a pivotal role in WDSs. AI-powered optimization algorithms

hold significant potential across various domains, ranging from energy optimization and op-

timal pump placement to designing effective monitoring and control networks and managing

infrastructure during extreme climatic events (Sebestyen et al. [172]). AI-driven optimiza-

tion encompasses a diverse array of strategies, including Genetic Algorithms (GAs) and DL

methods (Kulkarni et al. [3]). For example, in WDSs addressing nitrogen reduction in the
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effluent, utilizing DL or GA optimization approaches has proven advantageous (Batarseh

and Kulkarni [21]). The versatility of AI extends across numerous downstream tasks, em-

powering operators with advanced decision-making support.

Combined sewer overflows (CSOs) represent major water-quality threats to hundreds of

cities and communities in the United States that are served by combined sewer systems.

CSO events cause the release of untreated stormwater and wastewater into receiving rivers,

lakes, and estuaries, causing various environmental and economic problems. However, O&M

costs associated with CSO management are expensive. The EPA estimates the costs of

controlling CSOs throughout the country are approximately $56 billion (Wise et al. [173]).

The optimization of the massive energy consumption of the treatment process facilitates

mitigating greenhouse gas emissions, which has been considered one of the biggest global

challenges in the 21st century. This is because water treatment requires intensive energy

consumption. For example, WWTPs consume up to 20% of the total energy by public

utilities and 2-3% of the world’s electricity consumption (Longo et al. [174]). The accelerated

population growth and urbanization further require more energy input to satisfy the higher

water treatment standards. Therefore, the optimization of energy is highly desired. Since

biological treatment is still the most common WWTP strategy for pollutant removal, the

associated pump operation, chemical addition, and aeration largely contribute to the total

energy cost in the WWTP. Understanding the factors that will most affect the energy cost

allows for creating a higher energy and cost-efficient wastewater treatment strategy.

Similarly, data-driven DSS is necessary for APSs to leverage advanced data analytics and

AI techniques to provide valuable insights and recommendations to farmers and agricultural

practitioners (Gurrapu et al. [2]). By collecting and analyzing various data sources, such as

weather conditions, soil quality, crop health, and historical production data, DSS can help

identify patterns, trends, and potential issues affecting crop yields and overall agricultural
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productivity. Using ML and DL algorithms for predictive modeling, DSS can offer context-

based and real-time guidance on optimal production schedules and other crucial aspects

of agricultural management (Khan et al. [175]). As a result, farmers can make informed

decisions, enhance resource efficiency, reduce environmental impact, and maximize yields,

ultimately leading to sustainable and prosperous agricultural practices.

1.3.3.1 Contribution to AI for water Distribution and Agricultural Production

Systems

Within the realm of WDS, this dissertation offers compelling solutions to many real-world

challenges. For instance, identifying intense rainy days in a WWTP is essential to forecast

tunnel wastewater levels. Since overflowing water in the tunnel leads to higher operational

costs, it can pollute the river or water body (Batarseh et al. [176]). By correctly predicting

water levels, the operator can make decisions ahead of time for resource allocation, i.e.,

pumps, and minimize chemical consumption. Similarly, the forecasted data can help optimize

energy consumption, saving up 25-30% of total operation and maintenance (O&M) costs

(According to the USEPA). By forecasting tunnel wastewater levels, the operator can take

the most cost-efficient action to save energy. DL-based prediction models (including LSTM

and GRU) can represent systems using historical data from a group of nodes or a single node

in a WWTP. Using LSTM, forecasting can be produced in real-time for the next multiple

hours to assist with capacity and pumping plans. A typical WWTP requires a 4-hour

multistep forecast to predict tunnel water level using LSTM architecture so that action can

be taken in a timely manner (Kulkarni et al. [3]); operators require around 3 to 5 hours to

operate such decisions efficiently. Summary of contribution to data-driven DSS for a typical

WWTP (Figure 1.8 presents a schematic diagram of DSS in WWTP) are as follows:

• Development of data-driven DSS pipeline for WDS cybersecurity and optimization
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Figure 1.8: AI-based Decision Support System for WDS (P2O): Three AI Components
including Prediction, Protection, and Optimization.

(Kulkarni et al. [3], Batarseh et al. [176]) called Real-time AI-based Decision Support

(RADS) (Figure 1.8). RADS comprises three major AI-driven methods: a protection

module ensuring data security, a prediction module forecasting system state variables,

and an optimization module providing actionable recommendations (Kulkarni et al.

[3], Batarseh et al. [176])

• Development of security method for cyber attack intentionality detection; forecast-

ing method for tunnel wastewater levels, aiding resource management; optimization

method for suggesting pump operation strategies, ultimately enhancing the system’s

efficiency (Kulkarni et al. [3], Batarseh et al. [176]).

Summary of contribution to data-driven DSS for APS (Figure 1.6): (1) Development of a

novel pipeline DeepAg, an approach using DL to measure the impact of outlier events on

agricultural production and predict future patterns (Gurrapu et al. [2]). (2) Collection of
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various contextual data, such as financial indices, weather information, and major policy

changes related to agricultural commodities, gathered over two decades (Gurrapu et al.

[2]). (3) Development of OD and predicting models- isolation forests and LSTM models;

understanding commodities production and their causation and correlation with financial

indices (Gurrapu et al. [2]).

1.3.4 Cybersecurity in Water Distribution Systems

Given the digital nature of CPSs, they can be vulnerable to different kinds of cyber threats,

especially in cases where adversaries can conceal the state of the attack. If an adversary (state

or non-state actor) successfully compromises a WDS, that could result in major destructive

consequences to water quality, public health, and agricultural irrigation. This dissertation

presents empirical AI-based methods for detecting such concealed attacks in WDS.

1.3.4.1 Challenges in Water Distribution Systems and Events of Cyber-attacks

WDSs safeguarding is a national priority (Trump [177]). Adepu and Mathur [178] noted that

cyber attacks have increasingly targeted WDSs in recent years, and they are ranked third in

the ICS CERT vulnerability report. Ilyas et al. [179] provide two reasons for this pattern:

(i) due to the expansion of the IoT and (ii) the proliferation of AI in the decision-making

processes. Further, Hassanzadeh et al. [7] presented fifteen disclosed, documented, and

malicious cybersecurity incidents in the water sector (Table 1.3), among which some of the

most recent incidents are the Florida Water Supply (FWS) hack in 2021 Robles and Perlroth

[180] and the Riviera Beach Water Utility (RBWU) attack in 2019. In the FWS hack, the

hacker gained remote access to the PLC unit that controls sodium hydroxide (NaOH) levels

in the water. The hacker increased the amount of sodium hydroxide content in the water by
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110-fold, but fortunately, the attack was mitigated before the toxic levels of chemicals were

diffused into the distribution network. In the RBWU incident, ransomware, a common type

of cyber-attack, was launched, which paralyzed the computer systems controlling pumping

stations, water quality testing, and payment operations. The government authorities paid

65 bitcoins - approximately $600,000 – to the attacker in a few days, but still, after two

weeks, water pump stations and water quality testing systems were partially available.

Table 1.3: Summary of Cyber Incidents in the Water Sector (Source: Hassanzadeh et al. [7])

Number Location Year Target System Primary Impact
1 Australia 2000 Wastewater Environmental pollution
2 Pennsylvania 2006 Water treatment Data breach
3 California 2007 Irrigation Water theft
4 Illinois 2011 Water plant Cry-wolf effects
5 Florida 2012 Wastewater Data breach
6 New York 2013 Dam Data breach
7 United States 2013 Water utility Data manipulation
8 United States 2016 Water utility Control manipulation
9 United States 2016 Water utility Data breach
10 United States 2016 Water utility Bandwidth theft
11 UK 2017 Water supplier Financial impact
12 Europe 2018 Water utility Resource theft
13 North Carolina 2018 Water utility Data loss
14 Colorado 2019 Water District Denial of access
15 Florida 2019 Water utility Data loss

Further, on January 15, 2021, an intrusion happened on the water treatment plant that

served parts of the San Francisco Bay area Collier [181]. The hacker had the username and

password of an employee’s Teamviewer account. The hacker tried to poison the drinking

water by deleting the programs that treat the drinking water. It took one day to discover

this hack, and then the authorities acted by changing the password and reinstalling the

programs. The systems were breached, yet the authorities could notice the intrusions only

after investigating traffic and data flow. The incident exposes the vulnerability of WDS

infrastructures and its high relevance to public safety.

Cyber-attacks on WDSs can take many forms. According to survey work by Tuptuk et al.
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[123], some common types of cyber attacks on WDSs include:

1. Ransomware Attacks: In a ransomware attack, hackers gain unauthorized access to

the water system’s computer network and encrypt critical data, effectively locking out

legitimate users. The attackers then demand a ransom to provide the decryption key,

threatening to disrupt the water supply if the ransom is not paid (Mohurle and Patil

[182]).

2. Denial-of-Service (DoS) Attacks: These attacks aim to overwhelm the WDS’s

network or servers, causing disruptions and preventing legitimate users from accessing

the system (Yan et al. [183]). This can lead to service interruptions, hampering water

supply management and control.

3. Data Manipulation and Tampering: Cyber attackers may alter or manipulate

data within the WDS, leading to inaccurate measurements, erroneous decisions, and

potential damage to the infrastructure. This manipulation can cause the system to

distribute incorrect amounts of water or fail to respond appropriately to changing

conditions (Dong et al. [184]).

4. Remote Access Attacks: Attackers may exploit vulnerabilities in remote access

points or weak authentication mechanisms to gain unauthorized access to the WDS’s

control systems. Once inside the network, they can exert control over critical infras-

tructure components (Brumley and Boneh [185]).

5. Insider Threats: Malicious insiders or disgruntled employees with access to the

WDS’s network can intentionally cause harm by compromising security measures or

sharing sensitive information with external threat actors (Probst et al. [186]).

Water utilities and authorities must adopt robust cybersecurity measures to address these
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threats. This includes implementing firewalls, encryption, intrusion detection systems, and

continuous monitoring to detect and respond to potential cyber threats promptly. Regular

security audits, employee training, and information sharing within the water industry can

bolster cyber resilience and protect WDSs from cyber attacks.

1.3.4.2 AI-based Solution for Cyber Attack Detection in Water Distribution

Systems

In modern WDSs, the sophistication of cyberattacks has escalated, utilizing subtly al-

tered signals that often evade detection by human operators or traditional expert systems

(Adepu and Mathur [187]). Ensuring the security, reliability, and functionality of WDSs

is paramount, given their role as critical infrastructure for delivering water for various pur-

poses. Consequently, adopting intelligent algorithms, such as DL, becomes imperative for

robust cyberattack detection (Batarseh et al. [188]). Taormina et al. [8] presents a range of

AI algorithms that prove beneficial for predicting attacks early or detecting anomalies, given

the stochastic nature of WDS operational processes.

Typically, AI models are constructed using data streams from SCADA systems to investigate

whether the system is operating securely or facing potential threats. Given the intricate

interdependencies among system nodes, DL models offer a more effective computational

representation (Bengio et al. [120]). DL models capture these non-linear relationships within

distributed network systems compared to ML models (Sikder and Batarseh [121]). Therefore,

the dissertation presents WDS security through the development of robust and generalized

DL models.
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1.3.4.3 Contribution to AI-based Cyber Attack Detection in Water Distribution

Systems

This dissertation presents DeepH2O (Figure 1.9), a DL-based cyber attack detection pipeline

(Sikder et al. [5]) for WDS, consisting of two main methods: (1) TGCN with attention and

(2)HCAE. The supervised model, TGCN with attention, in collaboration with a co-author4,

performs well with time series samples and offers contextual anomaly detection where sensor

relations in the distribution system require comprehensive monitoring. Additionally, it is

Figure 1.9: DeepH2O for Cyber Attack Detection in WDSs

expected that a WDS operator might require a method that considers the data samples

as non-time series for specific application requirements (for example, missing data). Thus,

DeepH2O includes an unsupervised model HCAE that works well with non-sequential data

samples and performs better in multiple evaluation metrics compared to the supervised

model.
4https://ai.bse.vt.edu/People.html
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The dissertation addresses challenges related to DL model decision-making within black-box

environments or non-deterministic contexts (Sikder et al. [5]). Summary of contributions to

the cyber-attack detection model for a typical WDS is as follows: (1) Development of robust

and generalizable cyber attack detection model, assessed synthetically generated poisoned

data samples using GANs Goodfellow et al. [189]. (2) Adoption of AI assurance methods

such as layer customization and constraints to reduce false positives and improve other

performance metrics such as F1-score, precision, and recall to validate HCAE’s efficacy in

accurately detecting attacks in WDSs. (3) Localization of attacked nodes and sensitivity

analysis (Sikder et al. [5]) of HCAE.

1.3.5 Context-Driven Deep Learning for Water Systems

In this work, I introduce cP2O, a context-driven forecasting model designed for WWTPs,

which leverages a novel hybrid DL architecture to accurately predict key WWTP variables.

The model integrates a dynamic context extraction stage with hierarchically dilated (Chang

et al. [190]) Long Short-Term Memory (LSTM) cells, enabling it to capture both short-

term fluctuations and long-term dependencies from exogenous variables. Additionally, an

internal attention mechanism dynamically weighs contextual information alongside utility

data, enhancing the model’s sensitivity to important input features and allowing cP2O to

address missing context within utility data.

The primary contributions of this work are as follows:

1. Hybrid Architecture with Context Integration: I developed a hybrid model that com-

bines dynamic context extraction with dilated LSTMs and an attention mechanism.

This architecture processes raw WWTP time series data without the need for exten-

sive preprocessing, enabling it to capture both short-term and long-term dependencies
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effectively.

2. Dynamic Context Extraction: The model introduces a context extraction stage that in-

corporates exogenous variables—such as weather, river data, and demographic trends—

generating dynamic context vectors. These vectors enhance the predictive capability

by incorporating external influences that affect WWTP operations.

3. Attention Mechanism for Feature Weighting: An internal attention mechanism enables

the model to dynamically assign weights to input features based on their relevance,

reducing the need for manual feature selection. This feature allows the model to focus

on the most impactful variables, thereby enhancing forecasting accuracy.

4. Multi-Step Ahead Forecasting with Uncertainty Estimation: The model provides both

point forecasts and predictive intervals for multiple time steps ahead (4 to 6 hours).

This feature equips decision-makers with insights into forecast uncertainty, crucial for

effective risk assessment and real-time operational planning.

5. Bias Reduction through Quantile Loss Function: To reduce forecast bias, particularly

during peak or extreme events, I employ a quantile loss function. This approach ensures

more balanced predictions, mitigating the influence of outliers—such as abrupt water

level surges—on model performance.

I validate the effectiveness of cP2O through two key experiments conducted on real-world

data:

1. Tunnel Wastewater Level Forecasting: This experiment focuses on forecasting influent

water levels in tunnels and reservoirs at the Blue Plains Advanced WWTP, operated by

DC Water5. Accurate short-term forecasting is essential for managing the facility’s ex-
5https://dcwater.com/

https://dcwater.com/
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tensive infrastructure, optimizing pump operations, and preventing system overloads.

By providing 4 to 6-hour ahead predictions for tunnel wastewater levels, cP2O facili-

tates improved pump scheduling, which reduces energy consumption and mitigates the

risk of untreated water overflow into the environment (Kulkarni et al. [3]).

2. Chemical Variable Prediction: This experiment targets the prediction of critical chem-

ical variables—specifically, pH, ammonia (NH4), and nitrate (NO3) levels—at AlexRe-

new6. Effective monitoring of these variables is vital for nutrient removal and com-

pliance with water quality standards essential for ecosystem protection. Using cP2O,

I develop a predictive model for chemical sensor values, offering a cost-effective and

reliable solution for continuous monitoring that enhances process control and supports

regulatory compliance (Sreng [71]).

In both experiments, cP2O outperforms traditional models, reducing Mean Absolute Per-

centage Error (MAPE) by up to 22% compared to existing models and achieving lower Root

Mean Squared Error (RMSE). These results demonstrate the potential of cP2O to enhance

resource allocation, drive energy savings, and bolster the resilience of WWTP operations,

particularly under extreme weather conditions.

1.4 Overview of the Dissertation

The remainder of this dissertation is organized as follows:

Chapter 2 provides a comprehensive literature review on AI assurance methods, focusing

on OD techniques using AI. This chapter explores various categories of OD methods, in-

cluding Statistical and Probabilistic-based, Density-based, Clustering-based, Distance-based,
6https://alexrenew.com/

https://alexrenew.com/
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Ensemble-based, and Learning-based techniques. Additionally, it discusses AI-based Sup-

port Systems in WDSs and APSs.

Chapter 3 outlines the problem statement, research questions, and hypotheses that guide

the experimental framework. The chapter highlights key challenges and gaps in achieving

AI assurance for water and agricultural systems. These hypotheses lay the foundation for

subsequent experimental design and analysis.

Chapter 4 presents the core methodologies proposed in this dissertation. It introduces the

MM -LSTM model and its corresponding pipeline, P2O, for anomaly detection and optimiza-

tion in WDS. Additionally, it details the Isolation Forest-based DeepAg pipeline for decision

support in APS. The chapter also explores the High Confidence AutoEncoder (HCAE)

pipeline for cybersecurity applications in WDS, including synthetic data generation through

GANs. Furthermore, the Model Agnostic Assurance (MAA) framework, ALSP , is intro-

duced, comprising Weight Assessment, Reverse Learning, and Secret Inversion methods. An

enhanced version of P2O, called cP2O, is proposed for context-driven forecasting in water

systems.

Chapters 5 through 8 focus on experimental design, results, and real-world deployments.

Chapter 5 explains the experimental setup for each proposed methodology, including DeepAg,

DeepH2O, and cP2O. Chapter 6 provides an in-depth analysis of experimental results, com-

paring the proposed models against various baseline methods. Chapter 7 discusses the re-

sults and their implications, drawing key conclusions about the effectiveness of the proposed

approaches. Chapter 8 demonstrates real-world deployments, particularly at DC Water,

showcasing the models’ practical utility in addressing real-time challenges.

Chapter 9 explores future directions and broader implications of the research. This chapter

discusses potential applications of the proposed methods in other domains of CPSs and
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outlines pathways for enhancing scalability, robustness, and generalizability. Additionally, it

highlights open research questions and possible advancements in AI for assurance, anomaly

detection, and cybersecurity in critical infrastructures.

The appendix provides supplemental materials, including detailed descriptions of datasets,

additional experiment details, and hyperparameter tuning processes. It contains attack

descriptions for C-Town datasets, hyperparameter selection for DeepH2O, and extended

evaluation metrics. Mathematical formulations, supplementary plots, and tables are also

provided to offer deeper insights into the methodologies and experimental results.



Chapter 2

Literature Review

This chapter explores literature and state-of-the-art on model-agnostic AI assurance, OD

methods utilizing AI techniques, AI-based decision support systems in WDS and APS, cy-

bersecurity reviews, and cyber-attack modeling in WDS.

2.1 AI Assurance Methods

A model-agnostic approach explains a model in a post-hoc fashion (hindsight) by accept-

ing that the model is as a black-box; with the inner workings of the model hidden from

sight, and then attempting to approximate its behavior (Wachter et al. [191]). One such

example of a model-agnostic approach is Local Interpretable Model-agnostic Explanations

(LIME) (Ribeiro et al. [192]). This approach attempts to provide local explanations in the

form of linear approximations of the model, accurate in small regions of the space. It is also

practical when explaining, for example, why a particular individual has been denied a mort-

gage application. Other post-hoc model-agnostic algorithms provide explanations for ranking

features, even when an underlying model is not linear. This includes InterpretML (Nori et al.

[193]), SHapley Additive exPlanations (SHAP) (Lundberg and Lee [194]), and Partial De-

pendence Plots (PDP) (Friedman [195]). Each of these algorithms takes a distinct approach

to the process of determining the important contributors to an ML model.

54
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2.1.1 AI Assurance Goals

AlbeitMAA is rare, there is no scarcity of model-specific assurance; this dissertation presents

a brief review by AIA goal, with the most related study found in the literature for each.

1. EAI: In a study conducted by Rossi and Mattei [196] on EAI, a combination of sym-

bolic and logic-based approaches, a data-driven approach, as well as consideration of

a rule-based and data-driven hybrid approach is employed. This last approach is pro-

posed with the question of how to determine when preference breaches ethics as a

breach in ethics can make the model not viable to use. This dissertation demonstrates

a method that weighs each assurance goal in each model to attempt to combat this

issue.

2. FAI: Another work by Aghaei et al. [197] investigates how biased and unbiased data can

both result in AI models that treat certain inputs unfairly when compared to others.

A framework is constructed that helps to prevent discrimination between inputs in

AI models. The proposed research looks not just at how this dissertation can assure

outputs, but also inputs (the dataset) to aid in preventing such biases.

3. SAI and CAI: In work presented in Loeser and Iwasaki [198], SAI is investigated,

measuring it using states and the reachability of what is defined to be a secure state.

This algorithm is used to obtain a quantitative score for security. While this disser-

tation employs various techniques, such as an auto-encoder, to detect outliers in the

data and obtain reconstruction errors to measure a security score, these researchers

used the reachability of the output of the AI model.

4. TAI: In a study conducted by Kuter and Golbeck [199], SUNNY, “a new algorithm

for trust inference in social networks using probabilistic confidence models,” is con-

structed. This algorithm outperformed another trustworthiness measure relevant at
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the time in their testing. The models in this dissertation differ in that they employ the

measurement of feature contribution with game theory and Shapley (Shapley [200])

and causal values to obtain a score for trustworthiness.

5. XAI: In a study conducted by Islam et al. [201], various formulas involving cognitive

chunks are employed to determine a quantitative score for XAI. It is mentioned that

“explainable decisions from commercial AI systems are going to be a standard imposed

by regulators to eliminate bias and discrimination, and ensure trust.” XAI is undoubt-

edly the most studied (Batarseh et al. [134]) out of the AIA goals. The next section

presents both pipelines and how this dissertation addresses the six goals.

The book “Towards Trustworthy, Explainable, Safe, and Ethical AI” (Batarseh and Freeman

[202]) offers comprehensive guidance and methods for developing and assuring AI systems

across various domains. It caters to researchers, scientists, students, and policymakers,

emphasizing the importance of valid, explainable, and ethical AI in today’s technological

landscape.

2.2 Outlier Detection Methods Using AI

This section discusses six OD categories using AI: Statistical and Probabilistic-Based, Density-

based, Clustering-Based, Distance-Based, Ensemble-Based, and Learning-Based OD Meth-

ods.
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2.2.1 Statistical and Probabilistic-based Outlier Detection Meth-

ods

Statistical OD algorithms are easy to use and exhibit improved detection rates and run

times performance, particularly for quantitative ordinal and real-valued data distributions.

However, they may face challenges with high-dimensional feature spaces. Parametric models

assume underlying density distributions, which can result in poor performance and unreliable

outcomes, especially for managing data streams from complex networks. They also strug-

gle with multivariate feature spaces due to high computational costs. The histogram-based

approach is unsuitable for high-dimensional data as it cannot capture interaction between

features. According to Sikder and Batarseh [36], specific statistical methods can be adopted

to address these gaps, which may lead to longer processing times and misleading data dis-

tributions. Research suggestions include using non-parametric methods for unknown data

patterns and applying algorithms that can handle data streams and high-dimensional feature

spaces for improved scalability. Non-parametric models like KDE are more suitable for most

applications, but they can be computationally expensive in noisy environments (Pokrajac

et al. [203], Gao et al. [204], Boedihardjo et al. [205]). Despite some limitations, statistical

methods remain viable for targeted domains and data streams. Several OD models, such

as Histogram-Based Outlier (HBOS) (Goldstein and Dengel [159]) and PCA methods, have

shown promising performance in various applications and offer robustness in analyzing out-

liers. Table 2.1 presents popular statistical and probabilistic-based OD methods using AI

techniques.
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Table 2.1: Statistical and Probabilistic Based Outlier Detection Methods

Method Name Year Source Description

Gaussian Mixture

Models

2009 Yang et al. [157] Unsupervised Gaussian Mixture Model for OD us-

ing Expectation Maximization algorithm.

Guided Density Ra-

tio Approximation

for OD

2011 Hido et al. [158] Novel statistical methodology using guided den-

sity ratio approximation for OD.

Histogram-Based

OD Technique

(HBOS)

2012 Goldstein and Den-

gel [159]

Univariate feature space model using dynamic and

static histogram bin width, scoring data points for

outlierness.

Improved Statistical

Model with Projec-

tions

2015 Tang et al. [206] Improved statistical model using Gaussian Mix-

ture Model with projections preserving locality.

Non-Linear vs. Lin-

ear Regression OD

2017 Dalatu et al. [207] Comparison of accuracy and misclassification for

non-linear and linear regression models in OD.

Kernel Density Esti-

mation (KDE)

2007,

2011,

2013

Pokrajac et al.

[203], Gao et al.

[204], Boedihardjo

et al. [205]

Non-parametric approach using kernel functions

to detect outliers.

KDE with Adaptive

Estimation of Proba-

bility Density

2013 Boedihardjo et al.

[205]

Accurate estimation of Probability Density Func-

tion using adaptive KDE for time series datasets.

KDE for OD in

Power Grid

2015 Boedihardjo et al.

[205]

KDE method applied in power grid environment

for OD.

Robust Local Outlier

Detection (RLOD)

2015,

2015,

2020

Du et al.

[208],Campello

et al. [209], Li et al.

[210]

Pipeline with three stages, capable of detecting lo-

cal and global outliers, outperforming former OD

algorithms.

Copula-Based OD 2020 Li et al. [210] Effective Copula-Based OD approach.

Continued on the next page
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Table 2.1 – Continued from previous page

Method Name Year Source Description

Unique OD Ap-

proach with KDE

2019 Qin et al. [211] OD approach effectively identifies top-N outliers

based on KDE on continuous data.

Modified KDE Ap-

proach for OD

2020 Ting et al. [212] Modified KDE approach using Isolation Distribu-

tion Kernel to identify similarity between two dis-

tributions.

2.2.2 Density-based Outlier Detection Methods

Density-based OD algorithms offer several advantages due to their non-parametric nature.

They do not assume any predefined distribution model to manage the dataset, making

them highly flexible and adaptable to various data types. These algorithms, such as LOF

(Breunig et al. [160]), LoOP (Kriegel et al. [162]), INFLO (Jin et al. [213]), and DWOF

(Momtaz et al. [214]), can identify both local and global outliers, making them useful for

real-world applications where outliers can occur at different scales. According to Sikder and

Batarseh [36], density-based methods often outperform other statistical-based algorithms

and provide more flexibility in investigating crucial outliers. They can easily exclude outliers

from nearby denser neighbors, enhancing their precision. Another advantage is that density-

based algorithms require minimal hyperparameter tuning, making them relatively easy to

use. They are efficient at detecting local outliers, further enhancing their usefulness in

practical scenarios.

However, density-based methods also come with some disadvantages. They can be computa-

tionally expensive and complex compared to certain statistical-based methods. Tuning the

hyperparameters, especially the size parameter (k) for k-nearest neighbors, can be challeng-

ing and computationally demanding, leading to increased runtime. The shape of neighbors’
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density can significantly impact the performance of these methods, and varying densities

among neighbors can create complicated models and result in poor performance. Some

density-based algorithms, like MDEF and INFLO (Jin et al. [213]), may struggle with com-

plex density estimation, leading to difficulties in defining the outlierness of an object in

certain datasets. Additionally, handling high-dimensional time series data can be challeng-

ing for density-based models, though recent algorithms have introduced techniques such as

pruning and elimination to address these issues.

To improve density-based OD, researchers can address the challenge of sample size in high-

dimensional feature space by employing resampling techniques. Proper selection of the hy-

perparameter k is crucial for evaluating these algorithms effectively. Special attention should

be given to computational costs, as some density-based methods can become sluggish with

large datasets. For instance, LOCI’s (Papadimitriou et al. [215]) complexity increases when

applying an extension - radius r, making its computational cost O(n3̂). Researchers can

explore ways to optimize the computational efficiency of these methods. Additionally, ad-

dressing the quality of density estimation in specific density-based algorithms, like using

connectivity features as seen in COF (Tang et al. [161]), can enhance their performance in

certain scenarios, especially when dealing with closely related clusters with varying densi-

ties, where INFLO has shown improved outlier scores. Table 2.2 presents a few popular

density-based OD methods using AI techniques.

Table 2.2: Density-Based Outlier Detection Methods

Method Name Year Source Description

Local Outlier Factor

(LOF)

2000 Breunig et al. [160] Measures local reachability density to differentiate

outliers from normal points in the KNN set.

Continued on the next page
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Table 2.2 – Continued from previous page

Method Name Year Source Description

Connective-based

Outlier Factor

(COF)

2002 Tang et al. [161] Applies chain distance for density estimation, as-

suming predefined population distribution.

Local Outlier Proba-

bilities (LoOP)

2009 Kriegel et al. [162] Uses statistical probabilistic approach to estimate

density using distance distribution.

Local Correlation In-

tegral (LOCI)

2003 Papadimitriou

et al. [215]

Handles multi-granularity issues for OD and ac-

counts for feature space local density variation.

Relative Density

Factor (RDF)

2004 Ren et al. [216] Prunes data points located in deep clusters using

a data model called P-tree for scalability.

Influenced Outlier

(INFLO)

2006 Jin et al. [213] Distinguishes different neighborhoods for accurate

neighborhood distribution and OD.

High Contrast Sub-

space (HiCS)

2012 Keller et al. [217] Specially designed for large-dimensional datasets,

successfully sorts and ranks outliers.

Global-Local Outlier

Score from Hierar-

chies (GLOSH)

2015 Campello et al.

[209]

Extends investigation to detect both local and

global outliers using statistical interpretation.

Dynamic-Window

Outlier Factor

(DWOF)

2013 Momtaz et al. [214] Detects top n outliers by assigning an outlier score

called DWOF, deviating from traditional density-

based methods.

Algorithms for High

Dimensional Data

2014 Wu et al. [218] Includes RS-forest for efficient handling of high-

dimensional data and distributed computing for

density estimation.

2.2.3 Clustering-Based Outlier Detection Methods

Clustering-based methods offer distinct advantages for OD, particularly in cases where un-

derlying distribution knowledge is not necessary (Sikder and Batarseh [36]). Being unsuper-
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vised models, they are suitable choices when the understanding of the data distributions is

limited. Once the models learn about the clusters, they can efficiently detect outliers among

additional data points. Their unsupervised nature makes them well-suited for incremental

models, as they do not require information about underlying distributions. Clustering-based

algorithms are robust and can handle versatile data types effectively. For instance, hierar-

chical clustering methods for OD are a good choice for different data types, as they produce

nested multiple partitions, allowing users to select partitions belonging to specific levels.

However, clustering-based methods have some drawbacks. A major limitation is that they

do not assign outliers a score; instead, they rely on binary labeling, indicating whether a

data point is an outlier or not (Sikder and Batarseh [36]). The lack of scoring can make

it challenging to backtrack model actions, as once the actions are finalized, they cannot be

undone. Determining the optimal number of clusters is also a difficult task for most cluster-

ing algorithms. Furthermore, clustering algorithms may face difficulties when dealing with

datasets containing clusters with arbitrary shapes, as defining the shapes and distributions

of multiple clusters can be daunting.

To improve clustering-based models, researchers need to address certain questions when

designing the algorithms. They must clarify whether an object defined as an outlier belongs

to a cluster or is located outside the cluster boundary. Determining outlier status based

on the distance between the object and the cluster centroid is also a crucial consideration.

Additionally, clustering-based methods could benefit from addressing how to handle objects

that fit into sparse or insignificant clusters.

Despite the drawbacks, clustering-based methods are generally a good choice for many cases.

Applying cluster-based algorithms to data streams is an interesting area for further research.

For hierarchical and partitioning-based clustering methods, research efforts could focus on

speeding up the calculation process and reducing CPU usage for large datasets. Making
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the algorithms robust in detecting outliers from lower-density populations or within low-

density clusters could further enhance their performance. Table 2.3 presents a few popular

clustering-based OD methods using AI techniques.

Table 2.3: Clustering-Based Outlier Detection Methods

Method Name Year Source Description

Partitioning-based

Clustering

1967 MacQueen et al.

[163]

Assigns weights to features based on their signifi-

cance to restrain noise effect.

Density-based Clus-

tering

1996 Ester et al. [164] Models clusters into denser and non-denser groups

based on the radius of a cluster.

Hierarchy-based

Clustering

1999 Karypis et al. [165] Partitions the cluster into different levels struc-

tured like a tree.

Grid-based Cluster-

ing

2005 Zhang et al. [219] Utilizes grid-based technique to partition the clus-

ters.

High Dimensional

Features

2004 Aggarwal et al.

[220]

Handles clustering in high-dimensional datasets.

DenStream 2006 Cao et al. [221] Applies density-based approach for both offline

and online OD.

D-Stream 2007 Chen and Tu [222] Grid-based OD algorithm, identifies outliers using

density threshold.

AnyOut 2012 Assent et al. [223] Computes outliers from data streams anytime us-

ing ClusTree topology.

K-Means for Data

Streams

2008 Liu et al. [224] Splits data streams into chunks for OD.

Cluster-Based OD

for Big Data

2013 Koupaie et al. [225] Implements cluster-based algorithm for big data

using k-means.

Weighted Clustering

Scheme

2014 Bhosale [226] Combines partitioning and distance-based ap-

proach for unsupervised OD.

Continued on the next page
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Table 2.3 – Continued from previous page

Method Name Year Source Description

Outlier Beyond

Cluster Boundary

2014 Moshtaghi et al.

[227]

Updates mean and covariance matrices to detect

outliers beyond cluster boundary.

Elliptical Fuzzy

Logic

2015 Moshtaghi et al.

[228]

Applies fuzzy logic for evolving datasets to iden-

tify outliers.

Ensemble Learning 2014 Salehi et al. [229] Creates multiple clustering models for OD in

evolving datasets.

Active Cluster Algo-

rithm

2017 Chenaghlou et al.

[230]

Efficient algorithm with lower runtime and mem-

ory usage using active clusters.

Cluster Text OD 2016 Yin and Wang [231] Detects outliers based on low chances of recogniz-

ing a cluster.

Self Supervised De-

tection (SSD)

2021 Sehwag et al. [232] Framework based on unlabeled distributions out-

performing traditional OD algorithms.

2.2.4 Distance-Based Outlier Detection Method

Distance-based methods offer distinct advantages for OD, as they do not rely on the under-

lying data distributions, making them straightforward algorithms to implement (Sikder and

Batarseh [36]). Additionally, they demonstrate superior performance compared to statistical-

based methods and scale well for high-dimensional datasets, thanks to their robust architec-

ture.

However, distance-based methods face certain limitations. While they outperform statistical-

based approaches in high-dimensional feature spaces, the increasing dimensions can reduce

their effectiveness (Sikder and Batarseh [36]). Different objects with unique attributes in

a dataset make it challenging for the model to accurately measure distances between such

objects. Moreover, using K-Nearest Neighbors (KNN) for distance-based OD can lead to
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computational expenses and scalability issues (Knox and Ng [233]). When applied to data

streams, distance-based methods encounter difficulties handling data distributions in the

local neighborhood and investigating KNN in time series data.

To address these challenges and further improve distance-based algorithms, researchers need

to focus on scaling for high-dimensional datasets. The large feature spaces and random at-

tributions of objects pose performance issues, and finding appropriate indexing approaches

for assigning neighbors becomes challenging. Models can be enhanced by improving execu-

tion time and memory usage. The quadratic complexity of the models can be addressed by

employing pruning and randomization techniques or using compact data structures.

Another key challenge is the inability of distance-based methods to detect local outliers,

resulting in the calculation of global information instead. To achieve desired scores from

KNN algorithms, datasets must be appropriately processed, and selecting proper parameters,

including the right k value, significantly impacts model performance. Optimizing these

parameters can be challenging but is essential for achieving better results in OD. Table 2.4

presents a few popular distance-based OD methods using AI techniques.

Table 2.4: Distance-Based Outlier Detection Methods

Method Name Year Source Description

K-Nearest Neighbor

Models

1998 Knox and Ng [233] Utilizes distance estimation to identify global out-

liers.

Recursive Binning

and Re-Projection

(RBRP)

2008 Ghoting et al. [234] Improves run time for high dimensional feature

space.

Local Distance-

based Outlier Factor

(LDOF)

2009 Zhang et al. [166] Manages local outliers and performs similar to

COF.

Continued on the next page
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Table 2.4 – Continued from previous page

Method Name Year Source Description

Rank-Based De-

tection Algorithm

(RBDA)

2013 Huang et al. [167] Ranks neighbors based on object proximity.

Reverse Nearest

Neighbor Technique

2015 Bhattacharya et al.

[235]

Extended study of RBDA using a reverse nearest

neighbor.

OD Algorithm in

Traffic Data

2015 Dang et al. [236] Detects outliers in large traffic data in big cities.

Least Spanning Tree

for KNN

2015 Wang et al. [237] Increases searching mechanism for KNN algo-

rithm.

Natural Neighbor

Concept

2015 Huang et al. [238] Modifies KNN technique using a natural neighbor

concept.

Heuristic Technique

for K Value

2015 Ha et al. [239] Applies a heuristic technique to achieve k value.

OD in Local KDE 2017 Tang and He [240] Examines different types of neighborhood infor-

mation in KDE.

Pruning Techniques 2003 Bay and

Schwabacher [241]

Utilizes pruning technique and randomization rule

for a nested loop.

Generic Pipeline for

Index-Based OD

2007 Angiulli and Fas-

setti [242]

Detects outliers by pushing data in an index to

minimize cost.

Vertical Distance-

Based OD

2004 Ren et al. [216] Implements pruning and labeling techniques for

OD algorithm.

Stream Outlier

Miner (STORM)

2010 Angiulli and Fas-

setti [243]

Utilizes distance-based approach with three differ-

ent algorithms.

Event Detection and

Sliding Window

2011 Kontaki et al. [244] Proposes COD, ACOD, and MCOD algorithms

for flexible OD.

Optimized OD for

Large Data Volume

2014 Cao et al. [245] Optimizes range queries to process large data vol-

ume.
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2.2.5 Ensemble-Based Outlier Detection Methods

Ensemble methods offer notable advantages for OD due to their superior prediction models

(Sikder and Batarseh [36]). Notably, Bagging and Boosting algorithms have proven to be

robust and less reliant on specific datasets in data mining tasks. These ensemble techniques

are especially suitable for handling high-dimensional datasets, which were traditionally chal-

lenging for conventional OD algorithms.

However, ensemble methods do have some disadvantages, primarily related to their math-

ematical robustness and development stage. Feature evaluation may suffer, and selecting

appropriate contextual meta-detectors can be challenging. Additionally, combining various

algorithms in ensemble methods can lead to a smaller sample space, posing difficulties in

handling real data in certain cases.

Addressing these research gaps and improving ensemble analysis is crucial. Ensemble meth-

ods demonstrate significant benefits when dealing with streaming data containing noises,

where individual classifiers struggle with data quality and processing time (Sikder and

Batarseh [36]). Researchers have proposed models to enhance ensemble analysis for OD,

and various challenges have been explored, including ranking outliers from different detectors

and diversifying principal proposals. Some techniques have eliminated the need for detector

selection, which can significantly speed up the identification of unknown outliers. Ongoing

research in this area can further enhance the effectiveness and efficiency of ensemble-based

OD. Table 2.5 presents a few popular ensemble-based OD methods using AI techniques.
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Table 2.5: Ensemble-Based Outlier Detection Methods

Method Name Year Source Description

Bagging 2005 Lazarevic and Ku-

mar [246]

Combines multiple detection algorithms applied

on random subsets of features. Each algorithm

is assigned a small subset of features to provide

an outlier score, improving performance over large

datasets.

Boosting 2018 Campos et al. [168] Leverages strengths of multiple algorithms for ro-

bust OD. Components are not independent, as the

results of each stage depend on prior executions.

BORE (Bagged Out-

lier Representation

Ensemble)

2016 Rayana and Akoglu

[169]

Hybrid and parallel ensemble model for OD, com-

bining bagging and boosting techniques.

XGBOD (Extreme

Gradient Boosting

OD)

2019 Zhao and

Hryniewicki [247]

Applies extreme gradient boosting for sequential

OD.

Isolation Forest 2008 Liu et al. [248] Uses tree-based isolation mechanism for hybrid

and parallel OD.

HeDES (Hetero-

geneous Detector

Ensemble)

2010 Nguyen et al. [249] Combines non-compatible OD methods to form a

unified approach for high dimensional datasets.

Ensemble Learning

Approach for OD

2014 Zimek et al. [250] Employs a perturbation technique to account for

different diversities in outlier detectors and consid-

ers outlier rankings combinedly and distinctively.

Feature Bagging and

Subsampling

2016 Pasillas-Díaz and

Ratté [251]

Applies both feature bagging and subsampling

techniques together for improved performance.

Unsupervised

Framework for

Outlier Scores

2019 Zhao and

Hryniewicki [247]

Dynamically combines and selects outlier scores

even if the ground truth is absent.

Continued on the next page
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Table 2.5 – Continued from previous page

Method Name Year Source Description

Four Variations

of Unsupervised

Framework

2018 Zhao et al. [252] Implements four variations of the unsupervised

framework for OD.

2.2.6 Learning-Based Outlier Detection Methods

Learning-based methods offer several advantages for OD. Graph-based approaches provide

a comprehensive representation of data interdependencies, aiding in the intuitive under-

standing of outliers within a dataset. On the other hand, DL methods excel in capturing

hierarchical discrimination between features, making them well-suited for large dimensional

time series data and enabling effective boundary setting between normal and outlier data.

However, these methods also have some drawbacks. Subspace learning, a type of learning-

based model, can be computationally expensive (Zimek et al. [253],Dutta et al. [170]). Ad-

ditionally, not all traditional DL methods perform optimally with increasingly large feature

spaces, presenting challenges in OD. To bridge these gaps and enhance the effectiveness of

learning-based approaches, further research is needed on specific neural network methods

like RNNs, LSTMs, and Deep Belief Networks (DBNs) for OD. Surveys by Kwon et al.

[254], Chalapathy and Chawla [255] provide valuable insights and suggestions for advancing

deep neural network-based OD techniques. Table 2.6 presents a few popular learning-based

OD methods using AI techniques.
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Table 2.6: Learning-Based Outlier Detection Methods

Method Name Year Source Description

Subspace Learn-

ing Models

2013 Zimek et al. [253] Appropriate selection of a subset for OD in high-

dimensional data.

Subspace Learn-

ing Models

2016 Dutta et al. [170] Sparse subspace learning techniques projecting

high dimensional datasets onto low dimensional

subspace.

Subspace Learn-

ing Models

2005 Aggarwal and Yu

[171]

Effective subspace exploration using an evolution-

ary algorithm for OD.

Subspace Learn-

ing Models

2009 Zhang et al. [256] Method focusing on sparse subspace technique’s

path and using lattice to denote subspace rela-

tionship.

Subspace Learn-

ing Models

2016 Dutta et al. [170] Implementation of sparse encoding to transform

objects to multiple linear spaces for OD.

Subspace Learn-

ing Models

2013 HHuang et al. [167] Proposed Subspace OD (SOD) method examining

correlations of every object with its shared nearest

neighbor.

Subspace Learn-

ing Models

2011 Müller et al. [257] Method emphasizing the relationship between fea-

tures for OD in contrast to SOD.

Subspace Learn-

ing Models

2009 Kriegel et al. [258] Achieving relevant subspace using Mahalanobis

technique through gamma distribution for OD.

Subspace Learn-

ing Models

2012 Keller et al. [217] Identifying subspaces and ranking the outliers us-

ing the Monte Carlo method called High Contrast

Subspace (HiCS) for OD.

Subspace Learn-

ing Models

2016 Van Stein et al.

[259]

Using LoOP scores to calculate the degree of out-

lierness after achieving HiCS for OD.

Active Learning

Models

2005 Aggarwal and Yu

[171]

Applied ensemble active learning to unveil the rea-

sons for outlier flagging and high computational

demand for estimating density in OD methods.

Continued on the next page
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Table 2.6 – Continued from previous page

Method Name Year Source Description

Active Learning

Models

2014 Görnitz et al. [260] Alternative active learning method with improved

prediction results through repeated learning pro-

cess and model updates.

Active Learning

Models

2019 Das et al. [261] Proposed Glocalized Anomaly Detection (GLAD)

method, combining ensemble outlier detectors and

label feedback for active learning in OD.

Active Learning

Models

2020 Zha et al. [262] Deep reinforcement learning-based OD algorithm

achieving a balance between long- and short-term

rewarding processes for active learning.

Graph Based

Learning Models

2008 Moonesinghe and

Tan [263]

Proposed ”Outrank” algorithm, a graph-based de-

tection framework using Markov random walk on

undirected graphs for OD.

Graph Based

Learning Models

2018 Wang et al. [264] Introduced graph-based approach incorporating

local information for better OD in comparison to

traditional methods.

DL Models 2017 Chen et al. [265] Utilized deep autoencoder as a semi-supervised

model for OD, generating higher reconstruction

error for abnormal instances.

DL Models 2017 Du et al. [266] Developed Deeplog, a deep reinforcement

learning-based OD algorithm for online log

analysis in critical infrastructure.

2.3 AI-based Support Systems in CPSs

A survey by Sobien et al. [267] addresses the current state of AI assurance for CPSs, with a

particular focus on water and agricultural systems. It highlights the growing importance of

AI assurance in high-stakes decision-making contexts and suggests future research directions
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in applying AI to the CPS field, where AI solutions are currently underutilized. This section

discusses related works of AI algorithms in water and agricultural systems.

2.3.1 AI Methods in Water Distribution Systems

Cyber threat detection and outlier identification in WDS is a popular research field. For

example, Li [268] made a case for developing and using DL-based models for malware classifi-

cation and intrusion detection. In a recent work by Jayakrishnan et al. [269], the application

of the Soil and Water Assessment Tool (SWAT) is designed for water resources management.

Four case studies are presented, showcasing the utility of SWAT in analyzing management

scenarios, incorporating radar rainfall data, modeling African watersheds, and addressing

water quality issues, particularly in minimizing pollution and potential application in total

maximum daily load (TMDL) studies. Further, Hindy et al. [270] used the SMOD dataset

to improve security information and event management of water infrastructures. In their

study, the authors used six ML models for scenario classification and compared them based

on classification accuracy. The authors noted that the k-nearest Neighbors indicated 94%

accuracy in detecting anomalies. In another study, Albahar et al. [271] used the SMOD

dataset to detect malicious acts from non-malicious ones based on neural networks. The

authors compared different models by analyzing the confusion matrix generated from the re-

sults. The authors reported greater than 60% accuracy in detecting malicious activities and

about 44% accuracy in detecting operational scenarios. Moradbeikie et al. [272] conducted

experiments to improve safety via fast and accurate hazard detection. For these experi-

ments, authors categorized data into six classes: Normal data, Transient failure, Permanent

failure, Random attack, Stealthy attack, and False alarm; and compared the performance

of different ML models for attack detection. The authors used precision, recall, F-measure,

false positive rate, and accuracy; they reported about 97% accuracy on hazard detection and
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noted that it could reduce about 60% of the time in the system recovery reconfiguration.

Sahu et al. [273] proposed a fusion engine that can improve detection accuracy by fusing

features to detect cyberattacks in power systems at CPSs. This study utilized F1 score, pre-

cision, and recall for evaluating intrusion detection and classification. The authors reported

that the fusion engine could improve performance by an average of 15-20% (based on F1

scores). Faramondi et al. [274] used ML techniques for detecting and categorizing threats in

CPS using a water distribution testbed. The authors compared four ML techniques based on

accuracy, recall, precision, and F1 score. Based on these metrics, the authors reported the

highest accuracy (99%) for the Random Forest (RF) model. Lastly, a study conducted by

Perrone et al. [275] for threat recognition in critical CPS compared five ML models based on

accuracy, precision, recall, specificity, F-measure, and G-mean. The authors reported that

the RF model showed the best accuracy (90.2%) for threat recognition compared to other

models. Considering these similar studies, my work primarily focuses on DL-based models

for detecting and classifying malicious activities (while comparing that to other ML models);

DL models proved superior to ML and more scalable than existing state-of-the-art works.

To achieve this, two DL models are developed and compared based on accuracy, precision,

recall, and F-1 score to select the best threat/OD model.

2.3.2 AI Methods in Agricultural Production Systems

As agricultural ecosystems adopt technology to improve their farming practices, the data

collected in the background is increasingly valuable. In Liakos et al. [127], a comprehensive

review was conducted on ML applications for APSs. They demonstrated examples of certain

precision farming practices, such as crop and soil management, disease detection, livestock

management, and water usage, amongst others, that can be improved using ML. An SVM-

based methodology was presented by Morales et al. [276] for the early detection of problems
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in egg production. The experiment forecasts egg production for up to three days and sends

an alert if the production curve displays any anomalies. The results demonstrate that a

poultry management system with production forecasting would prove to be useful to assist

producers with preventative measures before a problem occurs. Another approach using

SVM was shown in Alonso et al. [277] to predict the weight trajectory of livestock given the

past evolution of the herd. Additionally, using advanced hardware sensing techniques and

artificial neural networks, Pantazi et al. [278] demonstrated an architecture to predict wheat

yield production with a high accuracy of 91%.

Agricultural data have also been shown to be useful outside of the farm environment. For

example, Gopinath et al. [129] and Gopinath et al. [279] employed deep-learning ML tech-

niques (unsupervised and supervised) to predict trade patterns of seven major agricultural

commodities and indicated that unsupervised ML approaches with neural networks provide

better prediction fits over the long term. A method in Monken et al. [280] was proposed to

measure causal scenarios in trade during outlier events using network-based models, specifi-

cally Graph Neural Networks (GNNs) were used to predict outliers effectively and to provide

relevant domain explainability. In Batarseh et al. [281], Association Rules (AR) analysis was

employed to identify imports and exports associations (if a then b) with the trade flows and

used Ensemble ML (EML) methods for agricultural trade predictions. In Storm et al. [132],

the use of ML for econometric practices was presented and demonstrates the challenges of

such simulation models and shortcomings when used for quantitative economic analysis. A

fast unsupervised algorithm called Isolation Forest was proposed by Liu et al. [282] for de-

tecting anomalies in continuous data (of all domains). Accordingly, no method is found that

could be applied to the production of all commodities considering multiple forms of outliers,

my study aims to address that gap Williams et al. [283].
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2.4 Cyber Attacks Detection Models in Water Distri-

bution Systems

Given the constantly growing use of CPSs, the uses of AI in CPSs in various applications

also grow (Radanliev et al. [284], Gurrapu et al. [2], Gurrapu et al. [23]). This section

discusses the DL approaches for CPSs, especially multivariate time series data. Related works

for supervised and unsupervised models in CPSs and present adversarial data generation

approaches using GANs are discussed. Finally, state-of-the-art methods for water security

are presented.

2.4.1 Autoencoder

The use of DL methods for anomaly detection has recently achieved improvements in learning

high-dimensional datasets (Mahmud et al. [285]). A deep AE can be a helpful model to

eliminate outliers and noise without prior knowledge (Zhou and Paffenroth [286]). A book

by Aggarwal [34] on OD discusses how AEs are a natural choice for OD since they are

often used to reduce multidimensional datasets. The AE model presented by Zhou and

Paffenroth [286], discovers high-quality nonlinear features. This approach includes splitting

the input data into two sets to increase the robustness of the model. The work results show

good performance since they distinguish between random anomalies and other structured

corruptions in CPS data. Sun et al. [287] proposed a novel sparse representation framework

that learns dictionaries based on the latent space of Variational AutoEncoder (VAE). This

framework addresses the limitations of most existing algorithms that can handle large-scale

and high-dimensional data. Their proposed model can obtain hidden information and extract

more high-level features by playing the role of dimensionality reduction.
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Another work by Zong et al. [288] addresses unsupervised anomaly detection on high-

dimensional data. This work aims to address the limitations in existing unsupervised

anomaly detection approaches that suffer from decoupled model learning with conflicting

optimization goals. This work presented a Deep Autoencoding Gaussian Model (DAGMM)

for unsupervised anomaly detection. DAGMM optimizes the deep autoencoder and mixture

model parameters jointly to help with the parameter learning of the mixture model. This

joint optimization helps the autoencoder further reduce reconstruction errors.

2.4.2 Generative Adversarial Networks

Generative models, including GANs, provide a way to learn deep representations without

extensively annotating training data (Goodfellow et al. [189]). The inspiration for this idea

comes from the two-player sum game between neural networks, where they balance each other

out with gains and losses. GAN consists of a generator and discriminator. The generator

captures the potential distribution of real samples to generate new samples, and the discrim-

inator determines which samples are fake by discriminating which of the generated samples

are real samples as accurately as possible (Wang et al. [289]). GAN models are necessary

for many DL applications, such as security, data augmentation, and privacy preservation.

One work by Wang et al. [289] stated that generative models understand data perspective,

using real data to fit the distribution parameters and produce new data using the learned

distribution. Another work by Goodfellow et al. [290] explained the GAN framework by

applying a range of benchmark datasets. They used noise merely on the bottom layer of the

generator network. They claimed the samples resulting from their estimation method have

somewhat high variance and produce competitive samples compared to the generative models

in the literature. Their work did not require interference during the learning, allowing them

to incorporate various functions into the model. However, the model has disadvantages.
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The discriminator must be synchronized well with the generator to avoid the probability of

placing the generator in a small area of data space.

Furthermore, Zhou et al. [291] introduced GAN on the BATtle of the Attack Detection

ALgorithms (BATADAL) datasets to create a virtual testbed for WDSs. Their approach

computes the membership distance between the dimensions and then divides the dimensions

with a small distance into a group. Then, they obtained a larger quantity of attack sample

control data by expanding the attack sample. Another work, Shahriar et al. [292], addresses

the imbalanced and missing sample data used for Intrusion Detection Systems (IDSs) to

defend against CPS attacks. They proposed generating synthetic samples using GANs so

the IDS could be trained to use them and the originals. Their results showed improvements

in attack detection and model stabilization but did not provide any direction for balancing

data classes. In this dissertation, balanced synthetic data are generated using GAN for

testing the proposed models’ generalizability.

2.4.3 Other AI models for Water Distribution Systems’ Security

The security aspects of water distribution have a wide variety of potential solutions. Kadosh

et al. [293] presented a one-classifier approach to detect attacks in WDSs. Their approach

uses a Support Vector Data Description (SVDD) algorithm to classify normal vs. anomalous

behavior. Min et al. [294] proposed an ANN-based DL algorithm to detect cyber attacks.

Taormina and Galelli [94] developed an approach that uses AEs to detect and localize in-

trusion attacks in a WDS Zou et al. [295] proposed an event detection model to detect and

mitigate water contamination. In their approach, they proposed a hybrid model that com-

prises an ANN and a Support Vector Machine (SVM) to detect the contamination events.

Bagherzadeh et al. [296] evaluated the effects of different feature selection methods on en-
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hancing the model prediction performance of total nitrogen in WWTPs.

Furthermore, they analyzed the importance of different characteristics, namely time, cli-

mate, hydraulic flow, and wastewater characteristics, in predicting energy consumption

(Bagherzadeh et al. [297]). Their study suggested that the Gradient Boosting Machine

algorithm performs better in forecasting energy consumption when compared to other ML

algorithms. Mehrani et al. [298] proposed a hybrid model that combines a mechanistic model

and ML model to predict the liquid N2O concentrations; their results suggest that a hybrid

model that combines a mechanistic model and an Artificial Neural Network (ANN) model

performs better with limited availability of data. Additionally, a significant amount of work

has been reported on approaches to detect attacks in CPS used in water treatment plants

(Mao et al. [299]).

Furthermore, Yoong and Heng [300] designed an ML framework to detect physical and

software-generated anomalies in continuous water treatment plants without false alarms.

AAdepu and Mathur [187] designed and developed an expert system, Distributed Attack

Detection (DAD), that detects physical anomalies of a plant in real-time operations. This

study is a succession of a prior work of Adepu and Mathur [301] where they developed

an anomaly detection framework based on physical invariants derived for each plant de-

sign stage. Macas and Wu [302] claimed that present water treatment plants are complex,

and their spatio-temporal relations need further exploration. The authors presented an un-

supervised framework for anomaly detection called Attention-based Convolutional LSTM

Encoder-Decoder (ConvLSTM-ED) to capture temporal dependencies. In another study,

Zizzo et al. [303] developed an adversarial attacker model to compromise a subset of sensors

and validate existing anomaly detection models. In their study, the attacker manipulates the

detector by hiding its presence. Similarly, Anthi et al. [304] generated adversarial samples

using the Jacobian-based Saliency Map attack and explored how adversarial learning can
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target the supervised models. Testing anomaly detection performance using an adversarial

attacker model is a popular approach in WDSs; however, based on my search, applying

GANs as adversaries for testing the generalizability of the attack detection models in WDSs

is a novel study.

2.5 Context to AI for WWTPs: Related Forecasting

Studies

Short-term forecasting is essential for optimizing operations in WWTPs, as it directly im-

pacts operational efficiency, resource allocation, and system resilience. However, it remains

a critical challenge due to factors such as non-stationarity, high dimensionality, and complex

seasonality inherent in time series data (Kulkarni et al. [3]).

2.5.1 Traditional Forecasting Methods

Traditional statistical methods such as ARIMA (Arora and Taylor [105]), ES (Gardner [104]),

and Kalman Filtering (Harvey [305]) have long been used for time series forecasting. While

these methods are effective for linear data patterns, they often struggle with non-linearities,

complex seasonality, and integrating exogenous variables such as weather conditions or mar-

ket trends (Gheisi et al. [65]). Furthermore, they are limited in capturing long-term depen-

dencies, which is vital for accurate forecasting in modern applications.

As a response to these limitations, ML and DL techniques have gained prominence due

to their flexibility in handling complex patterns in high-dimensional time series data. Tech-

niques such as Support Vector Machines (SVMs) (Li et al. [306]), Neural Networks (NNs) (Dudek

[307]), and Recurrent Neural Networks (RNNs) (Cho et al. [308]) have shown promising re-
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sults. More advanced approaches, such as Convolutional Neural Networks (CNNs) (LeCun

et al. [309]) and LSTM networks (Hochreiter and Schmidhuber [310]), have been widely

applied for time series forecasting (Sathya et al. [103]). These models have improved the

ability to handle complex, nonlinear dynamics and high-dimensional time series data. How-

ever, they often require extensive preprocessing and domain knowledge to select relevant

features and handle raw time series data effectively (Yang et al. [102]). Furthermore, the

absence of mechanisms to dynamically weigh input feature importance limits their capacity

to emphasize the most impactful variables at each time step, which may lead to suboptimal

forecasting performance (Gao et al. [311]).

To overcome the limitations of single models, hybrid approaches have emerged as a powerful

strategy in time series forecasting by combining multiple algorithms to exploit their respec-

tive strengths. For instance, (Kim et al. [312]) proposed a hybrid Recurrent Inception CNN

model for capturing short- and long-term dependencies, significantly improving forecast ac-

curacy. Similarly, (Massaoudi et al. [313]) employed a hybrid ensemble approach combining

LightGBM, XGBoost, and NNs, achieving more accurate and robust forecasts than single

models. Despite these advancements, hybrid models encounter challenges that limit their

effectiveness in real-world applications, especially in systems heavily influenced by external

factors. A primary limitation lies in the insufficient integration of external contextual vari-

ables, such as weather patterns, river flow information, or demographic trends (Murugesan

et al. [112]). While hybrid models have advanced the ability to capture temporal depen-

dencies, they often fall short in effectively leveraging exogenous variables, which can reduce

accuracy in domains such as WWTPs where external influences are critical (Kulkarni et al.

[3]). Moreover, hybrid models frequently struggle to adapt to changing external conditions

due to a lack of dynamic context extraction mechanisms (Solomon et al. [113]). Their re-

liance on manual feature selection and the absence of mechanisms to dynamically weigh



2.5. CONTEXT TO AI FOR WWTPS: RELATED FORECASTING STUDIES 81

input features further constrain their performance (Gao et al. [311]).

2.5.2 Context-Aware Forecasting Methods

Context-aware forecasting models have gained attention as a means to address the limita-

tions of traditional and hybrid methods in integrating external influences. In the context

of WWTPs, external factors such as weather conditions, river levels, demographic changes,

economic trends, and environmental variables constitute crucial contextual information (Mu-

rugesan et al. [112]). Recent studies have highlighted the value of context-aware models in en-

hancing forecasting accuracy and robustness. For instance, (Solomon et al. [113]) highlighted

the role of external data, such as weather and economic indicators, in improving model per-

formance when dealing with systems influenced by multiple factors. Similarly, (Sreng [71])

demonstrated that incorporating real-time weather data into models enhances forecasting

accuracy, especially in scenarios where sudden changes in external conditions impact the

system’s behavior.

Hybrid models that incorporate contextual information are increasingly recognized for their

potential to capture both short-term variations and long-term dependencies, thus enhancing

forecast reliability (Gao et al. [311]). For instance, (Unger et al. [118]). The absence of

dynamic context extraction mechanisms limits the models’ adaptability to shifting external

conditions and their capacity to capture complex relationships between exogenous variables

and the target time series. Additionally, a lack of mechanisms to dynamically weigh input

features based on real-time relevance further restricts the efficacy of these models (Wang

et al. [116]).

The review of current literature highlights several critical gaps in forecasting models for

WWTPs:
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• Traditional ML and DL models often struggle to integrate external factors, such as

weather data, river conditions, and demographic trends, limiting their applicability in

WWTPs where external influences are crucial (Murugesan et al. [112], Kulkarni et al.

[3]).

• Many state-of-the-art models require extensive preprocessing and domain-specific knowl-

edge to select relevant features and manage raw time series data effectively (Yang et al.

[102]).

• Most existing models do not dynamically weigh input features based on their relevance,

resulting in suboptimal performance in systems heavily influenced by changing external

variables (Gao et al. [311]).

• A majority of time series forecasting models lack uncertainty estimation capabili-

ties, which are essential for risk assessment and decision-making in critical infras-

tructure (Piotrowski et al. [314]).

• Many forecasting models struggle to mitigate forecast bias during peak events or ex-

treme conditions, reducing their reliability and deployability in real-world applica-

tions (Kim et al. [312]).

By addressing these critical gaps—such as integrating external contextual variables, reducing

the need for extensive preprocessing, dynamically weighing input features, estimating uncer-

tainty, and mitigating forecast bias during extreme events—I aim to significantly improve

the accuracy and resilience of forecasting models in WWTPs.



Chapter 3

Research Hypotheses

The foundation of scientific inquiry is often built upon hypotheses, which serve as educated

assumptions that guide research endeavors. In the context of the work presented, research

hypotheses play a pivotal role in directing the course of this study. The subsequent sections

present problem statements, research questions, and research hypotheses.

3.1 Problem Statements

The identified problems are categorized into three distinct groups: group one encompasses

issues related to AI and AIA, group two pertains to challenges within water and agricultural

systems, and group three involves considerations regarding Context to AI for WWTPs.

These problem categories are elaborated upon in the subsequent sections as follows:

3.1.1 AI and AIA

This section introduces research statements concerning AI and AIA. It outlines four research

statements as follows:

1. DL methods, particularly AEs, used to uncover hidden attacks often exhibit inherent

non-deterministic tendencies in their attack detection capabilities (Sikder et al. [5]). This

tendency contributes to an elevated risk of false positives. Addressing this issue necessitates

83
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an inquiry into methods for enhancing deterministic characteristics, thereby reducing false

positive outcomes. A higher incidence of false positives within a complex system, as applied

within a specific domain, implies reduced model accuracy.

2. Cyber attack detection models face the challenge of assessing the generalizability and

reliability of DL models within different WDSs (Chandy et al. [315]). To address the problem,

this dissertation aims to analyze the impact of poisoned data on DL model performance and

subsequently contribute to the enhancement of secure and resilient DL models for WDS

applications. This is achieved through an investigation that tests DL models using GAN-

generated data, shedding light on the model’s ability to withstand and mitigate the effects

of malicious inputs, thereby improving its generalizability to unseen data.

3. In traditional cyber attack detection models, particularly in DL models, the localization

of features relies on embedded and learned representations within a WDS feature space

(Housh et al. [316]). However, their inherent non-determinism often results in an inability

to pinpoint the attack nodes accurately. This challenge can be effectively addressed by

incorporating AI assurance, leading to the confident identification of attack nodes within a

WDS.

4. Deploying DL/ML models in WDS and APS requires assurance in aspects like explain-

ability, fairness, and security (Batarseh et al. [317]). Attaining all these goals is challenging,

making a model-agnostic approach essential across domains. This dissertation proposes an

empirical, universally applicable model-agnostic AI pipeline for quantifying AIA goals, in-

cluding explainability, fairness, and security.
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3.1.2 Water Distribution and Agricultural Production Systems

This section introduces research statements concerning WDSs and APSs O&M. It outlines

two research statements as follows:

1. DL and ML models are extensively studied in APS, but limited data availability often

hinders proper model development (Gurrapu et al. [2]). Collecting and investigating context

groups could enhance APS models, yet there’s no benchmark pipeline. This dissertation

explores the impact of incorporating outlier information in precision agriculture, aiming to

boost DL-model prediction accuracy and provide a benchmark process.

2. Detecting outliers and optimizing WDS operational processes is a novel and comprehen-

sive study. Despite complex modern networks and extensive data, many utilities still rely on

stochastic and probabilistic methods, which struggle with large datasets. AI methods offer

a better solution; this dissertation introduces an AI-based decision support framework for

anomaly identification and operational cost optimization (Kulkarni et al. [3]) in WDS.

3.1.3 Context for WDS

This section introduces research statements concerning context-aware AI solutions. It out-

lines two research statements as follows:

1. Context-aware AI solutions can enhance accuracy by minimizing learning and data biases

(Wilcox et al. [318]). However, a comprehensive context group selection and framework are

lacking in WDSs. This dissertation thoroughly examines how diverse contextual factors—

like weather, usage patterns, and population—affect DL model outcomes for specific WDS

problems.
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2. One challenge of context-based AI solutions is to effectively identify and adapt to relevant

contexts for specific applications or subtasks, such as OD or prediction, within a defined time

frame (Nobles et al. [319]). This involves leveraging advanced technologies and contextual

awareness techniques to develop a contextual AI model that can accurately provide timely

and contextually relevant information in dynamic environments.

3.2 Research Questions

The identified questions are categorized into three distinct groups and presented here:

3.2.1 AI and AIA

This section introduces research questions concerning AI and AIA. It outlines four research

questions as follows:

1. (AI Assurance): How do AI assurance constraints, such as layer customization, improve

models’ performance?

2. (Data Poisoning): Can models’ generalizability in WDSs be tested using poisoned data

generated by GANs?

3. (Feature Localization): How can the two models localize features based on embedded

and learned representations in a given feature space (i.e., in a water system)?

4. (MAA): How can developing a model-agnostic AI pipeline, applicable across various

domains, be achieved to score AIA objectives such as explainability, fairness, and

security?
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3.2.2 Water Distribution and Agricultural Production Systems

This section introduces research questions concerning Water and Agricultural Systems op-

erations. It outlines two research questions as follows:

1. (Outlier): How does the incorporation of outlier information contributes to developing

a more accurate prediction model in precision agriculture?

2. (Tunnel Wastewater Overflow): How to accurately forecast tunnel wastewater overflow

beyond a predefined threshold using a predictive model?

3.2.3 Context to AI for Water Systems

This section introduces the research questions addressed in this work, emphasizing both the

theoretical and practical aspects of the proposed context modeling approach for WWTPs.

Mathematical formulations are presented using vector notations to describe the model be-

havior succinctly.

RQ1: Does incorporating contextual data into forecasting models significantly

improve the accuracy of short-term predictions in WWTPs compared to models

that do not use context?

Given a WWTP dataset D ∈ RT×N , representing multiple time series of WWTP variables

(e.g., inflow, water levels), a context matrix C ∈ RT×M , containing exogenous variables (e.g.,

weather data, river flow), and the true output at time t+ 1 as yt+1, I consider two models:

1. Context-Driven Model:

ŷcontext
t+1 = fcontext(Dt,Ct;θcontext)
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2. Without Context Model:

ŷno-context
t+1 = fno-context(Dt;θno-context)

The prediction error E is defined as:

E(ŷ,y) = E[L(ŷ,y)]

where L(·, ·) is a loss function.

RQ2: Is the cP2O model generalizable and effective across different WWTPs,

maintaining high accuracy when applied to various datasets?

I assess generalizability by applying the same modeling approach to different WWTPs: For

WWTP A, with dataset D(A) and context C(A), I train the model with parameters θ(A); For

WWTP B, with dataset D(B) and context C(B), I train the model with parameters θ(B):

ŷ(A)
t+1 = f(D(A)

t ,C(A)
t ;θ(A))

ŷ(B)
t+1 = f(D(B)

t ,C(B)
t ;θ(B))

RQ3: Does the integration of an attention mechanism in cP2O enhance the

model’s ability to dynamically weigh input features, thereby improving forecast-

ing accuracy?

To evaluate the impact of the attention mechanism, I compare two models:

1. Model with Attention:

ŷatt, t+1 = fatt(Dt,Ct;θatt)
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2. Model without Attention:

ŷno-att, t+1 = fno-att(Dt,Ct;θno-att)

RQ4: Can the quantile loss function employed in cP2O effectively reduce fore-

cast bias during peak events or extreme conditions, and improve uncertainty

estimation in multi-step ahead forecasting?

I assess the model’s performance by comparing:

1. Model with Quantile Loss Function:

• Predictions: ŷquantile, t+1

• Parameters: θquantile

2. Model with Standard Loss Function:

• Predictions: ŷstandard, t+1

• Parameters: θstandard

Forecast bias B is defined as:

B = E[ŷt+1 − yt+1]

Additionally, the model improves uncertainty estimation, measured by metrics such as pre-

diction interval.

By addressing these research questions, I aim to validate the effectiveness of cP2O in improv-

ing forecasting accuracy through context integration, assess its scalability across different

WWTPs, and demonstrate the contributions of the attention mechanism and quantile loss

function in enhancing model performance.
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3.3 Research Hypotheses

Research hypotheses are discussed as follows:

3.3.1 AI and AIA

This section introduces research hypotheses concerning AI and AIA. It outlines four hy-

potheses as follows:

1. Research Hypothesis: Let fpLayerCustom represent the false positives of the model

with AI assurance constraints, such as layer customization. Let fpBaseline represent the false

positives of the baseline model without AI assurance constraints.

The hypothesis can be formulated as follows:

H0 : fp(HCAE)LayerCustom ≥ fp(AE)Baseline

H1 : fp(HCAE)LayerCustom < fp(AE)Baseline

Where, H0 represents the null hypothesis, suggesting that the false positives of the model

with AI assurance constraints (layer customization) are greater than or equal to the false

positives of the baseline model without these constraints. H1 represents the alternative

hypothesis, suggesting that the false positives of the model with AI assurance constraints

(layer customization) are less than the false positives of the baseline model without these

constraints.

The goal of this hypothesis is to investigate whether AI assurance constraints, such as layer

customization, improve the reduction of false positives. The hypothesis testing aims to assess

whether the model’s performance with AI assurance constraints is significantly better than
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the performance of the baseline model without these constraints.

2. Research Hypothesis: Let HCAEGeneralizability represent the generalizability of HCAE

and AEGeneralizability represent the generalizability of baseline AE on unseen poisoned data

generated by GAN.

The hypothesis can be formulated as follows:

H0 : HCAEGeneralizability ≤ AEGeneralizability

H1 : HCAEGeneralizability > AEGeneralizability

Where H0 represents the null hypothesis, suggesting that the HCAE tested using unseen

poisoned data generated by GANs is less than or equal to the generalizability of the baseline

AE model tested using the same data. H1 represents the alternative hypothesis, suggesting

that the generalizability of HCAE tested using unseen poisoned data is greater than baseline

AE tested using the same data.

This hypothesis aims to investigate whether the generalizability of the improved model,

HCAE, can be assessed using unseen poisoned data generated from a GAN. The hypothesis

testing assesses whether poisoned data effectively tests HCAE’s generalizability.

3. Research Hypothesis: Let F represent the set of extracted features from the water

system data, and let EF denote the set of embedded representations of these features in a

lower-dimensional space. Furthermore, let M1 and M2 be two DL models trained to localize

features based on EF within the given feature space of the water system.

The hypothesis can be formulated as follows:
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H0 : ∀x ∈ EF , M1(x) =M2(x)

H1 : ∃x ∈ EF , M1(x) ̸=M2(x)

Where, H0 represents the null hypothesis, suggesting that both models M1 and M2 yield

similar predictions for any given embedded representation x. H1 represents the alternative

hypothesis, suggesting that there exists at least one embedded representation x for which

the predictions of models M1 and M2 differ.

The goal of this hypothesis is to determine whether the two models M1 and M2 are capable

of localizing features based on their embedded and learned representations consistently or if

there are instances where their predictions diverge. The outcome of hypothesis testing will

provide insights into the models’ ability to effectively localize features in the water system’s

feature space.

4. Research Hypothesis: Let D represent the set of all possible domains in which an

AI model can be deployed, and let MAA denote the proposed model-agnostic AI frame-

work designed to achieve AIA (Assured AI) objectives, including explainability, safety, and

security.

The hypothesis can be formulated as follows:

H0 : ∀d ∈ D, MAA(d) achieves AIA objectives

H1 : ∀d ∈ D, MAA(d) does not achieve AIA objectives

Where H0 represents the null hypothesis, suggesting that the model-agnostic AI framework

MAA is universally effective across all possible domains D in achieving AIA objectives. H1
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represents the alternative hypothesis, suggesting that the framework MAA fails to achieve

any AIA objectives.

This hypothesis aims to determine whether the proposed model-agnostic framework, ALSP ,

can achieve AIA objectives across various domains or if there are instances where the frame-

work falls short in meeting these objectives. The outcome of hypothesis testing will provide

insights into the framework’s effectiveness in ensuring explainability, fairness, and security

in diverse application contexts.

3.3.2 Water Distribution and Agricultural Production Systems

This section introduces research hypotheses concerning water and agricultural systems op-

erations. It outlines two research hypotheses as follows:

1. Research Hypothesis: Let X represent the set of all possible datasets used in precision

agriculture, and let Mold denote the existing prediction model without the incorporation of

outlier information, and Mnew denote the new prediction model developed with the incorpo-

ration of outlier information.

The hypothesis can be formulated as follows:

H0 : ∀x ∈ X, Accuracy(Mnew(x)) ≤ Accuracy(Mold(x))

H1 : ∀x ∈ X, Accuracy(Mnew(x)) > Accuracy(Mold(x))

Where H0 represents the null hypothesis, suggesting that the incorporation of outlier infor-

mation in the new prediction model Mnew leads to an equal or less accuracy compared to

the without outlier information model Mold in APS. H1 represents the alternative hypothe-

sis, suggesting that the accuracy of the new prediction model Mnew is greater than without
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outlier information model Mold.

The goal of this hypothesis is to determine whether the incorporation of outlier information

indeed contributes to the development of a more accurate prediction model in APS. The

outcome of hypothesis testing will provide insights into the impact of incorporating outlier

information on the model’s accuracy, such as R-square and RMSE metrics.

2. Research Hypothesis: Let P denote the set of all possible samples or instances

in which water levels are overflowing. Let Wactual represent the actual water levels, and

Wpredicted represent the water levels predicted by the model.

The hypothesis can be formulated as follows:

H0 : ∀p ∈ P, |Wpredicted(p)−Wactual(p)| ≤ Threshold

H1 : ∃p ∈ P, |Wpredicted(p)−Wactual(p)| > Threshold

Where H0 represents the null hypothesis, suggesting that for all instances p in P , the abso-

lute difference between the water levels predicted by the model Wpredicted and actual water

levels Wactual is less than or equal to a predefined threshold. H1 represents the alternative

hypothesis, suggesting that there exists at least one instance p in P for which the abso-

lute difference between the predicted water levels Wpredicted and actual water levels Wactual

exceeds the predefined threshold.

This hypothesis aims to determine whether the developed predictive model, MM −LSTM ,

can correctly identify instances in which water levels go beyond the threshold. The hypothesis

testing will provide insights into the model’s accuracy in identifying such instances and

whether it meets the desired accuracy criteria defined by the threshold.
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3.3.3 Context to AI for Water Systems

This section introduces research hypotheses concerning context-aware AI solutions. It out-

lines key research hypotheses as follows:

1. Hypothesis on Contextual Factors Improving Model Performance Let C rep-

resent the set of all possible combinations of contextual factors, where each combination

c ∈ C includes weather conditions, usage patterns, and infrastructure conditions. Let

Performance(c) denote the prediction or classification performance of the DL model for a

specific water distribution problem when considering the contextual factors in combination

c.

Formulated hypotheses:

H0 : ∀c ∈ C, Performance(c) ≤ Performancebaseline

H1 : ∃c ∈ C, Performance(c) > Performancebaseline

Explanation: This hypothesis evaluates whether including contextual factors improves the

model’s performance (e.g., accuracy, F1-score, RMSE) compared to a baseline model that

excludes them.

2. Hypothesis on Contextual Model Accuracy Let Context(t) represent the context

identified by the model at time t and TrueContext(t) represent the true context.

Formulated hypotheses:

H0 : ∀t within time window, Context(t) ̸= TrueContext(t)

H1 : ∃t within time window, Context(t) = TrueContext(t)
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Explanation: This hypothesis tests whether the contextual model can correctly identify the

true context during various time windows, essential for real-time adaptability in WWTPs.

3. Hypothesis on Incorporating Contextual Data Incorporating contextual data im-

proves forecasting accuracy:

E(ŷcontext
t+1 ,yt+1) < E(ŷno-context

t+1 ,yt+1)

Explanation: This hypothesis examines whether models using contextual data achieve lower

error rates compared to those that do not.

4. Hypothesis on Attention Mechanism’s Impact The attention mechanism improves

forecasting accuracy:

E(ŷatt, t+1,yt+1) < E(ŷno-att, t+1,yt+1)

Explanation: This hypothesis tests whether including an attention mechanism improves the

accuracy by dynamically weighing input features based on their relevance.

5. Hypothesis on Forecast Bias Reduction with Quantile Loss The quantile loss

function reduces forecast bias during extreme conditions:

Bquantile < Bstandard

Explanation: This hypothesis evaluates whether the quantile loss function mitigates bias

during extreme events, providing more reliable forecasts.
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Table 3.1: Summary of Research Statements, Questions, and Hypotheses

Research Statements Research Questions Research Hypotheses

AI and AIA

Non-deterministic tenden-

cies in attack detection

How do AI assurance constraints

improve model performance?

H1: HCAEGeneralizability > AEGeneralizability

Generalizability of DL mod-

els in WDSs

Can models’ generalizability be

tested with GAN-generated data?

H1: HCAEGeneralizability > AEGeneralizability

Feature localization in water

system

How do models localize features

based on embeddings?

H1: ∃x ∈ EF , M1(x) ̸= M2(x)

Model-agnostic AI pipeline

for AIA goals

How to develop a universally appli-

cable AI pipeline?

H1: ∀d ∈ D, MAA(d) does not achieve

AIA objectives

Water and Agricultural Systems

Limited data availability in

APS

How does incorporation of outlier

information impact predictions in

agriculture?

H1: ∀x ∈ X, Accuracy(Mnew(x)) >

Accuracy(Mold(x))

OD and optimization in

WDS

How can water levels beyond the

tunnel threshold be correctly iden-

tified?

H1: ∃p ∈ P, |Wpredicted(p) −Wactual(p)| >

Threshold

Context to AI for WWTPs

Context-aware solutions for

improved accuracy

How do various contextual factors

enhance DL model performance in

WDS?

H1: ∃c ∈ C, Performance(c) >

Performancebaseline

Identifying appropriate con-

text within the time window

Can the contextual model accu-

rately identify appropriate context?

H1: ∃t within time window, Context(t) =

TrueContext(t)

Impact of attention mecha-

nism on forecasting

Does incorporating attention mech-

anism improve model accuracy?

H1: E(ŷatt, t+1,yt+1) < E(ŷno-att, t+1,yt+1)

Bias reduction during ex-

treme events

Does the quantile loss function re-

duce forecast bias during extreme

conditions?

H1: Bquantile < Bstandard



Chapter 4

Research Methods, Techniques, and

Algorithms

This chapter discusses the proposed AI framework-ALSP , pipelines- DeepH2O, P2O,DeepAg;

methods, techniques, and algorithms such asMM−LSTM , other DL-based methods, GRU,

LSTM, AE, HCAE, GAN, Random Forest, Isolation Forest, and Context for detecting out-

liers/cyber threats in WDSs and APSs. Figure 4.1 presents an overview of the framework,

methods, techniques, and pipelines discussed in this Chapter. Each AI component is dis-

cussed in detail in this chapter.

4.1 Model Agnostic Assurance Framework - ALSP

This section presents a framework, ALSP , for achieving quantifiable assurance goals, includ-

ing XAI, FAI, and SAI. The framework validates an AI system by providing quantifiable

AIA scores using a combination of both data-driven and AI model-driven approaches. More

specifically, ALSP optimizes models using a game theory approach, and it also logs and

scores the actions of an AI model to detect adversarial inputs and assures the datasets used

for training. It is quite difficult to ensure all six goals for an AI system using a single algo-

rithm; therefore, this dissertation proposes three separate methods in the ALSP framework,

including Weight Assessment, Reverse Learning, and Secret Inversion, that are capable of

98
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Figure 4.1: Proposed AI Framework, Pipelines, Methods and Models

achieving all three goals, including XAI, FAI, and SAI, for different contextual applications.

Figure 4.2 presents theMAA framework for domain-independent applications throughALSP .

The framework includes three methods: Weight Assessment, Reverse Learning, and Secret

Inversion.

A detailed description of all three methods is discussed as follows:
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Figure 4.2: Adversarial Logging Scoring Pipeline

4.1.1 Weight Assessment

The Weight Assessment is a method that applies Game Theory to the AI model of particular

interest for calculating the Shapley values (Shapley [200]) at every epoch of learning; this

method aims to achieve assurance goals, including XAI as a form of quantifiable AIA scores

by assigning scores per data point and not as an aggregate score. It is important to note

that this dissertation assumes an AI model is required for scoring the given dataset. For the

Weight Assessment study, a tree-based algorithm, an Extreme Gradient Boosting Decision

Tree (XGBDT), is applied as the baseline model. Shapley values are outcomes of a game that

assumes cooperation among players and achieves overall gain from alliances. These values

represent each player’s bargaining power and the payoff that is reasonable to expect in a given

context. A characteristic function can represent the alliance in the game. This characteristic

function (v) can be mapped as v : 2N → R for a set of N ; therefore, each player i gets a

fair distribution, assuming the game is cooperative and can be represented mathematically

as (4.1). Considering a fair cooperation game, a player can expect v(S ∪ {i}) − v(S) by



4.1. MODEL AGNOSTIC ASSURANCE FRAMEWORK - ALSP 101

averaging the set of possible different permutations in which the alliance was formed.

φi(v) =
1

n

∑
S⊆N\{i}

 n− 1

|S|


−1

(v(S ∪ {i})− v(S)) (4.1)

A unique set of values that indicates the importance of each feature in a given dataset is

assigned. Along with the game theory-driven weights, these values also represent a heuris-

tic expectation from an assurance perspective provided by domain experts. Similar to how

labels are used as independent variables in a training-testing learning approach, this disser-

tation introduces the addition of assurance labels: AIA Columns (AIAC). However, AIAC

values, as assigned by the domain expert, are not directly provided as inputs to the AI model.

For instance, some features in a dataset can be relevant to specific assurance goals such as

explainability (consider data on demographics); accordingly, these features are labeled as

XAI features. The use cases in this manuscript provide further information on the usability

of these labels.

1st block of Figure 4.2 represents steps of the Weight Assessment method. Algorithm 1

Algorithm 1 Weight Assessment
1: Input: AI model, dataset D, assurance labels AIAC
2: Output: AIA scores
3: Initialize Shapley values φi(v) for each feature
4: Train AI model on D
5: for i in features of D do
6: for π in all permutations of features excluding i do
7: Calculate v(S ∪ {i}) and v(S)
8: Update φi(v) using Equation (4.1)
9: end for

10: end for
11: return AIA scores

presents the detailed steps involved in executing the weight-assessment method. To gen-

erate AIA scores, the multiplication of Shapley value weights φi(v) and AIACs (AIACi)
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is performed. This matrix multiplication generates the AIA score for each row/column.

Experimental work provides further information on that.

4.1.2 Reverse Learning

Reverse Learning is a log-based method (2nd block of Figure 4.2) that can trace back as-

surance issues using a table of recorded learning actions (i.e. reverse engineering). Reverse

Learning also accomplishes AIA goals such as XAI. XAI can be enforced if learning details

and evolution are available through a log of actions. The log records the learning process and

indicates points in time during learning where the algorithm’s learning accuracy, for instance,

has decreased or ceased to improve. That is illustrated in the experimental section. While

devising the method, the Gradient Boosting Decision Tree (GBDT) algorithm is employed

as a representative instance. However, it’s important to note that while GBDT is chosen

as the primary algorithm for this example, alternative AI algorithms can also be tested for

experimentation. While developing the AI algorithm, the primary focus was to log each

learning epoch’s actions. The outcome of this algorithm is two-fold: the optimized number

of epochs to minimize the loss function and a logged action of each epoch. For GBDT, values

including pseudo-residuals rim, gamma γim, log of odds for the labels lm(x), probability pmi

are saved during each epoch. Equation 4.2 presents a prediction of the GBDT model after

each epoch. Equation 4.3 presents the logarithmic loss function of the GBDT model.

fmi =


0→ pmi < 0.5

1→ pmi >= 0.5

(4.2)

L = −
N∑
i=1

(
y log(odds)− log

(
1 + elog(odds))) (4.3)
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Algorithm 2 Reverse Learning
1: Input: AI model, training data Dtrain
2: Output: Optimized number of epochs, logged actions
3: Initialize empty logs for each epoch
4: for i in number of epochs do
5: Train AI model for one epoch on Dtrain
6: Calculate pseudo-residuals rim, gamma γim, and other values
7: Save learning details in logs for epoch i
8: Update model weights
9: end for

10: Analyze logs to find the optimized number of epochs
11: Analyze logs for assurance issues

return Optimized number of epochs, logged actions

Unlike Weight Assessment, Reverse Learning doesn’t provide AIA scores; however, it serves

as a tool to manually verify and optimize the AI algorithm. Algorithm 2 presents the steps

in executing the Reverse Learning method.

4.1.3 Secret Inversion

The Secret Inversion method (3rd block of Figure 4.2) performs exhaustive comparisons

amongst features by reconstructing them using an Autoencoder. It is assumed that, given

the reconstruction errors (r) work using an encoder-decoder mechanism, the AIA scores that

are relevant in this case are goals such as SAI and CAI. An AE learns a meaningful pattern

of the data model by reducing its feature dimensions. It consists of a feed-forward neural

network and works as a self-supervised model where the encoder-decoder can be characterized

as an hourglass shape compressor and decompressor. The encoder compresses feature space

and translates it into codes that the decoder decomposes. The decoder reconstructs the

feature space from the codes. However, the reconstructed signal is not always the same as

the input (if it’s not the same, it indicates an alteration in the data - which could be a

SAI/CAI issue). This difference is represented by the reconstruction errors (r). Let ϕ and
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ψ as the encoder and decoder respectively, mathematically an AE can be represented as

Equations 4.4, 4.5:

ϕ : X → F (4.4)

ψ : F → X (4.5)

Here, X ∈ X is input for the encoder, and F ∈ F represents the code as the input of the

decoder. By defining ϕ and ψ, the AE minimizes the reconstruction errors and measures

connection weights across the training phase for all elements of input X. It can be defined

mathematically as Equation 4.6:

∥X − (ϕ ◦ ψ)X∥2 (4.6)

Where ◦ is a composition operator. The reconstruction error can be minimized using either

the Adam Optimizer or the Stochastic Gradient Descent (SGD) algorithm. Both optimizers

can quickly update the connection weights after a few learning cycles. Algorithm 3 presents

the steps involved in executing the Secret Inversion method.

Algorithm 3 Secret Inversion
1: Input: Dataset D, Autoencoder model, reconstruction errors r
2: Output: AIA scores (SAI and CAI)
3: Train Autoencoder model on D
4: for each feature Fi in D do
5: Encode Fi using the Autoencoder: F ′

i = ϕ(Fi)
6: Decode F ′

i using the Autoencoder: F ′′
i = ψ(F ′

i )
7: Calculate reconstruction error for Fi: ri = ∥Fi − F ′′

i ∥
8: end for
9: Calculate SAI and CAI based on reconstruction errors

return SAI and CAI scores
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4.2 Outlier Detection Methods for CPSs

This section presents detailed methodologies for DeepAg OD methods using ML and DL

models in WDS and APS.

4.2.1 Outlier Detection in Agricultural Production Systems - DeepAg

This subsection presents OD methods using ML and DL models in APS.

4.2.1.1 Isolation Forest

The attribute of Isolation Forest (Figure 4.3) is that there is a tendency to separate outlier

data points from normal data points, as the algorithm randomly selects an attribute and

splits values between the minimum and maximum of that attribute. The OD in this work is

based on having the economic indices (Crude Oil, Gold, Dow Jones, S&P 500, VIX) as an

input to the Isolation Forest algorithms as shown in Figure 4.4. This algorithm is designed

for unsupervised anomaly detection. It isolates outliers in a dataset by constructing a binary

tree structure. The key idea is that outliers are more likely to be isolated in the early stages

of tree construction, while normal data points are likely to appear deeper in the tree. The

algorithm assigns an anomaly score to each data point based on the number of splits required

to isolate it. As shown in Figure 4.3, the Isolation Forest model constructs an ensemble of

isolation trees. Each tree is built as follows:

1. Randomly select a subset of the data points and features to create a sub-sample.

2. Construct a binary tree recursively as follows:

- Select a feature randomly.
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Figure 4.3: Isolation Forest Method for OD (Regaya et al. [1])

- Randomly choose a split value between the minimum and maximum of the selected

feature.

- Split the data points into two partitions based on the selected feature and split value.

- Recursively repeat the process on each partition.

The tree construction continues until all data points are isolated or a predefined maximum

tree depth is reached; (T1, T2, . . . , Tn)- here, Ti represents the i-th isolation tree in the en-

semble.

Figure 4.4: DeepAg Methodology (Gurrapu et al. [2])

The Isolation Forest algorithm is effective for detecting outliers in high-dimensional datasets

and is computationally efficient due to its use of random sub-sampling and binary tree
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construction. Random partitioning creates a short path for outliers. Therefore, a sample

is more likely to be an outlier if a forest of random trees collectively produces shorter path

lengths for particular samples. The algorithm takes several hyperparameters as input; among

them, the most important is the contamination rate. It estimates the percentage of outliers

that can be approximately predicted from the total data points.

4.2.1.2 Anomaly Detection Thresholds and Contamination Rates

The contamination rate is determined using a popular statistical measure known as the In-

terquartile Range (IQR) (Figure 4.5). IQR describes the middle 50% of the data distribution.

Quartiles slice any Gaussian distribution into four equal groups of 25%. Calculating IQR

describes the middle half of the data in the distribution set. These middle data segments are

considered normal data points, given that outliers typically reside at the tails of a Gaussian

distribution. The representation of the IQR can be expressed as Equation 4.7:

Interquartile Range = Q3−Q1 (4.7)

Where Q1 is the first quartile or 25th percentile and Q3 is the third quartile or 75th percentile.

Figure 4.5: Interquartile Range Diagram
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Tables 4.1a and 4.1b provide the daily and monthly contamination rate of all financial

indices using the IQR method. The Isolation Forest algorithm identifies an estimation of the

anomaly score using Equation 4.8, for a given instance x using this formula:

s(x,m) = 2−E(h(x))/c(m) (4.8)

where E is the average of h trees and c(m) is the average path length of unsuccessful binary

searches.

Table 4.1: Contamination Rates for Financial Indices using IQR

(a) Daily Data Contamination (%)

Financial Index Contamination Rate
VIX 6.559
Gold 5.382
S&P 500 6.008
DOW 6.125
Crude Oil 3.953

(b) Monthly Data Contamination (%)

Financial Index Contamination Rate
VIX 6.250
Gold 2.232
S&P 500 2.232
DOW 2.232
Crude Oil 6.250

Then, a threshold value T is selected using Equations 4.9 & 4.10 to classify data points as

outliers. Data points with an anomaly score below T are considered normal, while those

above T are classified as outliers. The threshold values are selected from Tables 4.1a and

4.1b (contamination rates).

If S(x) < T, then x is a normal data point. (4.9)
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Algorithm 4 Isolation Forest for Outlier Detection
1: Input: Dataset X, number of trees T , sub-sampling size S
2: Output: Outlier scores for each data point
3: Initialize an empty set of isolation trees: F = {}
4: for t = 1 to T do
5: Randomly select S samples from X without replacement to create a sub-sample Xs

6: Create a new isolation tree Tt using Xs as follows:
7: If Xs contains only one point or maximum depth is reached:
8: Create a leaf node with that point.
9: Else:

10: Randomly select a feature A from the remaining features.
11: Randomly select a split value p for feature A within its range in Xs.
12: Split Xs into two subsets: Xleft containing points with A ≤ p and Xright with

A > p.
13: Create a non-leaf node with feature A and split value p.
14: Recursively build the left subtree using Xleft and the right subtree using Xright.
15: Add the newly created isolation tree Tt to the set F
16: end for
17: Compute the anomaly score for each data point in X as follows:
18: for each data point x in X do
19: For each isolation tree Tt in F , traverse the tree to find the depth dt(x) at which x

is isolated.
20: Calculate the average depth across all trees: D(x) = 1

T

∑T
t=1 dt(x)

21: Compute the anomaly score for x: S(x) = 2−
D(x)

c , where c is a normalizing factor.
22: end for

return Anomaly scores for each data point

If S(x) ≥ T, then x is an outlier. (4.10)

Algorithm 4 presents the detailed steps involved in executing OD in economic data using

Isolation Forest.

4.2.2 Prediction in Water Distribution Systems - P2O

This subsection focuses on the Multivariate Multi-step LSTM (MM − LSTM) and other

AI models for tunnel water level prediction and optimization. A schematic diagram of
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the methodology used for this module is shown in Figure 4.6. As shown in the figure, this

module has five components: Data Preprocessing, Exploratory Data Analysis (EDA), Model

Development, Hyperparameter Tuning, and Model Evaluation & Selection. The details of

these components are discussed in the next subsection.

Figure 4.6: A Schematic Diagram of the Methodology Used for Tunnel Water Level Predic-
tion. (Kulkarni et al. [3])

4.2.2.1 Data Preprocessing for Tunnel Wastewater Level Prediction

The data used for this work are from an actual WDS, including 243 columns in each file;

thus, the first task was to understand the Not Available (NA) sensor readings in the data.

The reason for NAs is due to the format of the data produced by the reporting tool while

fetching the data. Thus, NAs were removed from the data, and the output was identified.

After preprocessing, selecting output, and combining the data into a data frame, there were

42 columns in the data. This combined data frame also had NAs in the first 60,301 rows,

which were removed. Finally, at the end of the preprocessing phase, the data consisted of

42 columns and 367,943 rows.

In the next step, two different versions of the preprocessed data were created - based on

Principal Component Analysis (PCA) and Sampling - to understand the effects of data

processing techniques and maintain AI assurance. Abdi andWilliams [320] provided evidence
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that PCA is a widely used technique that provides a set of uncorrelated variables from a set

of correlated variables. Thus, considering collinearity in the data, the PCA technique for

preprocessing was selected. The second dataset was produced based on downsampling and

was performed by selecting the observations based on intervals of 30 minutes. This way, two

versions of the data were produced based on the raw data at the end of the preprocessing

phase.

4.2.2.2 Multivariate Multi-step LSTM Model Development

A MM −LSTM time series and DL-based model (Figure 4.7) is derived using LSTM archi-

tecture, which can take multiple inputs for predicting multistep outputs. Before discussing

the modeling steps, an effective objective function (i.e., loss function) is needed to achieve

the desired outcome (i.e., accurate prediction of water level peaks or effective pump action

generation). The goal is to accurately predict water levels while prioritizing detecting water

overflow incidents (anomalous data points). The following considerations are made: choos-

ing the Huber loss as the cost function (Equation 4.11) is made due to outliers in the data

caused by extreme weather days and water overflow situations.

Figure 4.7: Water Level Forecasting LSTM Architecture

Given the presence of significant yet infrequent overflow incidents in the dataset, opting for
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the cubic difference as a loss function is a wise decision. Additionally, the primary focus is

predicting water level peaks, particularly overflow situations, rather than comprehending the

general time series trend. In the context of application, the overflow samples are considered

outliers in the data.

The training and evaluation of the proposed multivariate forecasting model (depicted in

Figure 4.7) involves incorporating a double LSTM layer and one fully connected layer to

predict the subsequent multi-output hours of tunnel water levels. To achieve this, se-

quences of 24/48/72-hour lengths are created and employed for model training, resulting in a

two/three/four/five/six-hour multistep forecast. The optimization of the objective function

(Equation 4.11) is accomplished using the Adam optimizer. Following the training phase,

model performance is assessed using the test dataset, which comprises 30% of the original

dataset.

A subsequent step involves transforming the model’s outputs back to the original scale to

facilitate the evaluation of forecasted water levels against the actual tunnel water levels.

The prediction of peak water levels assumes paramount importance, as the optimization

process hinges on these extreme water level predictions to formulate optimal discharge and

pumping actions. For peak detection, a threshold of -47ft is chosen empirically; consequently,

tunnel overflow is considered to occur when water levels exceed the value of -47ft for the

development of the model.

4.2.2.3 Model Optimization and Explainability

The MM − LSTM is optimized using the Huber loss function (4.11), also known as the

Huber loss or Huber-M loss, which is a loss function used in regression tasks. It combines

the characteristics of the Mean Absolute Error (MAE) loss and the Mean Squared Error
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(MSE) loss, making it less sensitive to outliers than MSE while maintaining some of its

desirable mathematical properties.

L(y, f(x)) =


1
2
(y − f(x))2 if |y − f(x)| ≤ δ

δ(|y − f(x)| − 1
2
δ) if |y − f(x)| > δ

(4.11)

where,

- L(y, f(x)) represents the Huber loss between the true target value y and the predicted

value f(x).

- |y − f(x)| is the absolute difference between the true value and the predicted value.

- δ is a hyperparameter that defines the point where the loss function transitions from

quadratic (MSE-like) to linear (MAE-like). It is a non-negative constant.

- When |y − f(x)| ≤ δ, the loss function is quadratic, similar to MSE.

- When |y − f(x)| > δ, the loss function is linear, similar to MAE.

The choice of δ controls the balance between the two loss components and determines the

smooth transition region between the quadratic and linear parts of the loss function. Smaller

values of δ make the loss more robust to outliers. This loss function is commonly used in

robust regression tasks where the dataset may contain outliers that can significantly influence

the model’s performance if a purely quadratic loss (MSE) is used. Algorithm 5 presents the

detailed steps in executing forecasting and OD in tunnel water level data usingMM−LSTM .

Neural networks inherently function as black boxes, posing challenges in their interpreta-

tion. To overcome this, this work utilizes the SHAP framework to estimate Shapley values

(Shapley [200]), which leverages the game theory rule. This technique evaluates the model’s

predictions and elucidates the contributions of each feature to each prediction. Specifically,

the process, referred to as a deep explainer, dissects each model outcome and backpropa-
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Algorithm 5 Multivariate Multistep LSTM with Huber Loss for Tunnel Water Level Fore-
casting with Anomaly Detection
1: Input: Multivariate time series data X, LSTM model parameters, prediction horizon H, anomaly

threshold T
2: Output: Forecasted water levels and anomaly labels
3: Split X into training (Xtrain) and testing (Xtest) datasets
4: Train the LSTM model on the training dataset using Huber loss
5: Initialize model parameters and hyperparameters: Θ = {θ1, θ2, . . . , θn}
6: Training Phase:
7: for i in number of epochs do
8: for j in mini-batches of training data do
9: Forward pass: Encode and decode the data,

10: X̂ = LSTM(Encode(Xbatch,Θ),Θ)
11: Calculate Huber loss for H-step ahead predictions:
12: LHuber = HuberLoss(Xbatch, X̂, δ)
13: Backpropagation: Update model weights to minimize Huber loss,
14: Θ← Θ− η∇LHuber
15: end for
16: end for
17: Testing Phase:
18: for k in mini-batches of testing data do
19: Forward pass: Encode and decode the data,
20: X̂ = LSTM(Encode(Xbatch,Θ),Θ)
21: Calculate Huber loss for H-step ahead predictions for each sample:
22: Lsample = HuberLoss(Xbatch, X̂, δ)
23: if Lsample > T then
24: Mark as an anomaly
25: else
26: Mark as normal
27: end if
28: end for

return Forecasted water levels and anomaly labels

gates the contribution of all neurons to every feature. It then compares the activation of

each neuron to its reference activation, assigning contribution scores based on the resulting

differences. Following the computation of multipliers on a representative dataset, feature

importance is deduced using a subset of input samples (900 training data samples) and sub-

sequently ranked based on their pronounced contributions to the model’s outcomes (Kulkarni

et al. [3]). These contribution weights are averaged across all 100 samples.

A DL model’s prediction is essential to interpreting the results at the WDS plant. Using this

feature importance approach, an operator can get insight into the plant and devise action



4.3. CYBER-ATTACK DETECTION IN WATER DISTRIBUTION SYSTEMS - DEEPH2O 115

plans to promote the desired operational outcome. Furthermore, additional insights into the

importance of features help optimize the operational process. For example, essential features

dictate when and which pump must start to avoid tunnel water overflow.

4.3 Cyber-attack Detection in Water Distribution Sys-

tems - DeepH2O

This section discusses the unsupervised WDSs attack detection model- the mechanism of AE

and its revised version, HCAE. This work applies AE as a reconstruction-based algorithm

that performs dimensionality reduction and reconstructs the original input. The outcome

from AE and HCAE are reconstruction errors (difference between output and input data),

which identify physical anomalies from the feature space. Figure 4.8 shows a fully connected

ANN-based AE and its components. WDS data are fed to the AE and HCAE models.

Based on a threshold, the models classify the inputs as normal or anomalous samples.

4.3.1 Auto Encoder

AEs have been a widely adopted DL method for the last couple of decades for both di-

mensionality reduction and feature engineering (Zhai et al. [321]). This work develops the

baseline AE model by adopting an approach from Taormina and Galelli [94].

The AE network is divided into two parts: an encoder function h = f(X) and a decoder

function x′ = g(f(x)). AEs can be generalized as stochastic mappings of Pencoder = (h|x)

and Pdecoder = (x|h), where h is a hidden layer h = f(x) that presents a code and is used to

characterize the input. Multi-layer perceptrons (MLP) (Chen et al. [322]) form AEs with an

input layer, an output layer, and multiple hidden layers. Mathematically, an encoder and
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decoder can be written as Equations (4.12 - 4.14):

ϕ : X → F (4.12)

ψ : F → X (4.13)

ϕ, ψ = argmin
ϕ,ψ

∥X − (ψ ◦ ϕ)X∥2 (4.14)

where Equations 4.12 and 4.13 represent encoder and decoder functionality, respectively;

Equation 4.14 represents the proposed loss of the AE, mean squared error.

Input data (X ) are transformed into a compressed representation F and reconstructed as X

again. The objective of an AE is to minimize the reconstruction errors (Equations 4.15 and

4.16), which yields a better reconstruction of the input set X .

L (x,x′) = ∥x− x′∥2 (4.15)

L (x,x′) = ∥x− σ′ (W′(σ(Wx + b)) + b′)∥2 (4.16)

Reconstruction errors are generally minimized using SGD Bottou [323], a potent optimization

tool for many DL applications. However, Adam optimizer, another powerful stochastic

optimization method, is applied in this work that outperforms SGD Ruder [324].

An anomaly detection system is expected to produce minimal false alarms, as false alarms

are associated with expensive maintenance operations. Figure 4.8 represents an ANN-based

AE. Despite having fine-tuned hyper-parameters, AE suffers from non-determinism during

training, resulting in a higher reconstruction error. A higher reconstruction error can result

in increased false positives, thus affecting the detector’s performance (Pang et al. [325]).

As AE algorithms automatically learn features by performing feature engineering for dimen-
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Figure 4.8: Fully Connected ANN-based Autoencoder for WDS

sionality reduction, they tend to learn different features at each time (Zhai et al. [321]).

This pattern of learning is suitable for systems where feature importance is unknown (for

instance, thousands of sensor values in a WDS, complex and difficult feature space to human

perception). However, such a non-deterministic learning pattern might not be suitable for a

WDS. It’s a natural expectation for a WDS model to provide, if possible, zero false alarms

because of expensive maintenance operations. To address these issues, this work revises AE

architecture and forms HCAE, thus solving the non-determinism problem of AE by further

reducing reconstruction errors and improving attack detection performance by reducing false

positives.

4.3.2 High Confidence AutoEncoder

HCAE is a modified version of baseline AE; in this work, HCAE is developed by applying

assurance methods (Equations 4.17-4.20) to AE, improving the attack detection performance

compared to the AE (baseline). HCAE successfully represents input features in a manifold

space that generates minimum reconstruction errors while decoding and recreating the input

features.



118 CHAPTER 4. RESEARCH METHODS, TECHNIQUES, AND ALGORITHMS

To minimize the reconstruction errors, the practitioners currently follow a trial-and-error-

based method and optimize hyperparameters over multiple iterations. This approach is

empirical; reducing the reconstruction errors is time-consuming and computationally expen-

sive in a complex WDS. This work applies a combination of neural network layer constraints

for the model and achieves deterministic learning, which results in a manifold representation

that yields minimum reconstruction errors. This strategy ensures learning a set of expected

features from the training data each time. Resulted in reconstruction errors yielding better

feature representation and attack detection performance (Tan and Eswaran [326]). Experi-

mental results are presented in the context of a WDS: how a set of constraints yields minimal

reconstruction errors and robust attack detection.

4.3.2.1 AI Assurance Constraints for the Auto Encoder

Recent advancements in DL APIs, including Keras1, Tensorflow2, and Pythorch3, expedite

AEs development more than ever. Nevertheless, a lack of a clear understanding of the

fundamental properties of dimensionality reduction leads to a complex and inferior model.

Thus, it is crucial to understand and adopt the basic properties of dimensionality reduction in

AEs. Multiple custom layer constraints are explored and applied to facilitate dimensionality

reduction in a WDS. HCAE is effective for tuning and optimizing hyperparameters.

In order to improve the AE detection performance, the following set of constraints are

applied.

1. Tied Weights: Tied Weights (Alain and Olivier [327]) ensure equal weights for both

encoder and decoder. This constraint also ensures easy learning, especially PCA-like
1github.com/fchollet/keras
2github.com/tensorflow
3github.com/pytorch/pytorch
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dimensionality reduction and regularization. However, they do not always perform well

on complex non-linear models. Again, tied weight constraint is not always necessary

to improve the representation continually. If reconstruction errors are reasonable, the

coding generates orthogonal latent features for given data. Such representation is

helpful in dimensionality reduction and, eventually, for anomaly detection. In a multi-

layer AE, weights vectors of layer l from an encoder and a decoder are transposed as

Equation (4.17).

Wl = W T
−l (4.17)

2. Orthogonal Weights: Each weight vector is independent; therefore, the weights of each

encoding layer are orthogonal. The orthogonality constraints (Huang et al. [328]) act

as regularization for the AE. Mathematically, the orthogonality condition for AE can

be presented as,

W T
encoderWencoder = I (4.18)

On applying, this constraint penalizes non-orthogonal weights. The user can choose

either orthogonal or non-orthogonal weights depending on the dataset. Thus, the

application of this constraint is conditioned on regularization.

3. Uncorrelated Features: If the output of the encoder is orthogonal, latent representa-

tions must be uncorrelated (Kim and Choi [329]). Hence, the output of the AE must

meet the condition of Equation 4.19:

correlation
(
Oencoder i

, Oencoder j

)
= 0|i ̸= j (4.19)

4. Unit Norm: The weights of each layer must have unit norms (Douglas et al. [330]).
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This property helps to control exploding and vanishing gradients. Unit norm constraint

(Equation 4.20) must be allied to all the layers of the AE.

p∑
j=1

w2
ij = 1; i = 1, . . . , k (4.20)

These four constraints (Equations 4.17 - 4.20), during model development, ensure the model

does not create a sub-optimal decision boundary. They ensure the creation of a well-posed

AE while constructing a highly confident cyber-attack detection model for WDS.

Unit norm and orthogonality solve regularization problems, especially for AEs, when AE

learns from a training set but does not represent a test set well. Also, tide weight can reduce

the number of parameters as a regularization technique. The unit norm constraint addresses

the exploding gradients issue by bounding gradients into a finite value. Additionally, or-

thogonality resolves the vanishing gradients problem by assigning fewer non-zero weights,

so only informative weights stand out. Thus, only these non-zero weights flow information

during backpropagation and resolve the vanishing gradient issue (Alain and Olivier [327],

Huang et al. [328], Kim and Choi [329], Douglas et al. [330]).

When applying these four constraints (Equations 4.17 - 4.20) while designing HCAE, a

hypothesis is introduced whether HCAE will not converge to a suboptimal point. To test

the hypothesis, results before and after using these four constraints are compared; observe if

attack detection performances (F1 score and false positives) are improved from the baseline

AE (Taormina and Galelli [94]).

Later in the work, adversarial testing is presented using a GAN to observe if the model can

detect attacks from synthetically generated poisoned datasets (previously unseen data with

a different distribution), thus testing generalizability on unseen poisoned data.
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4.3.3 Attack Detection and Calibration Stages of HCAE

HCAE is capable of binary classification, whether the WDSs are under “ATTACK” or “NO

ATTACK” by investigating each sample. Nonetheless, the direct classification technique

becomes erroneous with a small and imbalanced dataset because AE requires a large dataset

to learn the representation. However, with HCAE’s deterministic learning, it’s hypothesized

that the HCAE can detect attacks with minimum false positives. The hypothesis is tested

by training both AE and HCAE with the same imbalanced data and evaluated with total

false positives for each model.

The data streams are presented with non-sequential representation for this work. Next, (X) is

defined as X ϵRN×m which contains N -dimensional observation for m different features; and

Xi denotes the systems’ values at time i. The attack detection process has two stages (Figure

Figure 4.9: HCAE Model Development and Attack Detection Workflow
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4.9). In stage one, custom layers are created to form HCAE by following Equations (4.17-

4.20). Observing the model performance on multiple hyperparameter sets has ensured that

the model always yields minimum reconstruction errors and maximum binary classification

performance (F1 score). Later in stage two, data are preprocessed and normalized to have

the maximal absolute value of each attribute applied to all three provided datasets. After

that, HCAE is trained with the normal training dataset labeled “NO ATTACK”, splitting

the training dataset into training (Xtrain, Ytrain) and validation (Xval, Yval) set. To avoid

learning bias, early stopping is applied, which is another regularization scheme for preventing

over-fitting on the training dataset when the model converges.

During each epoch, losses are estimated using Equation 4.17, the squared of the recon-

struction errors re = |x − x′|; minimize them using Adam optimizer. After both AE and

HCAE models are well-trained, a threshold θth is selected in an empirical fashion. For that,

the range of average reconstruction errors among all features in a sample is observed and

summed up. The threshold is applied based on the final range estimation, as shown in the

following Equation 4.21.

θth = max
{
f(x) :

∑
m

|x− x′|
m

for Ntraining−samples

}
(4.21)

The calibration process is crucial to derive a concise threshold θth for testing the model

on new samples. If a test object is classified as “ATTACK,” HCAE localizes the features

associated with attacked attributes, such as pumps, sensors, and valves, using estimated

reconstruction errors.

For the HCAE model, hyperparameters are selected using random search and optimized,

resulting in the best model’s performance (F1-score and false positives). The objective is

to compare the performance of HCAE (AE with constraints) with the AE model (without



4.3. CYBER-ATTACK DETECTION IN WATER DISTRIBUTION SYSTEMS - DEEPH2O 123

constraints). To facilitate a fair comparison between HCAE and AE models, Taormina’s

AE model is retained using the same hyperparameters of the HCAE model; this refers to

the retrained AE model as the baseline AE model. Algorithm 6 presents the detailed steps

involved in executing cyber-attack detection in a WDS network data using HCAE.

Algorithm 6 Cyber Attacks Detection using HCAE

1: Input: Raw network traffic data X, HCAE model parameters Θ
2: Output: Detected attacks (binary labels)
3: Split X into training (Xtrain) and testing (Xtest) datasets
4: Train the HCAE model on the training dataset
5: Initialize model parameters and hyperparameters: Θ = {θ1, θ2, . . . , θn}
6: Training Phase:
7: for i in number of epochs do
8: for j in mini-batches of training data do
9: Forward pass:

10: X̂ = Decode(Encode(Xbatch,Θ),Θ)
11: Calculate reconstruction loss:
12: Lreconstruction =

∑P
p=1 ∥X

(p)
batch − X̂(p)∥2

13: Backpropagation:
14: Update model weights: Θ← Θ− η∇Lreconstruction
15: end for
16: end for
17: Testing Phase:
18: for k in mini-batches of testing data do
19: Forward pass:
20: X̂ = Decode(Encode(Xbatch,Θ),Θ)
21: Calculate reconstruction loss for each sample:
22: Lsample = ∥Xbatch − X̂∥2
23: if Lsample > T then
24: Mark as an attack
25: else
26: Mark as non-attack
27: end if
28: end for

return Detected attacks (binary labels)
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4.3.4 Synthetic Water Distribution Systems Poisoned Data Gen-

eration

Unlike other DL-based attack detection approaches that require significant domain knowl-

edge and passive awareness of the attacked model (Erba et al. [331]), GANs are proven to be

effective in generating realistic attack samples (poisoned data) (Muñoz-González et al. [332])

with minimal information about either the domain or the DL model. A GAN architecture

proposed by Goodfellow et al. [290] is used for synthetic data generation. GAN network

learns feature statistics of a given dataset for generating a new set of synthetic data. A gen-

erator produces the synthetic samples in the GAN network, and a discriminator evaluates

them. The generator learns by mapping latent feature space to a data distribution of partic-

ular interest. Discriminator maximizes its objective by learning how to distinguish original

samples from the generated fake samples. The generator aims to minimize the discrimina-

tor’s objective by fooling it into thinking otherwise (fake samples as real ones). For instance,

while generating a synthetic data set, GAN keeps similar statistics to the generated data set

from the training set; hence, those generated data distributions look superficially similar to

human perception. During the training phase, both the generator and discriminator play

a minimax game where a bi-level optimization (Equations 4.22) is performed to train the

GAN network.

In this work, the generator learns the distribution of training samples X and maps data space

as G (z; θg), where G is differentiable with respect to parameters θg. Then, the discriminator

investigates whether the data comes from the training samples and not the generator itself.

The discriminator is trained to correctly discriminate between original and generated samples

from the generator. Both the discriminator and the generator participate in a minimax game,

which is represented as a value function as V (G,D), as Equations 4.22:
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min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (4.22)

Here, the generator is trained to maximize logD(x) and minimize log(1 − D(G(z))) in a

numerical and iterable fashion. This GAN approach generates synthetic poisoned data for

the WDSs system. Later, these data are used to test if HCAE is well generalized against

data poisoning, in the experimental setup and execution.

4.4 Context-driven Short-Term Forecasting for WWTPs

- cP2O

In this section, I present the materials and methods for the proposed short-term forecasting

model for WWTPs.

The objective of short-term forecasting in WWTPs is to predict key variables, such as inflow

or water levels, over a short horizon, typically within 4–6 hours. The cP2O model performs

forecasts based on past observations and external influencing factors. Specifically, I aim to

forecast several hours into the future by predicting the sequence yt+ 1, yt+2, . . . , yt+H , using

the historical observations yt−M+1, yt−M+2, . . . , yt as input. Here, yt denotes the system’s

state at time t, M is the length of the historical time series serving as the input data, and

H represents the number of time steps in the forecast horizon.

4.4.1 Context Extraction and Forecasting Stages

As depicted in Figure 4.10, the proposed forecasting model comprises two interconnected

stages: the context extraction stage and the forecasting stage. The context extraction
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stage processes historical data from external sources—such as weather variables (rainfall,

temperature), river data, and demographic or economic indicators—that provide additional

context for the forecasting task. Additionally, I select a representative subset of WWTP

data to incorporate context that captures historical patterns.

However, concatenating all context variables into a single high-dimensional input vector

becomes computationally impractical. To address this challenge, my context model processes

each context variable individually. For computational efficiency, multiple context variables

are processed in parallel within a batch structure. At each time step, I flatten the outputs

from the batch and generate a single context vector rt.

An optional modulation can be performed, yielding a general context vector r′t for each time

step; however, performance may decrease for high-dimensional datasets. The exogenous

variables undergo preprocessing steps using a dynamic smoothing component, which includes

normalization and deseasonalization.

The context extraction stage and the forecasting stage are synchronized in their time steps,

ensuring that contextual information aligns with the internal data.

The forecasting stage processes the WWTP’s internal sensor data, such as pump activity and

inflow levels. Similar to the context stage, the internal data undergo dynamic smoothing for

preprocessing. Before feeding the data into the dilated LSTM cells, the input is augmented

by concatenating it with the context vector rt from the context extraction stage. This

integration enriches the forecasting model with external contextual information, enhancing

its predictive capabilities.

When the number of exogenous series is relatively limited, I assign a weighting vector h to

each series. This vector has the same length as the context vector rt and is initially set to

ones. The purpose of h is to adjust the general context information, customizing it to the
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Figure 4.10: The diagram illustrates a two-stage forecasting framework where exogenous
data and WWTP data are combined to enhance forecasting accuracy. In Stage 1 (Context
Extraction Stage), relevant contextual information is extracted from external sources such
as weather variables (e.g., rainfall, temperature), river data, and demographic or economic
indicators. This stage involves preprocessing steps such as normalization and deseasonal-
ization using a dynamic smoothing component to generate a dynamic context vector (R′)
for each time step. In Stage 2 (Forecasting Stage), this context vector is integrated with
the WWTP’s internal sensor data—such as pump activity and inflow levels—after similar
preprocessing. The combined data is then fed into dilated LSTM cells for forecasting. Post-
processing steps are applied to produce the final point forecasts and predictive intervals,
providing both accurate predictions and uncertainty estimations.

specific needs of each series. Importantly, h remains constant and does not change across

different time steps.

To minimize forecasting errors, I optimize all model parameters simultaneously without

applying a separate loss function to the output of the context stage; instead, the entire model

is trained in an end-to-end fashion. To manage computational resources and limitations

in batch size, I use a batching mechanism that allows me to process many context series

concurrently. However, practical constraints necessitate reducing the number of context
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series. An effective approach is to leverage domain knowledge to select a representative

subset of context series from the WWTP data, possibly by creating linear combinations of

a few base series and incorporating relevant exogenous variables.

The final outcomes of the model are point forecasts and predictive intervals, providing accu-

rate predictions along with uncertainty estimations essential for risk assessment and decision-

making in WWTP operations. By leveraging external factors alongside internal WWTP

data, and by efficiently integrating context information, the proposed model achieves greater

forecasting accuracy compared to models that rely solely on internal data.

4.4.2 cP2O Architecture

The architecture of the proposed forecasting solution, referred to as cP2O, integrates data

preprocessing and post-processing, dynamic pattern extraction, and dilated LSTM cells with

an attention mechanism. Each time series variable—both from the WWTP and exogenous

data sources—is decomposed by the dynamic smoothing component into its level (Mt) and

seasonal (Nt) components.

As illustrated in Figure 4.10, time series data—including context variables C and utility

data D—are processed to dynamically extract level, seasonality, and other patterns. This

processing enables the forecasting stage to focus on more stable and normalized inputs. The

prepared data undergoes normalization and the addition of calendar features (e.g., day of

the week) to enhance forecasting accuracy.

The context vectors rt, computed in the context extraction stage, are concatenated with the

plant data before being fed into the forecasting stage. The LSTM network, equipped with

dilated cells and an internal attention mechanism, processes the combined data to capture

temporal dependencies and leverage the learned context from the first stage.
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In the post-processing step, the normalized forecast values are converted back to their original

scale by applying inverse normalization and reintroducing the previously extracted patterns.

The proposed model produces three key outputs:

1. Point forecasts of the target variable for multiple time steps ahead (e.g., 4–6 hours).

2. Prediction intervals (lower and upper bounds) for uncertainty estimation.

3. Adjustments to the smoothing parameters (∆γt and ∆δt) to capture changes in level

and seasonality over time.

Preprocessing and Input Pattern Generation

The preprocessing stage of my forecasting model serves two main purposes. First, it trans-

forms the time series data into a format that is compatible with LSTM networks. Second, it

generates input and output patterns that are compiled into training datasets for the model’s

training process.

Within both the context extraction and forecasting phases of the cP2O architecture, I uti-

lize dynamic smoothing based on the Holt-Winters method with multiplicative seasonal-

ity (Koehler et al. [333]). The essential equations for updating the level and seasonal com-

ponents are:

Mt = γt
Xt

Nt−m
+ (1− γt)Mt−1 (4.23)

Nt = δt
Xt

Mt

+ (1− δt)Nt−m (4.24)

Here, Mt denotes the level component, Nt represents the seasonal component, Xt is the
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observed value at time t, P corresponds to the seasonal period (e.g., daily, weekly), and γt,

δt ∈ [0, 1] are smoothing coefficients. These coefficients are dynamically modified by the

LSTM network, which learns adjustments (∆γt and ∆δt) during training to accommodate

changes in the time series.

The preprocessing module reformats the time series for compatibility with the dilated LSTM.

The main input for both context extraction and forecasting stages is the sequence immedi-

ately before the forecasted period. Let Ωin
t , spanning 24 hours, represent the input window

for the t-th sequence, and let Ωout
t , spanning 4 hours, represent the output window. These

windows are advanced by 4 hours to create subsequent input and output sequences. The in-

put sequence undergoes deseasonalization, normalization, and a logarithmic transformation

to mitigate the influence of outliers during the learning process.

The preprocessed input sequence is denoted by the vector xt = [xτ ]τ∈Ωin
t
∈ R24. Deseason-

alization removes weekly seasonal patterns, while normalization using the mean µt removes

long-term trends within the input window. This scaling ensures that all preprocessed series

are on a comparable scale, promoting effective cross-learning across multiple series.

To enrich the input data for the forecasting phase, I augment the input patterns with ad-

ditional features, including the series’ level and seasonality, calendar information, and the

context vector from the context stage. The enhanced input vector is defined as in Equation

(4.25):

x′
t = [xt, ñt, log10(µt), cwt , cmt , cyt , rt] (4.25)

where:
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• ñt ∈ R4 is a vector of 4 seasonal components forecasted by the exponential smoothing

(ES) model for τ ∈ Ωout
t , adjusted for the forecast horizon.

• log10(µt) represents the local level of the series.

• cwt ∈ {0, 1}7, cmt ∈ {0, 1}31, and cyt ∈ {0, 1}52 are one-hot encoded vectors indicating

the day of the week, day of the month, and week of the year, respectively.

• rt is the context vector derived from the context stage.

For the context extraction stage, an enriched input pattern follows a similar structure to x′
t,

but excludes the context vector rt.

The output pattern corresponds to the target sequence defined by Ωout
t . I derive this pattern

by normalizing the original sequence to ensure that the errors calculated by the loss function

are consistent across different series. This normalization is shown in Equation (4.26):

yτ =
Xτ

µt
, where τ ∈ Ωout

t (4.26)

Here, Xτ represents the original time series value at time τ . I train the model using patterns

generated by shifting the input and output windows by 4 hours, which creates sequences for

training. The LSTM in the main stage predicts a vector corresponding to the next 4-hour

forecasts, as specified in Equation (4.27):

ŷLSTM
t = [ŷLSTM

τ ]τ∈Ωout
t
∈ R4 (4.27)

These predicted values are reverted to the original scale during post-processing, according
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to Equation (4.28):

X̂τ = exp(ŷLSTM
τ )µt ñt,τ , where τ ∈ Ωout

t (4.28)

The loss function utilizes the normalized predictions to maintain consistency, as shown in

Equation (4.29):

ŷτ =
X̂τ

µt
(4.29)

Furthermore, the LSTM predicts two vectors representing the lower and upper bounds of

the prediction intervals: ŷLSTM
t

and ˆ̄yLSTM
t . These are transformed into actual values using

the same post-processing steps as the point forecasts.

The optimization algorithm uses the discrepancies between the predicted output patterns and

the actual output patterns to adjust all model parameters, including those of the exponential

smoothing components, the LSTM, and the adjustments ∆γt and ∆δt. Importantly, the

context stage generates context vectors rt, which do not have target values; however, its

parameters are updated in conjunction with those of the main stage to minimize the overall

forecasting error.

Dilated LSTM with Attention Mechanism

In this subsection, I present the customized dilated LSTM cells designed to identify contex-

tual events and seasonal patterns in time series data, including both exogenous and utility

data. These cells, inspired by the concepts in Chang et al. [190] and Smyl et al. [334], are

equipped with an internal attention mechanism to dynamically weigh input features.
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Each dilated LSTM cell maintains two cell states (c-states) and two hidden states (h-states),

all vectors in Rh, where h is the dimension of the hidden state. Specifically:

1. Recent states: cit−1 and hit−1, which store information from the immediate past time

step t− 1, similar to a standard LSTM cell (Hochreiter and Schmidhuber [310]).

2. Delayed states: cit−d and hit−d, which hold information from an earlier time step t− d

with d > 1. The dilation factor d ∈ N represents the number of time steps of delay and

is crucial for capturing dependencies at different time scales. Incorporating delayed

states effectively expands the receptive field and enhances the cell’s ability to model

long-term and seasonal patterns.

Gating Mechanisms: Inspired by both the LSTM and GRU architectures (Hochreiter and

Schmidhuber [310], Cho et al. [335]), my cell incorporates two distinct gating mechanisms

to manage the cell state cit:

1. Update Gate (uit): Determines the extent to which the candidate cell state c̃it con-

tributes to the new cell state.

2. Forget Gate (f it ): Controls the influence of the recent cell state cit−1 on the new cell

state.

The remaining influence is assigned to the delayed cell state cit−d, weighted by 1 − uit − f it .

This design leverages both recent and historical information, providing the cell with enhanced

memory capabilities.

Cell Operations
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The cell’s operations at each time step t for layer i are defined as follows:

f it = σ
(
Wi

fxit + Vi
fhit−1 + Ui

fhit−d + bif
)

(4.30)

uit = σ
(
Wi

uxit + Vi
uhit−1 + Ui

uhit−d + biu
)

(4.31)

oit = σ
(
Wi

oxit + Vi
ohit−1 + Ui

ohit−d + bio
)

(4.32)

c̃it = tanh
(
Wi

cxit + Vi
chit−1 + Ui

chit−d + bic
)

(4.33)

Variable Definitions:

• xit ∈ Rn: Input vector at time t for layer i.

• hit−1,hit−d ∈ Rh: Hidden state vectors from recent and delayed time steps.

• Wi
∗ ∈ Rh×n, Vi

∗,Ui
∗ ∈ Rh×h: Weight matrices (∗ denotes f , u, o, or c).

• bi∗ ∈ Rh: Bias vectors.

• σ(·): Sigmoid activation function, applied element-wise.

• tanh(·): Hyperbolic tangent activation function, applied element-wise.

• ⊗: Element-wise multiplication.

Cell State Update: The cell state cit ∈ Rh is updated by combining the candidate cell

state c̃it, the recent cell state cit−1, and the delayed cell state cit−d, weighted by the gating

vectors:
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cit = uit ⊗ c̃it + f it ⊗ cit−1 +
(
1− uit − f it

)
⊗ cit−d

• 1 ∈ Rh: Vector of ones.

• uit, f
i
t ∈ Rh: Gate vectors with elements in [0, 1].

Constraints on Gates: To ensure proper weighting and stability:

0 ≤ uit,k, f
i
t,k ≤ 1, uit,k + f it,k ≤ 1, ∀k ∈ {1, 2, . . . , h}

This ensures that the weights assigned to c̃it, cit−1, and cit−d sum to at most 1 element-wise,

and the remaining weight (1− uit,k − f it,k) is non-negative.

Hidden State Computation: The hidden state hit is computed as:

hit = oit ⊗ tanh(cit) (4.34)

where oit ∈ Rh is the output gate vector controlling the exposure of the cell state.

Attention Mechanism Integration: My model incorporates an internal attention mech-

anism to dynamically weigh input features. The input vectors for the two layers are defined

as:
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x1
t = xt (4.35)

x2
t = xt ⊗ exp(mt) (4.36)

• xt ∈ Rn: Original input vector at time t.

• mt ∈ Rn: Attention vector derived from the hidden state of the first layer.

Derivation of the Attention Vector: The attention vector mt is obtained by partitioning

the hidden state h1
t of the first layer:

h1
t = [h1

t,recurrent;mt] (4.37)

• h1
t,recurrent ∈ Rsh : Portion of the hidden state used for recurrent processing.

• mt ∈ Rn: Attention vector used to modulate the input for the next layer.

After applying an exponential function to ensure positive weights, the attention vector mod-

ulates the inputs to the second layer. This mechanism allows the model to focus on the most

relevant features at each time step.

Figure 4.11 illustrates the architecture of the dilated LSTM cell with the integrated attention

mechanism.

Overall Network Architecture: Figure 4.12 depicts the overall architecture of the LSTM

network, comprising three layers with dilation factors of 1, 2, and 4, respectively. By stacking
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Figure 4.11: Cell architecture of cP2O with dilated connections and attention mechanism

Figure 4.12: cP2O architecture with dilated LSTM layers and attention mechanism (dashed
line link is absent in the context stage)

layers with hierarchical dilations, the model captures features across multiple time scales,

enhancing its ability to model seasonal and long-term patterns.

To prevent vanishing gradients when adding more layers, I integrate ResNet-style shortcut

connections between layers (He et al. [336]). Additionally, the input vector xt is supplied to

all layers, enhancing the learning of complex patterns.

Embedding Layer: I employ a linear embedding layer to transform binary calendar

vectors (cwt , cmt , and cyt ) into continuous vectors of dimension d, reducing dimensionality

and capturing temporal features effectively. This embedding is learned during the training

process.
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Output Layer: The final linear output layer generates the model’s outputs. In the main

forecasting stage, these outputs include:

1. Point forecasts ŷLSTM
t ∈ RH for the forecast horizon H.

2. Lower and upper bounds for prediction intervals ŷLSTM
t

and ˆ̄yLSTM
t .

3. Adjustments to the smoothing coefficients ∆γt and ∆δt.

The complete output vector is:

ŷ′LSTM
t =

[
ŷLSTM
t , ŷLSTM

t
, ˆ̄yLSTM

t , ∆γt, ∆δt

]
(4.38)

In the context extraction stage, the output consists of: Context vector r(i)t ∈ Ru for the i-th

series and adjustments of ∆γt and ∆δt.

For a context batch containing K series, the context vectors are concatenated:

rt =
[
r(1)t , r(2)t , . . . , r(K)

t

]
∈ RuK (4.39)

This combined context vector rt is integrated into the input of the main forecasting stage,

enriching it with contextual information.

4.4.3 Loss Function

Our model provides point forecasts for up to 4–6 hours ahead, along with the lower and

upper bounds of the prediction intervals for each forecasted point. I apply the following loss

function:
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Lθ = ℓ (yθ, ŷp∗,θ) + λ [ℓ (yθ, ŷp1,θ) + ℓ (yθ, ŷp2,θ)]

where the pinball loss function ℓ(y, ŷp) is defined as:

ℓ(y, ŷp) =


p(y − ŷp), if y ≥ ŷp

(p− 1)(y − ŷp), if y < ŷp

In these equations:

• yθ represents the normalized observed value at time θ.

• ŷp,θ denotes the normalized predicted value at time θ for the p-th quantile.

• p∗ = 0.5 corresponds to the median forecast (point forecast).

• p1 and p2 denote the lower and upper quantiles of the prediction interval, typically set

to p1 = 0.05 and p2 = 0.95.

• λ ≥ 0 is a weighting coefficient that determines the emphasis placed on the prediction

interval components within the overall loss function.

The normalized observed value yθ is obtained by:

yθ =
Xθ

µt

where Xθ is the original time series value at time θ, and µt is the mean of the input window

Ωin
t as defined in the preprocessing stage.
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The normalized predicted values ŷp,θ are derived from the LSTM outputs and adjusted during

post-processing:

X̂p,θ = exp
(
ŷLSTM
p,θ

)
µt ñt,θ

ŷp,θ =
X̂p,θ

µt

where, ŷLSTM
p,θ is the LSTM output for the p-th quantile at time θ, ñt,θ is the forecasted

seasonal component from the exponential smoothing model, X̂p,θ is the predicted value in

the original scale before normalization.

By operating on normalized values, the loss function ensures that errors have a consistent

impact on the learning process across multiple time series with varying scales and error

magnitudes.

This loss function consists of three components:

1. Point Forecast Loss: ℓ (yθ, ŷp∗,θ)- represents the loss associated with the point forecast.

When p∗ = 0.5, the pinball loss becomes symmetric and is equivalent to the mean

absolute error (MAE).

2. Lower Prediction Interval Loss: ℓ (yθ, ŷp1,θ)- represents the loss associated with the

lower bound of the prediction interval. Encourages the lower quantile predictions to

be below the observed values with a probability of p1.

3. Upper Prediction Interval Loss: ℓ (yθ, ŷp2,θ)- represents the loss associated with the

upper bound of the prediction interval. Encourages the upper quantile predictions to

be above the observed values with a probability of 1− p2.
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The pinball loss function is asymmetric, with the degree of asymmetry determined by the

quantile levels p. This three-part structure allows for the simultaneous optimization of

both point forecasts and prediction intervals, with the coefficient λ controlling the relative

emphasis on each component. When λ = 1, all components are equally weighted; reducing

λ places more focus on optimizing the point forecast.

Additionally, the pinball loss function helps mitigate forecast bias by penalizing positive and

negative errors differently. By adjusting p∗ to values less than or greater than 0.5, I can

reduce tendencies toward positive or negative biases (Dudek et al. [337]). This approach can

also be applied to adjust biases in the prediction intervals.



Chapter 5

Experimental Design

5.1 Model Agnostic Assurance Method

In this study, I design the experiments with both synthetic and real-world datasets. For

ALSP, I use three datasets: Water distribution network, Pima Indian Diabetic, and Bank

Loans. The water distribution network dataset is synthetic data Taormina and Galelli [338]

that is generated using an emulator; it represents a sensor network within a hydraulic system.

It also represents the Supervisory Control and Data Acquisition (SCADA) monitoring system

(a commonplace dataset for simulations). I select this data to emphasize my study for

assuring AI models in critical contexts. The remaining datasets are collected from Kaggle and

University of California Irvine (UCI) Machine Learning Repository; Pima Indian Diabetic

Dataset 1 and Bank Loan2. The Pima Indians Diabetes dataset comes from the National

Institute of Diabetes and Digestive and Kidney Diseases. The dataset includes data from

Pima Indian heritage female patients who are at least 21 years old and classifies if a patient

is diabetic or not based on a specific diagnostic condition. I also collect Cellular Carrier data

from the public website: Kaggle3, where the data are provided by China Unicom (a mobile

operator), the data contain 25 features and more than 1 Million instances.
1http://archive.ics.uci.edu/ml
2https://www.kaggle.com/zaurbegiev/my-dataset
3https://www.kaggle.com/pwang001/user-package-information-of-mobile-operators
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5.1.1 Testing ALSP

In this experiment, I test if the algorithm provides accurate AIA scores for each sample of

a given dataset using Weight Assessment. For Reverse Learning, I test if the actions of an

AI model (GBDT) are logged for each epoch and illustrate how they provide XAI outcomes.

Finally, for Secret Inversion, I test if the algorithm can detect adversarial inputs from the

SCADA dataset.

Weight Assessment- Scoring AI System

For this experiment, I calculate Shapley values that help generate AIA scores for each sample

of the dataset, namely: weights (W ) of each feature contributing towards the final outcome

of my AI model. These weights and the AIA in the diabetic dataset are multiplied to

generate scores for each observation. I selected the Pima Indian Diabetic dataset (number

of samples, N= 768 and number of features m = 8) for this study, where the label indicates

if a patient is diabetic or not. Since there is a total of eight features in this dataset, a total

of eight new AIACs are added that represent feature expectations. Feature expectations

dictate the assurance goals for the AI system, therefore they must be designed based on

the application requirements, I label binary values for each AIAC. Additionally, for this

experiment, I select Extreme Gradient Boosting Decision Tree (XGBDT) for the AI model

with the hyper-parameters set as follows: learning rate = 0.1, number of estimators = 1000,

maximum depth = 5, minimum child weight = 1, gamma = 0, subsample = 0.8, colsample

by tree = 0.8, objective = “binary:logistic”, number of thread = 4, scale position weight =

1, and seed = 27.

The deployed AIACs represent TAI expectations. To test that, I injected bias and compared

the scores with the unbiased dataset (Fig. 5.1). For injecting bias, I apply Gaussian noise
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(mean = 0.3 and standard deviation = 0.1) and present the difference between the biased

and unbiased datasets using Gaussian distribution. Fig. 5.2 represents the Gaussian score

distribution difference for biased and unbiased datasets. It is evident from the Fig. 5.2 that

intentional bias injection generates different AIA scores that help to explain relevant changes

in the AI system.

Figure 5.1: Distribution - normal and biased datasets

The scores are the expected outcome of the AI system; however, they do not necessarily

mean anything until I deploy the AIACs properly in the dataset. I present that Weight

Assessment generates AIA scores for every observation of the dataset. Additionally, after

altering the dataset, I get a meaningful score representation of that alteration. It is evident

from Fig. 5.2 that the score distribution changed when I injected minimal bias into the

dataset, which was captured by the pipeline. Accordingly, this helps in indicating whether
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Figure 5.2: Distribution of TAI scores - normal and biased datasets

the outcomes are deemed more trustworthy or not.

Reverse Learning- Log and Optimize

In this experiment, I incorporate GBDT as my main AI algorithm. For GBDT, the primary

target is to log each action while minimizing the loss function, therefore I design the AI

algorithm as a white box (didnt use any off-the-shelf library). Reverse Learning doesn’t

provide any AIA score but dictates AIA goals such as FAI and EAI by visualizing and using

exhaustive explanations (Explanations mean checking all the calculations and comparing

them with the logs). This algorithm returns statistics on each epoch.

I select the Bank Loan dataset (number of samples, N= 614 and number of features m = 12)

where the label indicates if a customer is likely to be accepted or not for a loan application.

The features of this dataset are Gender, Married Dependents, Education, self-employed,

Applicant Income, Co-applicant Income, Loan Amount, Loan Amount Term, Credit History,

and Property Area. The GBDT model predicts the status of an applicant. Since my focus

is minimizing loss function, I use default hyper-parameters including learning rate l = 0.1,

max depth of the decision tree d = 4, and max-leaf nodes nl = 7. For the training stage,
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Row p(t) l(t) r γ l(t+1) p(t+1)

1 0.74 1.06 -0.74 0.36 1.09 0.75
2 0.79 1.32 0.21 0.31 1.35 0.79
3 0.74 1.06 0.25 -1.58 0.90 0.71
4 0.71 0.91 0.28 0.63 0.97 0.72
5 0.74 1.04 0.26 0.63 1.10 0.75
6 0.74 1.06 0.25 -1.58 0.90 0.71
7 0.26 -1.02 -0.26 -0.84 -1.11 0.24
8 0.74 1.04 0.26 -1.58 0.88 0.70
9 0.64 0.59 -0.64 0.63 0.66 0.65
10 0.78 1.32 0.21 -1.58 1.16 0.76
11 0.74 1.04 0.26 -1.58 0.88 0.70
12 0.65 0.65 -0.65 -1.58 0.49 0.62
13 0.78 1.30 0.21 0.01 1.30 0.78
14 0.71 0.91 0.28 0.63 0.97 0.72
15 0.26 -1.02 -0.26 -0.84 -1.11 0.24

Table 5.1: Logs of GBDT algorithm learning cycle (Reverse Learning)

I perform 50 epochs for training the GBDT model. From Fig. 5.3, it’s evident that the

loss minimizes during the 13th epoch (Fig. 5.4); the idea here is that all epochs post 13 are

obsolete because the accuracy decreases afterward - something that wouldn’t be traceable

or explainable otherwise except by using an overly simple line chart. Table 5.1 presents the

first 15 observations within the 13th epoch, where the rest of the observations (as well as all

code and data used in this study) can be found in the MAA GitHub repository 4.

Secret Inversion- Detection of Adversarial Data Points

For the Secret Inversion algorithm, I design the experiment to present the successful detection

of adversarial inputs in an AI system. Final outcomes are scores for AIA goals, including

SAI and CAI (Table 5.2). For AE, detection performance varies with compression factor

(cf) and the number of hidden layers (nl). Since I use labeled data, I select the best hyper-

parameter (approximately I build 20 AE models) set for maximum accuracy. The outcome is
4https://github.com/AI-VTRC/MAA

https://github.com/AI-VTRC/MAA
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Figure 5.3: Loss function vs learning epochs

the status of the network, binary classification, which represents whether the overall system

is under attack or not. Additionally, instead of sigmoidal function, I select rectified linear

units due to their higher training performance in deep neural networks Goodfellow et al.

[339]. Here, I use the SCADA dataset to test the secret inversion algorithm. Two-thirds

of the training dataset is used for model development, and the other one-third is used for

validation purposes.

Figure 5.4: Decision tree 13 - minimum loss epoch

During validation, I am able to perform early stopping to prevent model overfitting scenarios.

I use Adam algorithm Kingma and Ba [340] for my AE model, where I find the best trade-off

between execution speed and convergence (number of training epochs e = 200 and mini-batch
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Test
Dataset

AccuracyF1_ScorePrecisionRecall

01 0.9466 0.7194 0.9438 0.5813
02 0.9128 0.7182 0.9707 0.5700

Table 5.2: Intrusion input detection performance using AE

size b = 300 samples). The mini-batch size is important because it updates the connection

weights by propagating into the AE’s network and computing the gradient. The average

reconstruction errors, which are the mean squared errors between input and reconstructed

patterns, are optimized using the SDG technique. Fig. 5.5 represents two different test

datasets where scaled reconstruction errors are plotted on the 1st test dataset. By properly

selecting threshold (θ), normal and adversarial samples for all 43 features have separated. For

this experiment, I select the range between 99% and 100% percentile of the error distribution

as adversarial inputs, where the rest of the ranges are considered normal samples. The

detection accuracy of test datasets 1 and 2 are 94.66% and 91.28%, respectively. Table 5.2

presents the performance evaluation of the AE model.

Figure 5.5: Intrusion detection using r on test datasets 1 and 2
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5.2 DeepAg

All data are pre-processed before being fed into the baselines or LSTM models. To minimize

bias, I employed data transformation techniques to normalize each of the input features using

MinMaxScaler as represented in equation 5.1.

xscaled =
x− xmin

xmax − xmin
(5.1)

Equation 5.1 normalizes the values of the financial indices dataset, commodities dataset, and

the outlier events dataset into a range of 0-1. To prepare the datasets for anomaly detection,

I then used DoubleRollingAggregate from the ATDK Python library to track the statistical

behavior in a time series dataset. The DoubleRollingAggregate transformer rolls two sliding

windows side-by-side along with a time series, aggregates using statistical mean, and tracks

the difference of the aggregated metrics between the two windows. Figure 5.6 shows the

changes (normalization) to the indices after applying DoubleRollingAggregate Transformer.

Figure 5.6: Original S&P 500 data from 2000-2019 (top) and scaled data (bottom)
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5.3 DeepH2O - Cyber Attack Detection in Water Sys-

tems

I pre-process the data before inputting them to the AE and the HCAE. The pre-processing

step includes normalization and removing null samples from the data. For normalization, I

perform standard minimum maximum scaling ranges from 0 to 1. Both AE (baseline) and

HCAE models are implemented using Scikit-learn API and are trained on a CPU with Intel

core i5 10th gen. I use Adam Optimizer with learning rate = 0.0001, a decay factor of 0.5,

and (β1,β2) = (0.9, 0.99). Additionally, 500 epochs are selected with a minibatch size of 32.

The design of HCAE differs from baseline AE in the design of the hidden layer definition.

Early stopping is applied with patience = 3 for better regularization. Here, the patience

parameter ensures convergence when the training loss and validation loss don’t change for

three consecutive epochs, and the training is marked complete. I am compressing input

features using an under-complete autoencoder architecture, and both models’ compression

factor is selected as 2.5. Thus, I get the number of neurons in each layer as follows: encoder

layers : [l0, l1, l2 ] = [43, 34, 25]; bottleneck layer: [l3] = [17]; and decoder layer as: [l4, l5,

l6 ] = [25, 34, 43].

Equations (4.17-4.20) represent AI assurance constraints, including Tide Weights, Orthogo-

nal Weights, Uncorrelated Features, and Unit Norms constraints, which are applied to the

AE. I pick a combination of these constraints and apply them to the hidden layers. My goal

is to obtain a meaningful and uncorrelated latent representation, a prerequisite for dimen-

sionality reduction. I empirically select optimal hyperparameters for the AE and the HCAE

models and maximize binary classification performance scores, including precision, recall, F1

score, accuracy, and specificity. Dataset 1 is used during model training, and Dataset 3 is

used for model testing. Finally, I select threshold θTH by following an empirical approach.
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I plot the F1 scores for baseline AE and HCAE models for Dataset 3 against a threshold

range from 96% percentile to 100% percentile of their average reconstruction errors (Figure

5.7). I observe that both models reach a maximum F1 score at 98.5% percentile. Hence, I

choose θTH = 0.985 as the model’s threshold.

Figure 5.7: F1 Score obtained on Dataset 3 for different Thresholds θ

5.3.1 Model Performance Metrics

I use multiple performance metrics from the BATADAL competition to evaluate the model’s

ability to detect a threat in the shortest possible amount of time. In addition to this, I also

use five additional metrics, namely accuracy, precision, recall, specificity, and F1-score, to

measure the performance of a binary classifier.

Time-To-Detection Score: STTD

Time-to-detection is the difference between ground truth attack start time to (Equation 5.2)

and algorithm detection start time td.

0 ≤ STTD = td − t0 ≤ ∆t (5.2)
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The attack is indicated by ∆t. A smaller TTD indicates that an algorithm has an improved

detection performance during an ongoing attack. Additionally, the detection rate is asso-

ciated with recall (%) or sensitivity which is otherwise referred as the True Positive Rate

(TPR) and it is represented in Equation 5.3. Additionally, precision, what proportion of

positive identifications was actually correct is represented in Equation 5.4.

Sensitivity = Recall = TPR =
TP

TP+ FN (5.3)

Precision =
TP

TP+ FP (5.4)

Here, FN is the number of false negatives, and TP is the number of true positives. TPR is

determined by the ratio of the correct attack classifications and the total number of attacks

detected by the algorithm (including TP and FN). Additionally, I leverage True Negative

Rate (TNR) or specificity metric to check false alarms by the models, and it is defined as

(Equation 5.5),

Specificity = TNR =
TN

FP+ TN (5.5)

TN is the number of True Negatives, and FP is the number of False Positives. TNR is

determined by the ratio of the number of correct classifications for safe conditions (without

attack) and the number of total classifications for safe conditions (including FP and TN).

Binary Classification Metric: F1-Score

Equations 5.3 and 5.4 are also known as recall and precision, respectively. In addition to

accuracy and ranking, I calculate the F1-score using Equation (5.6) that accounts for both

precision and recall,

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall (5.6)
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Training a DL model with an imbalanced dataset and evaluating its performance using the

accuracy metric can be misleading Branco et al. [341]. In such cases, an F1-score is preferred

over accuracy as the F1-score represents a harmonic mean of precision and recall.

Classification Performance Score: SCLF

To compare with the other state-of-the-art detection algorithms, Equations 5.3 and 5.5 are

merged as classification performance score SCLF (Equation 5.7), the mean of Equations 5.3

and 5.5.

SCLF =
TPR+ TNR

2
(5.7)

This score (SCLF) represents detection as well as false-negative alarms. Additionally, this

score is relevant to the F1 score, which is appropriate for problems with binary classification.

The score can result in a 0 or 1 (where 1 indicates a perfect classification).

Ranking Score: S

Time-to-detection STTD and classification performance score SCLF metrics can be merged

further into a single ranking score as, Equation 5.8:

S = γ · STTD + (1− γ) · SCLF (5.8)

According to the BATADAL competition, γ is set to 0.5 to ensure the weight of the early

detection and the accuracy are equally adjusted Taormina et al. [8].
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5.4 cP2O Experimental Design

In this section, I assess the performance of our proposed model on Short-Term Water Level

Forecasting tasks for WWTP. I present the dataset, the training and optimization method-

ologies, the baseline models used for comparison and our experimental results. The section

concludes with an ablation study and a discussion of the findings.

5.4.1 WWTP Data

Blue Plains Advanced WWTP: DC Water

The Blue Plains Advanced WWTP at DC Water incorporates a sophisticated tunnel sys-

tem designed to mitigate the overflow of stormwater and sewage during heavy rain events.

Historically, the plant would reach its maximum capacity during such events, leading to un-

treated water being discharged directly into the river or causing widespread flooding in the

city’s sewer system. To address this issue, DC Water implemented an underground tunnel

system that acts as a water retention mechanism. This tunnel captures excess stormwater

and sewer overflows, temporarily storing them until the plant can process and treat the water

post-rainfall.

The sewer system serving Washington, D.C., parts of Maryland, and Virginia connects to the

tunnel system at multiple critical junctures. These connections are facilitated by Combined

Sewer Overflow (CSO) structures (Botturi et al. [342]), which divert excess water from the

sewer network into the tunnel system when sewer levels exceed certain thresholds. This

preemptive diversion prevents overflow within the city’s sewer infrastructure. Additionally,

rain gauges and flow meters are strategically placed across the system to monitor water levels

and trigger the diversion process when needed.
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Figure 5.8: Identified peaks at DC Water in tunnel level with corresponding sensor data
(rain Gauges, pumps, flow sensors) during critical events.
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At the endpoint of the tunnel, a micro-treatment facility begins the treatment of the overflow

water before it enters the larger WWTP. The plant’s pumping system is key to managing

inflows, with small pumps handling routine inflows and large pumps activated during peak

events when the tunnel reaches capacity. Interestingly, energy efficiency plays a significant

role in operational decisions. Small pumps, although slower, are more energy-efficient over

prolonged use, while large pumps consume substantially more energy but can de-water the

tunnel much faster. This trade-off requires utility operators to balance operational efficiency

with energy costs, particularly in scenarios where heavy inflow can be predicted in advance.

To monitor tunnel water levels, DC Water employs various level indicators at multiple points

along the tunnel. These indicators stage water levels and are used to guide operational

decisions regarding pump activation. Depending on the event, operators may switch between

different level indicators to ensure the most accurate measurements are used. Predictive

models are employed to forecast water levels, providing operators with a 4-hour window to

prepare pump operations. This predictive capability allows for the efficient scheduling of

either small or large pumps, optimizing energy use and ensuring that the tunnel does not

overflow.

Figure 5.8 shows a few identified peaks in tunnel water levels at DC Water during criti-

cal events, along with corresponding sensor data such as rain gauges, pump activity, and

flow sensors. Several peaks in water levels were not associated with substantial rain gauge

readings, pump activity, or flow sensor data. These peaks suggest the presence of events

or anomalies not directly captured by DC Water’s internal sensors, such as external fac-

tors like upstream river flow changes or unrecorded inflow sources. Analysis using the Na-

tional Oceanic and Atmospheric Administration’s (NOAA) (Center et al. [343]) storm events

database indicates that these anomalies align with external events not directly captured by

the plant’s internal sensors. Following are the matched events from NOAA:
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Table 5.3: Grouped tag names and descriptions for DC Water tunnel system and AlexRenew
chemicals data

No. Variable group Data Description Variable Count

DC Water Tunnel System Data

1 DIV_FLOW_CSO_X Diversion Flow to tunnel from various CSO
locations

7

2 DIV_FLOW_MPMP Diversion Flow to tunnel from Main Pump
Station

2

3 DIV_FLOW_JBAB Diversion Flow to tunnel from JBAB 1
4 DIV_FLOW_POP Diversion Flow to tunnel from Poplar Point 1
5 DIV_FLOW_MST Diversion Flow to tunnel from M Street 1
6 TUNNEL_LEVEL Tunnel Level measurements at various loca-

tions
7

7 OF_RVR_STCT Overflow to River Structure 2
8 OF_BRL_CSO Overflow to River Barrels (A, B, C) from var-

ious CSO locations
9

9 TIDE_GATE_LKG Tide Gate Leakage (River level) 2
10 PLANT_FLOW Plant influent and complete treatment flow 2
11 PLANT_OUTFALL Plant outfall flow 1
12 TDP_FLOW Flow at TDP (TDP-2 to TDP-6) 5
13 RAIN_GAUGE_DAY Rain Gauge measurements at various pump

stations
4

AlexRenew Chemicals Data

14 INFLUENT_EFFLUENT_FLOW Total influent and effluent flows (MGD) 3
15 SOLID_TSS Average dewatering central TSS (mg/L) 1
16 DISSOLVED_OXYGEN Dissolved Oxygen (average, minimum, maxi-

mum) (mg/L)
3

17 AMMONIA_NH3 Ammonia (average, minimum, maximum)
(mg/L)

3

18 NITRATE_NO3 Nitrate (average, minimum, maximum)
(mg/L)

3

19 pH pH levels (minimum, maximum) 2
20 TEMPERATURE Water, air, and central (average, minimum,

maximum) (F)
5

21 REACTOR_DECANT_FLOW Reactor decant flow (GPD) 1
22 WAS_FLOW Waste activated sludge flow (GPD) 1
23 PROCESS_AIR Process air to CPT (scfm) 1
24 CARBON Carbon transferred to CPT (gal) 1
25 PRECIPITATION Precipitation (inches) 1
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1. August 10, 2022 (See 1st-row plots of Figure 5.8): A flash flood event was triggered

by a weak boundary overhead and anomalously high moisture levels, resulting in

slow-moving thunderstorms. This caused significant water level rises in areas such as

Rock Creek Parkway and Rhode Island Avenue NE. Although the plant’s rain gauges

recorded minimal rainfall, the flash flooding had a pronounced impact on water levels.

2. November 2, 2022 (See 2nd-row plots of Figure 5.8): Despite the absence of notable

rainfall or pump activity, a water level peak was observed. This anomaly is likely

attributable to upstream river inflows or unmonitored urban runoff entering the sewer

system, which the plant sensors failed to detect.

3. December 15, 2022 (See 4th-row plots of Figure 5.8): A peak in water levels coincided

with a heavy rainfall event that overwhelmed certain parts of the system. Although the

plant sensors only partially captured the inflow, external factors such as rapid urban

runoff likely played a significant role in the observed spike.

These events highlight the limitations of relying solely on internal plant sensors for forecast-

ing. Incorporating contextual data—such as real-time weather data, upstream river flow

rates, and external urban flood monitoring—can provide critical insights into such anoma-

lies. By including this context, the cP2O model can better identify whether these peaks are

outliers or valid operational events driven by external conditions, enhancing decision-making

and operational efficiency.

AlexRenew Chemicals Dataset

The AlexRenew WWTP, located in Alexandria, focuses on treating wastewater for its service

areas. This real-world dataset provides a comprehensive range of parameters for wastewater

treatment processes, which are highly relevant for short-term WWTP forecasting. The
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dataset includes crucial water quality indicators and flow rates, such as total influent and

effluent flow, dissolved oxygen (DO) levels, ammonia (NH3) and nitrate (NO3), pH levels,

and temperatures across multiple reactors.

Table 5.3 summarizes the grouped tag names and descriptions for both the DC Water tunnel

system and the AlexRenew chemicals data, providing an overview of the variables included

in the datasets. In addition to these primary water quality attributes, external weather data

has been incorporated into the AlexRenew dataset. This data, sourced from NOAA (Center

et al. [343]) and the National Weather Service (NWS) (Weather [344]), includes parameters

such as precipitation and atmospheric temperature. By merging these datasets, the study

provides a more integrated view of how external conditions influence the water treatment

process at AlexRenew.

The integration of the AlexRenew dataset with NOAA weather data provides a richer con-

text for understanding the variability in wastewater treatment performance. By combining

internal water quality parameters with external environmental factors, these datasets al-

low for better modeling of inflow levels during extreme weather events and provide deeper

insights into how external conditions impact the treatment process.

The merged dataset offers a unique opportunity to apply predictive models for short-term

wastewater inflow forecasting. The inclusion of weather-related data, such as rainfall and

temperature, enhances the forecasting model’s ability to capture the dynamic interactions

between external conditions and WWTP performance. As a result, this holistic approach im-

proves the accuracy of predictions, aiding in more efficient operational decisions for WWTPs.
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5.4.2 Exogenous Contextual Data

Developing a comprehensive forecasting model for WWTPs necessitates the integration of

multiple external data sources. These exogenous contextual variables provide valuable in-

sights into factors that affect water quality and treatment processes. Below is a detailed

breakdown of potential data sources and their relevant variables:

Weather Data

Sources: NOAA (Center et al. [343]), NWS (Weather [344]), Weather Underground (Galchen

[345]).

Variables: Precipitation, temperature, humidity, wind speed, atmospheric pressure.

Weather conditions significantly influence both the volume and characteristics of wastewater

inflow. For example, precipitation events can lead to increased inflow due to runoff and

infiltration, while temperature and humidity affect evaporation rates and biological activity

within the WWTP.

River Data (Water Quality and Flow)

Sources: United States Geological Survey (USGS) (Rabbitt [346]) and EPA (Bastian et al.

[67])

Variables: River flow rates, water temperature, pH levels, dissolved oxygen, chemical con-

taminants, biological oxygen demand (BOD), nutrient levels (nitrogen, phosphorus).

Understanding river data is crucial for assessing natural water quality and evaluating the

impact of effluents from the treatment plant on river ecosystems. Variables such as flow rates

and water quality parameters help model the interactions between wastewater discharge and
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the receiving water bodies.

Demographic Data

Sources: United States Census Bureau (Ratcliffe et al. [347]), IBIS World (Setar and Mac-

Farland [348])

Variables: Population density, household size, urbanization rate.

Demographic factors affect both the volume and composition of wastewater generated.

Higher population densities and urbanization rates typically result in increased wastewa-

ter production, while household size can influence per capita water patterns in the United

States.

Economic Data

Sources: Bureau of Economic Analysis (BEA) (Budd and Radner [349]), Federal Reserve

Economic Data (FRED) (McCracken and Ng [350])

Variables: Employment rates, industrial output, types of businesses.

Economic activity influences the types and quantities of industrial effluents entering the

WWTP. Variables such as industrial output and business types help predict variations in

wastewater characteristics due to industrial discharges.

5.4.3 Training, Optimization, and Evaluation Setup

The datasets from DC Water and AlexRenew encompass time series variables spanning from

2019 to 2023; however, many of these time series contain missing values within this period.

For model development and hyperparameter tuning, I divide the data into training and
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Algorithm 7 Training and Evaluating cP2O
1: Input: Training data Dtrain ∈ Rn×T , Testing data Dtest ∈ Rn×T , Context data DC ∈ Rm×T , Initial

model parameters Θ, Batch size B, Learning rate η, Max epochs Emax
2: Output: Forecasts û ∈ Rn×T , Trained parameters Θ, Loss metrics L
3: for e = 1 to Emax do
4: Split training data into batches Bi ∈ Rb×T

5: for each batch Bi do
6: Initialize LSTMΘ and ContextLSTMΘ

7: for t = 1 to T do
8: Extract per series context including ñt and µt

9: Forecast ût = f(Bi,DC,i,Θ)
10: end for
11: Compute loss L = ||û− u||22 + λ · reg(Θ)
12: Update parameters Θ← Θ− η∇ΘL
13: end for
14: if saveResults == True then
15: Save parameters Θ and intermediate results
16: end if
17: end for
18: return Final forecasts û, trained parameters Θ

validation sets, allocating 80% for training and 20% for validation. Hyperparameters were

primarily selected to minimize the forecasting error on the validation set while ensuring near-

zero forecast bias by adjusting q∗, as previously discussed in the loss function section. Each

training epoch comprises no ”sub-epochs,” determined experimentally, with each sub-epoch

covering a complete pass through all available data. Specifically, no was set to 10 for DC

Water and 15 for AlexRenew.

I implement a training regimen that progressively increases batch sizes while simultaneously

decreasing learning rates. Given the limited number of series, I begin with an initial batch

size of 16, which is expanded to 64 starting at epoch 5. To further minimize the validation

error, I employ a decaying learning rate schedule: 5 × 10−3 for epochs 1–5, 3 × 10−3 for

epochs 6–7, 10−3 for epochs 8–9, and 10−4 from epoch 10 onward. I trained the model for a

total of 50 epochs.

During each epoch, updates are conducted based on the average error accumulated over up

to Tb = 40 forward steps, progressing one day at a time within each batch. The starting
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point within each batch is selected randomly, which may result in fewer than 40 steps. Each

batch contains a randomly chosen subset of b series.

The dimensions of the c-state and h-state were set to sz = 165 and sh = 80, respectively.

These dimensions were determined through experimentation, beginning with sz = 100 and

sh = 50, and incrementally increasing them to improve model performance. The output

vector size Ov is calculated as the difference between the c-state and h-state sizes.

Our model architecture comprises three blocks, each containing one cell with dilation factors

of 1, 2, and 4, as depicted in Figure 4.12. These dilation factors were selected experimentally

to correspond with the seasonal patterns in the data. I apply the pinball loss function for

quantile regression, using quantile values of q∗ = 0.62, q1 = 0.039, and q2 = 0.981. The

weighting coefficient in the loss function is set to λ = 0.35 to ensure that the average central

loss during training is higher than the losses for the lower and upper intervals.

I employed embedding layers for time-related variables with dimensions set to 10, determined

through experimentation. The context batch size Cb was configured to 20, encompassing 5

variables from each of four distinct context groups. I include all series without missing values

to simplify the implementation and enable the processing of all context series within a single

batch.

Finally, I apply an ensemble size of E = 20, however, as few as 5 ensemble members are

sufficient. Ensemble forecasts were combined using a straightforward mean aggregation. The

training was performed using the Adam optimizer. The model’s weight and bias matrices

were initialized with specific dimensions to accommodate the input and hidden state sizes.

Details of these matrices are provided in Appendix B.
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5.4.4 Baseline Models

To assess the performance of our proposed model, I compare it with a variety of baseline

models spanning statistical methods, ML, and DL techniques. The Naive model predicts the

water level profile for day i by replicating the profile from day i − 7. The ARIMA model

(Box et al. [351]) employs an autoregressive integrated moving average methodology, while

the ES model (Gardner [104]) utilizes exponential smoothing. Another baseline, Prophet

(Taylor and Letham [352]), applies modular additive regression with seasonal components

and nonlinear trends.

In the realm of ML and DL models, I include several approaches. The GRNN (Specht [353])

stands for General Regression Neural Network, and the SVM (Drucker et al. [107]) model

uses Support Vector Machines for time series regression tasks. Among recurrent neural

networks, I evaluate the LSTM (Hochreiter and Schmidhuber [310]), an LSTM network

designed to capture temporal dependencies. The MTGNN (Wu et al. [354]) is a Graph

Neural Network tailored for multivariate time series forecasting. I also examine the N-

BEATS model (Oreshkin et al. [355]), a deep neural network with a hierarchical doubly

residual architecture, and DeepAR (Salinas et al. [356]), an autoregressive recurrent neural

network for probabilistic forecasting.

Additionally, I assess the WaveNet model (van den Oord et al. [357]), which employs dilated

convolutions for autoregressive forecasting. The XGBoost model (Chen and Guestrin [106])

utilizes the eXtreme Gradient Boosting algorithm for regression tasks. Lastly, I include the

P2O model (Kulkarni et al. [3]), a recent multivariate multi-step attention-LSTM model

used as a baseline in time series forecasting.

These baseline models were evaluated under the same experimental setup. Some models,

such as ARIMA, Prophet, and XGBoost, struggle with handling the complex seasonality
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and exogenous variables present in WWTP data. More advanced models such as LSTM,

MTGNN, and N-BEATS perform better, but the inclusion of external context data in the

proposed model offers significant advantages in predictive accuracy.



Chapter 6

Experimental Results

This chapter provides a detailed description of the experimental analyses and results for each

project, organized by sections.

6.1 DeepAg Results

6.1.1 Baseline Models

Our experiment with the baseline models included default hyperparameters with no feature

engineering. The results rank the overall performance of the models as follows: Linear Re-

gression with Polynomial Features, Linear Regression, XGBoost Regressor, Random Forest

Regressor, and Regression Tree. Linear Regression with Polynomial Features resulted in the

most accurate and best-performing baseline model (as shown in Figure 6.1).

I use the R2 score to determine the accuracy of the regression models as calculated by

equation 6.1 and RMSE to evaluate the error as shown in equation 6.2 given our prediction, ȳ,

and the actual value, y. The commodity production values typically range in the billions/year

depending on the commodity.

R2 = 1− SSRES
SSTOT

= 1−
∑

i(yi − ŷi)2∑
i(yi − ȳi)2

(6.1)

166
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Figure 6.1: Baseline models Root Mean Squared Error (RMSE) and R2 scores results

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2
n

(6.2)

When comparing R2 scores across models, the linear fit can be seen as unusually low for

certain commodities such as Beef, Ice Cream, and Water Ices. This is most likely due to the

variance in the data (i.e. variable production due to economic factors). In addition, USDA

has more available historical production data for these commodities compared to others, and

this may have also been a factor in affecting the fit.
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Figure 6.2: Historical chickens production

As shown in Figures 6.2 and 6.3, certain commodities, such as Beef, compared to Chickens,

had significantly more variance in terms of their range. For instance, Chicken production

has a clear upward trend with slight variance over time. In contrast, the Beef production

range significantly varies with abrupt changes from year to year. Therefore, this is a factor

that made a considerable difference in the linear fit R2 score for the baselines. For the

Linear Regression with the Polynomial Features model, Beef’s R2 score value was -0.1384

whereas Chicken was 0.5373, which had a much better linear fit for the data supporting our

conclusion about data variance.

6.1.2 DeepAg Outcomes

Forecasting Commodities’ Production

I employed the multi-step multivariate time series forecasting technique to accurately predict

the commodity’s production in the future. Multivariate time-series forecasting enables the
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Figure 6.3: Historical beef production

prediction of a future dependent variable y, based on more than one independent variable x.

Here, our dependent variable y is the commodity production, and independent variables x

are the historical production data, highest causation, highest correlation index, and historical

outliers. Lastly, multi-step forecasting tunes the model to predict a certain number of time-

steps ahead instead of only predicting one future value. Our model had a look-back of 60

time-steps from the past to forecast approximately 30 multi-steps into the future. Based on

the commodity, since every commodity has a different number of data points, our model was

able to predict approximately five years ahead.

Table 6.1 indicates the results obtained using our DeepAg approach. For each commodity

production, there is a prediction value and an RMSE score. These are generated with and

without the outliers model for a total of 4 data points per commodity. The prediction value is

the last data point from the commodity forecasting, and the RMSE score is mathematically

calculated using Equation 6.2. Each prediction is paired with an RMSE value to measure the

error rate and also to evaluate against the baselines. For each commodity, the most relevant
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Figure 6.4: Chickens production forecast 2020-2025

indices are noted as (Highest Causation, Highest Correlation) and (Highest Causation) if

they are the same. It follows as Beef (DOW), Butter (Gold), Cheese (Gold), Chickens

(DOW), Duck (S&P 500), Eggs (DOW), IceCream (S&P 500, DOW), Lamb and mutton

(Gold, DOW), Milk (S&P 500, Gold), Other poultry (Oil, VIX), Pork (DOW), Sherbet

(S&P 500, DOW), Turkeys (DOW), Veal (DOW), Water Ices (VIX, DOW).

6.1.3 The Effect of Outlier Detection

The Figures 6.4 and 6.5 illustrate the overall prediction fit and forecast for two of the

commodities, Chickens and Beef. It’s evident that the model had a close train prediction

compared to the real values and was able to accurately fit the data in addition to the

forecasting. From Table 6.1, the RMSE values demonstrate the high prediction accuracy of

our DeepAg approach compared to the baselines. The lower the RMSE value, the better our

approach is able to fit the production data and predict accurately. For instance, the RMSE
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Figure 6.5: Beef production forecast 2020-2025

for Beef production was 0.164, 0.120, and 0.201 using DeepAg with outliers, DeepAg without

outliers, and with Linear Regression with Polynomial Features baseline model, respectively,

indicating that DeepAg with isolation forest outperforms DeepAg without outliers and the

baselines. Out of the 15 commodities, 12 commodities had a lower RMSE with DeepAg -

presented in Table 6.2. For the remaining three commodities, baseline RMSE was lower, and

this may be because those are consistent commodities (Chickens, Eggs, Milk) and tend to

have a clear upward trend that’s better predicted by linear regression models.

Table 6.2 supports that outlier events are useful and contribute to higher accuracy when pre-

dicting commodities’ production. Outlier events are the cause of sudden upward or downward

spikes in economics, and in our work, I have captured that ambiguity through a more formal

process. The use of outliers as one of the input features allows the LSTM model to learn

and optimize for these extreme events.
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Commodity RMSE With
Outliers

Prediction
With Out-
liers

RMSE
W/O Out-
liers

Prediction
W/O Out-
liers

Beef 0.164 2060199936 0.12 1960800000
Butter 0.001 164524992 0.009 164524992
Cheese 0.004 991345984 0.058 991345984

Chickens 0.258 3531831040 0.197 3302286080
Duck 0.001 6348000 0.001 11891000
Eggs 0.708 8599600128 0.501 8599600128

IceCream 0 12010000 0.004 82232000
Lamband mutton 0.001 12000000 0.001 10100000

Milk 1 18872999936 1 16984999936
Otherpoultry 0 142000 0 100000

Pork 0.158 2022099968 0.118 2157299968
Sherbet 0 3541000 0 3541000
Turkeys 0.024 523214016 0.028 458169984

Veal 0.001 6700000 0 6000000
Water Ices 0 4647000 0 4647000

Table 6.1: DeepAg LSTM model results

6.2 P2O Experimental Results

This section presents the results of the prediction implemented in P2O. The prediction

module uses preprocessed data for the experiments, with 42 columns i.e., sensors and 367,943

rows. The results of the prediction module are presented in this section, which focuses on

comparisons and selecting an AI model for wastewater prediction.

6.2.1 Results: Prediction Module

This section presents the prediction module’s results by providing details on summary statis-

tics, visualizations, hyperparameter tuning, and model performance.
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Commodity Linear Regression with
Polynomial Features
RMSE

DeepAg With Isolation
Forest RMSE

DeepAg Without Isola-
tion Forest RMSE

Beef 0.201 0.164 0.120
Butter 0.138 0.001 0.009
Cheese 0.139 0.004 0.058

Chickens 0.131 0.258 0.197
Duck 0.146 0.001 0.001
Eggs 0.134 0.708 0.501

IceCream 0.201 0.000 0.004
Lamband mutton 0.109 0.001 0.001

Milk 0.093 1.000 1.000
Otherpoultry 0.224 0.000 0.000

Pork 0.127 0.158 0.118
Sherbet 0.192 0.000 0.000
Turkeys 0.177 0.024 0.028

Veal 0.137 0.001 0.000
Water Ices 0.287 0.000 0.000

Table 6.2: Comparison of best baseline model and DeepAg

Summary Statistics and Visual Inspection

The summary statistics: minimum, maximum, median, interquartile range, mean, and stan-

dard deviation are calculated for all the sensors. For the tunnel water level depth sensor

(output), the observation ranges from -121.21 (0 is sea level; negative values indicate below

sea level) to 15.76, while the mean and standard deviation values are -114.125 and 10.413,

respectively. Further, sensor observations are also visualized to check the patterns, as shown

in Figure 6.6. Based on the visual inspection, it is easy to identify that most values are

negative (367,058) while very few are positive (851). Based on the information from one of

the WWTP’s Process Engineers, it was noted that the overflow from the tunnel occurs when

the wastewater level observation reaches 3. Thus, based on the EDA, it can be seen that

in the last four years (2018 - 2022), there have been 94 incidences at the WWTP when the

wastewater overflowed from the tunnel.

Next, Pearson’s correlation coefficients are calculated to investigate the relationship between

the wastewater level depth sensor and other sensors. The coefficients indicated that the
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Figure 6.6: Wastewater level sensor observations from 2018 to 2022.

outflow sensor showed the highest (0.57), and rain gauges showed the second highest (0.56)

significant positive correlations with the wastewater level depth sensor. Overall, most of

the variables (24) showed weak positive correlations (between 0 and 3), while some (15)

variables indicated a moderate positive correlation (between 0.3 and 0.7). The summary

statistics show that the minimum and maximum values for the rain gauge and wastewater

outflow sensor were 0, 5.01, and 0, 221.95, respectively. The time-series plots of these three

variables - wastewater level, rain gauge, and wastewater outflow – are shown in Figure 6.7.

Based on the correlations, the VIF analysis indicated the multi-collinearity between all the

rain gauges and some sensors measuring the other critical main plant flows. Thus, three

sensors from the rain gauge and four sensors from the other critical main plant flows are

removed to eliminate multicollinearity. After performing VIF analysis, the final version of

the data included 35 sensors (output sensor and time axis), and the same seven sensors were

also removed from the data derived from downsampling.

Further, PCA is performed on the pre-processed data with 41 sensors (without the dependent

variable), and a Scree plot is used to visualize the explained variance ratio for every Principal

Component (PC). It was observed that the first PC contributes the most (about 20%), and

then there is a gradual increase in the explained variance after PC 10. Thus, a threshold

of 70% of cumulative explained variance was set after visual inspection, and 15 PCs were
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Figure 6.7: Visual patterns of wastewater level, rain gauge, and wastewater outflow.

selected for the model development.

Hyperparameter Tuning for ML and DL Models

The hyperparameter selection for RF, XGBoost, and LightGBM is performed for three ver-

sions of the preprocessed data. The details of the selected hypermeters for each version of the

data are provided in Table 6.3. This hyper-parameter tuning procedure resulted in 10800,

17280, and 86400 model fits to find the optimal combinations for the RF, XGBoost, and

LightGBM models, respectively.

For the FF-ANN, a random search algorithm was executed for five trials, and five different

model configurations were tested in each trial. Thus, a total of 100 FF-ANN models are
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Figure 6.8: The architecture of LSTM used for wastewater level predictions.

developed and evaluated based on Mean Absolute Error (MAE) to find the optimal con-

figuration of hyperparameters. During the training process, the batch size was set to 500;

epochs were set to 200, and 20% of the data from the training set was used as a validation

set. Further, the loss was set to Mean Absolute Error (MAE) during the training phase.

The optimal hyperparameters obtained from the experiments are provided in Table 6.4. A

random search algorithm was executed for tuning hyperparameters in the development of a

multivariate LSTM model. The LSTM model is trained for 500 epochs with a batch size of

8. Further, a cubic loss function is used as an objective function for minimization in this

process. The results indicated that the LSTM model with a configuration of 512 neurons

with one hidden layer and a learning rate of 0.001 performed the best. The architecture of

LSTM used for predicting wastewater level is shown in Figure 6.8.

Model Comparison based on RMSE, RSR, NSE, and R2

The RF, LightGBM, XGBoost, and FF-ANN results are presented in Table 6.5. It can be

observed that the RF model performs better with the downsampled data compared to other

versions. The same pattern can also be observed for the LightGBM model, but XGBoost

and FF-ANN models perform better with all the columns. For the LSTM models, three
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Table 6.3: Tuned hyperparameters for RF, XGBoost, and LightGBM.

Hyperparamter All data Downsampled data PCA processed data
RF Model

n_estimator 200 300 100
max_depth 10 10 5
max_features sqrt sqrt auto
min_samples_split 7 2 3
min_samples_leaf 1 1 5

XGBoost Model
eta 0.05 0.2 0.3
n_estimator 100 50 20
max_depth 4 2 2
colsample_bytree 0.5 0.5 1
alpha 1 1 0.5

LightGBM Model
learning_rate 0.1 0.1 0.2
num_leaves 50 50 100
num_iterations 200 300 10
max_depth 2 2 8
bagging_fraction 0.5 0.5 0.5
lambda_l1 0.5 0.5 1

Table 6.4: Details on the optimal hyperparameters obtained using the random search algo-
rithm for the FF-ANN model.

Data # of hidden layers # of neurons Activation
functions

Learning
rate

Execution
time

All
(96,801)

2 480
160

linear
tanh

0.0001 4:23:31

Downsampled
(68,417)

4

32
160
320
32

relu
tanh
tanh
relu

0.001 3:56:30

PCA
(56,033)

4

352
128
32
32

relu
linear
relu
relu

0.0001 7:10:23
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Table 6.5: Comparison of RF, LightGBM, XGBoost, and FF-ANN using RMSE, RSR, NSE,
and R2.

Model Data RMSE RSR NSE R2

Random Forest
All 7.628 0.784 0.385 0.41
Downsampled 7.577 0.774 0.395 0.43
PCA 7.857 0.807 0.347 0.36

LightGBM
All 7.548 0.775 0.398 0.42
Downsampled 7.515 0.771 0.405 0.42
PCA 7.824 0.771 0.405 0.01

XGBoost
All 7.450 0.765 0.413 0.40
Downsampled 7.615 0.781 0.389 0.39
PCA 7.984 0.820 0.326 0.37

FF-ANN All 8.195 0.842 0.290 0.33
Downsampled 8.228 0.844 0.287 0.29

input sequences – 12, 24, 30 – and four output sequences – 2, 4, 6, 8 – are evaluated. The

results for these configurations are shown in Figure 6.9. The important results noted from

the experiments are as follows:

• After comparing four models, the least RMSE (7.515) and RSR (0.771) values are

noted for the LightGBM model with downsampled data.

• The LightGBM model with downsampled data indicates the highest NSE (0.413) com-

pared to other models.

• For the test set, for the 30-hour input sequence, the NSE values are negative for all

the output sequence hours.

• The LSTM model with a 12-hour input sequence and 2-hour output sequence indicates

the lowest RMSE (0.036), RSR (0.276), and highest NSE (0.723) values.

• The 24-hour input sequence and 2-hour output sequence indicate the lowest RMSE

(0.036), RSR (0.260), and highest NSE (0.739) values for this configuration.
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Figure 6.9: The LSTM model with a 24-hour input sequence and a 2-hour output sequence
shows the best performance on the test dataset.

• Overall, it can be noted that the LSTM model with a 24-hour input sequence and a

2-hour output sequence manifests the best performance.

In the WWTP, the sea surface level (equal to 0) is used as a reference to measure the

wastewater level. The stored wastewater is collected in the underground tunnels below the

sea surface level (less than 0, which makes it negative). Considering this, a threshold is

selected to provide soft warning predictions to check the model’s performance. For a soft

warning, a threshold of −50m (50 meter down the sea level; total tunnel depth is 120m

below sea level) is selected for the potential effluent overflow. Based on this threshold, the

selected LSTM model correctly predicted 85% incidence of overflow in the test dataset. The

results for the overflow threshold are visualized and shown in Figure 6.10.

6.3 DeepH2O Cyber Attacks Detection Results

This section presents the results of the three research questions presented prior (RQ1 - RQ3).
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Figure 6.10: The LSTM model (24 hours input sequence and 2 hours output) prediction on
test dataset with −50m (85% accuracy at 50m below sea level) as the peak threshold.

6.3.1 RQ1: AI Assurance

Supervised Detection Results

Table 6.6 presents the attack detection performance of both supervised and unsupervised

models. Among the two supervised models, results suggest that the TGCN with atten-

tion model performs better in attack detection in WDS. With the introduction of Attention

and RMD assurance methods, the TGCN with attention model results in a significant im-

provement in recall and F1 score performance metrics. Out of the five metrics presented in

Table 6.6, I observe an improvement in precision, recall, F1 score, and accuracy by 7.6%,

22.1%, 15.5%, and 4.7%, respectively. Precision, recall, and specificity metrics improve from

baseline TGCN to TGCN with attention.

In terms of detecting attacks in WDS, results indicate that both the TGCN model (baseline)
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Performance
Metrics

Supervised Model Unsupervised Model

(Dataset 3) Tsiami TGCN TGCN with
Attention

Taormina AE HCAE

Precision 0.843 0.645 0.721 0.881 0.882 0.972
Recall 0.906 0.553 0.774 0.602 0.604 0.865

F1 Score 0.873 0.591 0.746 0.715 0.745 0.873
Accuracy N/A 0.850 0.897 N/A 0.919 0.951
Specificity N/A 0.922 0.927 N/A 0.972 0.983

Table 6.6: Attack detection performance comparison between baseline and improved models
on BATADAL Dataset 3

and TGCN with attention model successfully detect all seven attacks. Nevertheless, I notice

(Figures 6.11a, 6.11b, 6.11c, 6.11d) that the baseline model (TGCN) has a higher number of

false positives compared to TGCN with attention model. I believe that the introduction of

assurance methods (Attention and RMD) improves the TGCN with the attention model and

minimizes the number of false positives. This is also reflected in the model’s performance

with an improved F1 and precision score compared to its baseline. Overall, our results

suggest that TGCN with attention model performs better than TGCN (baseline).

Unsupervised Detection Results

To study the impact of the assurance constraints (Equations: 4.17 - 4.20) on HCAE, I present

the model performance with and without assurance constraints in Table 6.6. Not all four

constraints bring optimal performance, but a combination of these constraints achieves better

classification and dimensionality reduction performance than the baseline AE model. From

Table 6.6, I observe that sensitivity, specificity, accuracy, and F1 score improve significantly

with assurance constraints applied to the AE. Also, I observe that precision is increased

because HCAE learns the imbalanced data (BATADAL dataset is unbalanced) better than
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Figure 6.11: (a) Apply threshold on TGCN (b) TGCN detection results on the test dataset
(c) Apply threshold on TGCN with attention (d) TGCN with attention detection results on
test dataset

AE.

Figure 6.12 presents the attack detection performance of the unsupervised models. The test

dataset (Dataset 3) consists of seven different attacks. All seven attacks are classified as

“ATTACK” by both AE and HCAE models. Figures 6.12a and 6.12b present all seven

attacks detected by the AE model and the HCAE model, respectively. As Figure 6.12a

illustrates, in addition to detecting all SEVEN attacks, the AE model results in 21 sets of

false alarms. On the contrary, the HCAE model results in a single false alarm (Figure

6.12b). The result suggests that HCAE learns the complex interdependencies between the

features during concealed attacks, hence performing better than AE in detecting the attacks.

Table 6.9 presents the performance metrics, including the ranking score (S). Although both

HCAE and AE time-to-detection performance is identical (94.7%), the classification per-
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Figure 6.12: (a) AE detection results on test dataset (b) HCAE detection results on test
dataset

formance (Ranking Score S) of the HCAE has significantly improved than the baseline

AE. From the table, I observe that classification performance has been improved from 80%

to 92%. Similarly, TPR also improved from 60.4% to 86.5%, a significant increase. This

performance improvement is expected as HCAE learns the complex relationships between

features in a deterministic scheme, whereas AE learns them in a non-deterministic approach.

6.3.2 RQ2: Data Poisoning

In this sub-section, I present the performance of both supervised and unsupervised models

on poisoned data. Table 6.7 presents the attack detection performance on synthetic poisoned

data generated using GAN.

Results (Figures 6.13a, 6.13b, 6.13c, 6.13d) suggest the supervised models perform poorly

with poisoned data. More specifically for TGCN, I observe, by comparing Tables 6.6 and

6.7, that the attack detection performance of the model is decreased by more than 50%

across all five metrics. Similar to the baseline model, the TGCN with attention model

behaves poorly; results suggest, on average, a 65% reduction in performance across all five

metrics. The poor performance of supervised models on the poisoned data can be explained

as follows. The TGCN and TGCN with attention models learn the behavior of a WDS by
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embedding the spatio-temporal structure of the WDS. In other words, they learn to detect

attacks based on the sequential information inferred from the dataset during the training

process. As the attacks are randomly distributed across the poisoned dataset (GAN data),

both the supervised models fail to detect the attacks, resulting in poor performance.

Figure 6.13: (a) Apply threshold on TGCN; (b) TGCN detection results on the poisoned
dataset (c) Apply threshold on TGCN with attention; (d) TGCN with attention detection
results on poisoned dataset

On the contrary to supervised models, I observe that the AE and HCAE (unsupervised

models) perform well (Figures 6.14a, 6.14b, 6.14c, 6.14d) on the poisoned data. In some

cases, results suggest the performance of both unsupervised models is better on poisoned

data (Table 6.7) than their performance on the test dataset (Table 6.6). This improved per-

formance can be attributed to the fact that AE andHCAE models treat the training samples

as non-sequential data, and the data are randomly placed with poisoned samples. Hence,

they can detect the randomly distributed attacks from the poisoned dataset effectively.
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Performance
Metrics

Supervised Model Unsupervised Model

(GAN Samples) TGCN TGCN with
Attention

AE HCAE

Precision 0.310 0.239 0.974 0.984
Recall 0.264 0.252 1 1

F1 Score 0.285 0.245 0.986 0.991
Accuracy 0.365 0.257 0.987 0.992
Specificity 0.458 0.262 0.976 0.985

Table 6.7: Attack detection performance comparison between baseline and improved models
on GAN generated samples

Figure 6.14: (a) AE reconstruction errors on the poisoned dataset, (b) AE detection results
on the poisoned dataset, (a) HCAE reconstruction errors on the poisoned dataset, (b)
HCAE detection results on poisoned dataset

6.3.3 RQ3: Feature Localization

In this sub-section, I present the model’s ability to identify the features impacted by an

attack (feature localization). I perform feature localization by estimating the deviation of

the features from the “NO ATTACK” dataset distribution.
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Attack
La-
bels

Real
Attacks
Descrip-

tion

Predicted Feature Localization

TGCN with
Attention

FP HCAE FP

Attack
8

Alteration of
L_T3

thresholds
leading to
underflow

P_J256, L_T3,
P_J289, L_T2

3 P_J256, L_T3,
L_T6, P_J280,

F_PU4, F_PU7

4

Attack
9

Alteration of
L_T2

P_J289, P_J422,
P_J300, L_T7

4 P_J422, P_J289,
P_J280, P_J300,
L_T6, F_PU1,
L_T5, F_V2,
L_T7, L_T4

9

Attack
10

Activation of
PU3

F_PU3,
P_J280, L_T7,
L_T4, P_J269,
F_PU1, F_PU9

6 F_PU3,
S_PU10,

F_PU10, L_T1,
P_J269, P_J307,
P_J14, P_J317

7

Attack
11

Activation of
PU3

F_PU3,
P_J280, L_T7,
F_PU1, L_T4,
L_T6, P_J307,

P_J415, F_PU6,
P_J289

9 L_T1, F_PU3,
F_PU10,

P_J269, P_J14,
F_PU1, F_PU2

6

Attack
12

Alteration of
L_T2

readings
leading to
overflow

P_J289, P_J300,
L_T2

2 P_J300, P_J289,
L_T1, P_J280,
F_PU7, L_T5,
L_T6, L_T2,

P_J422

8

Attack
13

Change the
L_T7

thresholds

L_T6 1 P_J307, P_J302,
F_PU8,

F_PU10,
L_T7, L_T6,

P_J306

4

Attack
14

Alteration of
L_T4 signal

L_T4, L_T7,
P_J415, L_T6

2 P_J415, F_PU7,
L_T1, L_T6,

P_J307,
F_PU10, P_J14

6

Table 6.8: Feature localization results of TGCN with attention and HCAE on Dataset 3
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The results presented so far suggest that the model customized with AI assurance methods

and constraints performs better than their respective baseline model. Hence, for feature

localization, I limit our evaluation to two models: TGCN with attention and HCAE. Table

6.8 presents the localization results for supervised and unsupervised models. The localized

feature that matches the ground truth is highlighted in bold.

For TGCN with attention model, to localize the impacted features during an attack, I

compare the mean squared error of the network from the testing set with its corresponding

maximum error from the validation set (25% of Dataset 1). The supervised model can

successfully localize five attacked nodes among the seven attacks while failing to localize

attacked nodes for Attack 9 and Attack 13.

Next, I present the feature localization performance of the unsupervised model. To localize

the impacted features, I select the features with the highest number of deviations from the

threshold (θth) by estimating their mean squared error. During a predicted attack, I pick

the top features for which reconstruction errors deviate most from the threshold (θth).

Overall, the results indicate that the modified models can successfully localize various at-

tacks, including alteration of thresholds, signals, and meter readings. Furthermore, I observe

that TGCN with attention localizes the attacked features with a minimal number of False

Positives (FP) among the two models. False positives are estimated for each attack category

by subtracting the set of total nodes detected by the model in that category from the set of

ground truths. For example, Consider Attack 12, in which the readings of L_T2 are altered.

While both the models successfully localize the feature (L_T2), the TGCN with attention

model, in addition to identifying L_T2, also identifies two additional features as potentially

attacked. In contrast, HCAE models identify an additional eight nodes within the proximity

as potentially attacked features. This is because, the neighbor nodes show similar behavior

during normal operations, and therefore, during an attack, the model predicts those neighbor
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nodes are highly likely to be attacked.

6.3.4 DeepH2O Model Sensitivity Analysis

In this section, I evaluate the attack detection outcomes of both supervised and unsupervised

models using Shapley values (Shapley values are the outcome of a game theoretic approach

that explains the output of any ML model). In literature, variance-based sensitivity analysis

is a popular approach that explains black box models; primarily, Sobol-based methods are

gaining traction Bagherzadeh and Shafighfard [358]. However, this approach has one major

limitation: it cannot explain localized observations. In this work, I am more concerned with

local observation explanations than global ones since the models detect attacks from different

nodes and time points in a WDS. Therefore, I elected to use Deep Explainer1, an enhanced

approach from SHapley Additive exPlanations (SHAP) library similar to Kernel SHAP. It

approximates the conditional expectations of SHAP values using a selection of background

samples.

In this analysis, I provide all seven categories of attack samples separately, generate SHAP

values, and plot the scaled SHAP values ranging from 0 to 100 in Figure 6.15. This figure

represents the importance of local features during the attack detection by the models. From

the figure, I can observe that feature localization (Table 6.8) and Deep Explainer provide

similar insights about the model’s outcome. By observing Figure 6.15, it becomes evident

that the model gives less attention to deactivated nodes from the training set (Dataset 1),

including PU3, PU5, PU6, PU9, and PU11 while giving much more importance to the flow

of pumps that worked during the training set. Additionally, I observed that all tanks were

given attention during all seven categories because they were always active in the training

set. One shortcoming of both models is that they could not learn the relationships among
1github.com/slundberg/shap
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junctions because of the imbalance of the training dataset; most influential junctions got

prioritized by the model over less participating ones. Therefore, model attack localization

was incorrect during attacks 9 and 13; L_T2 and L_T7 weren’t detected because other

junctions got more ”attention”, including P_J280, P_J289, P_J300, when compared to

ground truth nodes V2 and PU10/PU11.

6.3.5 Comparison with BATADAL Models

Next, I compare the attack classification performance of our models with the top-performing

models from the BATADAL competition. To maintain consistency in our evaluation, all the

models are evaluated using the test dataset (Dataset 3). Table 6.9 presents the comparison

results, where our models are highlighted in bold. The results indicate both the unsupervised

and supervised model exhibits better performance. HCAE (unsupervised model), with a

ranking score of 0.933, is ranked 3, whereas TGCN, with attention, achieves 0.845 and ranks

eighth amongst the models from the BATADAL competition. Although our models do not

achieve the highest ranking, they are superior compared to the top two models for the

following reasons: 1). The top-ranked model is physics-based, and hence it is not relevant

to compare with our model, an AI-based model. 2). The second-ranked model, although an

AI-based model, might not perform well (detecting attacks) on previously unseen data. On

the contrary, our models are scalable and demonstrate a better attack detection performance

on unseen data.

Results indicate that adding the AI assurance methods to the TGCN model improves its

overall performance. Compared to the baseline model (S = 0.754), TGCN with attention

model achieves a better score (S = 0.845). Additionally, I observe that the time-to-detection

(STTD) has improved significantly; the baseline model achieves 0.735, whereas the TGCN
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Figure 6.15: DeepH2O attack detection local explanations using Shapley values. Ground
truths are as follows: (a) Attack 8: Alteration of L_T3 thresholds leading to underflow, (b)
Attack 9: Alteration of L_T2, (c) Attack 10: Activation of PU3, (d) Attack 11: Activation of
PU3, (e) Attack 12: Alteration of L_T2 readings leading to overflow, (f) Attack 13: Change
the L_T7 thresholds, (g) Attack 14: Alteration of L_T4 signal

with attention model achieves 0.839. A higher STTD is significant in the context of WDS;

an improved STTD score indicates that the TGCN with attention model can swiftly identify

an attack at the earliest compared to its baseline model.
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Authors/Models No. of
Attacks
Detected

Ranking
Score (S)

time-to-
detection
(STTD)

Classification
Score

(SCLF )

TPR TNR

Housh and Ohar 7 0.97 0.965 0.975 0.953 0.997
Abokifa et al. 7 0.949 0.958 0.944 0.921 0.959
HCAE 7 0.933 0.947 0.919 0.865 0.983
Tsiami et al. 7 0.931 0.934 0.928 0.885 0.971
Giacomoni et al. 7 0.927 0.936 0.917 0.838 0.997
Brentan et al. 6 0.894 0.857 0.931 0.889 0.973
AE 7 0.873 0.947 0.800 0.604 0.972
TGCN with attention 7 0.845 0.839 0.851 0.774 0.927
Chandy et al. 7 0.802 0.835 0.768 0.857 0.678
Pasha et al. 7 0.773 0.885 0.66 0.329 0.992
TGCN 7 0.754 0.735 0.773 0.553 0.922
Aghashahi et al. 3 0.534 0.429 0.64 0.396 0.884

Table 6.9: Comparison of AI Assured models with BATADAL competition models

For unsupervised models, both HCAE and AE (baseline) achieve an identical score for time-

to-detection (STTD = 0.947). However, I observe that the HCAE model has an improved

TPR score (0.865) compared to its baseline (0.604). This results in the HCAE model

achieving a ranking score (S = 0.933) substantially higher than its baseline (S = 0.873).

Furthermore, a higher TPR indicates that the model detects most attack samples. Thus,

improving the trustworthiness of the model during deployment.

Both TGCN with attention and HCAE models achieve a better ranking score compared to

their respective baseline models.

6.4 cP2O Forecasting Performance Evaluation

The forecasting performance metrics, summarized in Table 6.10, include RMSE, MAPE, In-

terquartile Range of Absolute Percentage Error (iqrAPE), Standard Deviation of Percentage

Error (StDPE), Peak Detection Rate (PDR), and Mean Percentage Error (MPE), as defined

in Equations (6.3) to (6.9). Our proposed model is evaluated in two variations: cP2O and
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its ensemble version, cP2Oe. For comparison, I also include the performance of our previous

model, P2O, as reported in prior work (Kulkarni et al. [3]).

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6.3)

MdAPE = median
(∣∣∣∣yi − ŷiyi

∣∣∣∣× 100

)
(6.4)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100 (6.5)

iqrAPE = Q3

(∣∣∣∣yi − ŷiyi

∣∣∣∣× 100

)
−Q1

(∣∣∣∣yi − ŷiyi

∣∣∣∣× 100

)
(6.6)

MPE =
1

n

n∑
i=1

(
yi − ŷi
yi

× 100

)
(6.7)

StDPE =

√√√√ 1

n

n∑
i=1

(
yi − ŷi
yi

× 100−MPE
)2

(6.8)

PDR =
Number of Correctly Detected Peaks

Total Number of True Peaks (6.9)

It is important to note that separate models were trained for each dataset—DC Water and

AlexRenew—using the same architecture and methods but different training data specific

to each WWTP. This approach allows the models to capture the unique characteristics and

patterns inherent in each dataset while leveraging the strengths of the proposed architecture.

As shown in Table 6.10, our proposed hybrid models outperform state-of-the-art methods

across most metrics on both datasets. Particularly, the ensemble model cP2Oe demonstrates

superior accuracy, achieving the lowest MAPE values of 2.10% for the DC Water model and

1.90% for the AlexRenew model.
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Figure 6.16: cP2Oe forecasting results on WWTP data (actual values in black, forecasts in
red, predictive intervals in light gray shades).

Figure 6.16 illustrates the predictions and dynamic predictive intervals for a test period.

Observations fall within the predictive intervals approximately 90.51% ± 3.21% of the time,

while 5.86% ± 1.85% fall below and 3.63% ± 1.47% above. The narrow iqrAPE and StDPE

further highlight each cP2Oe model’s ability to maintain consistent predictions for its re-

spective dataset.

The proposed cP2Oe models significantly improve accuracy compared to the earlier version,

P2O, when trained on their respective datasets. For the DCWater dataset, MAPE is reduced

from 2.71% to 2.10%, a reduction of approximately 22%, and RMSE is reduced by about

12% (from 3.35 to 2.94). For the AlexRenew dataset, MAPE is reduced from 2.35% to

1.90%, a reduction of approximately 19%, solidifying the cP2Oe models’ positions as the

top-performing models for each dataset.

The lowest StDPE and iqrAPE values in Table 6.10 demonstrate that cP2Oe models deliver
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Figure 6.17: Actual tunnel water level vs predicted values by cP2O (red line) and P2O
(orange line) for total eight different extreme events
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more consistent and less variable predictions compared to baseline models such as Prophet

and DeepAR on both datasets. For instance, it achieves the lowest iqrAPE (1.71% for

DC Water and 1.85% for AlexRenew) and StDPE (3.19% for DC Water and 3.20% for

AlexRenew), highlighting their robustness in controlling the spread of percentage errors

specific to each dataset.

Although the DC Water model exhibits a slightly negative MPE value (indicating a minor

tendency to under-predict), the MPE is balanced in the AlexRenew model, suggesting that

the predictions are well-calibrated for both datasets. Additionally, my models are more

robust to outliers, as observed from the MdAPE values; cP2Oe attains the lowest MdAPE

values, such as 1.50% for DC Water and 1.65% for AlexRenew. The cP2Oe model for DC

Water also excels in PDR, identifying 93.54% of peaks, indicating its robustness in detecting

extreme events such as floods.

These results validate my hypothesis for Research Question RQ2 (See the section 3.2.3):,

demonstrating that the cP2O model is both adaptable and effective across different WWTPs

and forecasting tasks. By training separate models using the same architecture and methods

on diverse datasets—specifically for tunnel water level forecasting at DC Water and nitrate

level prediction at AlexRenew, the model consistently achieve high accuracy tailored to each

dataset’s unique characteristics and forecasting objectives.

To evaluate the statistical significance of my forecasting performance, I perform a pairwise

Giacomini-White test for conditional predictive ability. The test scores in Table 6.10 were

calculated by comparing the forecast errors, including MAPE, RMSE, MPE, and PDR, of

the models to determine if one model’s predictive performance was statistically superior to

another’s at the α = 0.05 significance level. For the DC Water experiment, I include PDR in

the comparison; for AlexRenew, I apply the rest of the key metrics. The results, labeled as

”Score” in Table 6.10, reveal that each cP2Oe model achieved significantly lower forecasting



6.4. CP2O FORECASTING PERFORMANCE EVALUATION 197

errors than other models in over 90% of pairwise comparisons for their respective datasets.

This confirms the models’ superiority, particularly the cP2Oe configuration, which benefits

from exogenous input, validating the design choice of dynamic, context-driven adjustments.

Figure 6.17 showcases dynamic adjustments during peak events for the DC Water dataset.

Notably, the proposed model cP2O aligns well with extreme water level increases compared

to my previous model P2O, a key requirement for critical event forecasting. This plot and

the results from Table 6.10 support the hypothesis of Research Question RQ4 (See section

3.2.3):: using a quantile loss function employed in cP2O effectively reduces forecast bias

during peak events or extreme conditions and improves uncertainty estimation in multi-

step-ahead forecasting.

6.4.1 Ablation Study

To assess the contributions of key components in the cP2O model, I conducted an ablation

study by systematically removing the context stage, the attention mechanism, and the dilated

LSTM layers. This study was performed on both the DC Water and AlexRenew datasets,

with results presented in Table 6.11.

Table 6.11: Impact of key components of cP2O on forecasting performance

Model Variant
Tunnel water level forecast (DC Water) NO3 level prediction (AlexRenew)

MAPE

(%)

RMSE PDR

(%)

StDPE

(%)

MAPE

(%)

RMSE StDPE

(%)

cP2O (Full Model) 2.10 2.94 93.54 3.19 1.90 1.90 3.20

Without Context Stage 2.48 3.32 85.50 3.50 2.25 2.20 3.50

Without Attention Mechanism 2.60 3.50 83.00 3.80 2.05 2.10 3.50

Without Dilated LSTM Layers 2.85 3.80 80.50 4.00 2.20 2.30 3.80
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1. Without Context Stage: Removing the context stage led to performance declines

across both datasets. For DC Water, MAPE increased from 2.10% to 2.48%, RMSE

from 2.94 to 3.32, and PDR decreased from 93.54% to 85.50%. For AlexRenew, MAPE

rose from 1.90% to 2.25% and RMSE from 1.90 to 2.20. This underscores the critical

role of external contextual data (e.g., weather, influent characteristics) in enhancing

prediction accuracy and robustness. The consistent impact supports my hypothesis for

Research Question RQ1 (See section 3.2.3): incorporating contextual data significantly

improves the accuracy of short-term predictions in WWTPs.

2. Without Attention Mechanism: Excluding the attention mechanism increased

errors on both datasets. In DCWater, RMSE rose to 3.50, MAPE to 2.60%, and StDPE

to 3.80%; in AlexRenew, RMSE increased to 2.10, MAPE to 2.05%, and StDPE to

3.50%. This highlights the models’ reduced capacity to dynamically adjust to varying

input importance over time, leading to less accurate and more variable predictions.

These results confirm my hypothesis for Research Question RQ3 (See section 3.2.3)::

integrating an attention mechanism in cP2O enhances the models’ ability to weigh

input features effectively, thereby improving forecasting accuracy.

3. Without Dilated LSTM Layers: Removing the dilated LSTM layers impaired the

models’ ability to capture temporal dependencies over multiple time scales. For DC

Water, RMSE increased to 3.80, MAPE to 2.85%, and PDR dropped to 80.50%; for

AlexRenew, RMSE rose to 2.30 and MAPE to 2.20%. This emphasizes the importance

of dilated LSTM layers in learning both short-term fluctuations and long-term trends,

contributing to the models’ adaptability and precision.

Overall, the ablation study confirms that each component significantly enhances the cP2O

models’ performance across both datasets. Including external context data improves adapt-
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ability to changing conditions, the attention mechanism allows dynamic weighting of input

features, and dilated LSTM layers enable capturing temporal dependencies over multiple

scales. The consistent performance degradation when components are removed validates

my design choices and supports my research hypotheses. These findings demonstrate the

effectiveness of the full cP2O architecture for short-term forecasting in wastewater treatment

plants across different settings.



Chapter 7

Assessing the Fidelity and Utility of

Water Systems Data Using

Generative Adversarial Networks: A

Technical Review

Limited data access in Water Distribution Systems (WDSs) is a longstanding barrier to

data-driven research and development. This limited access is compounded by the hesitation

of agencies and facilitates to integrate and share data, driven by the absence of standard

mandates, resource constraints, privacy and security concerns, and legal challenges. This

review paper addresses this limitation by utilizing Generative Adversarial Networks (GANs)

to generate realistic synthetic datasets, overcoming data scarcity and privacy concerns in

WDSs. Seven state-of-the-art GAN models are trained and evaluated using three multivari-

ate time-series datasets. The core contribution of this work lies in its comprehensive technical

review of the GANs, evaluating their ability to replicate temporal dynamics and maintain

spatio-temporal dependencies within WDSs. Techniques like t-distributed Stochastic Neigh-

bor Embedding (t-SNE) and Principal Component Analysis (PCA) are used to quantify the

diversity of the generated synthetic data.

Key findings indicate that specific GAN models, such as Cramer GAN and CTGAN, are

200
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effective in generating data for predictive modeling, replacing the need for original WDS

datasets. Additionally, DoppelGANger and TimeGAN exhibit strong capabilities in pre-

serving essential spatio-temporal relationships, which are critical for applications like en-

vironmental impact estimation. The results also highlight the potential of GAN-generated

synthetic data in enhancing the management and security of WDSs, particularly in scenarios

where data are scarce or sensitive. This research contributes to Artificial Intelligence (AI) in

water resource management and guides the selection of appropriate GAN models for specific

tasks, demonstrating their practical implications in real-world scenarios.

Figure 7.1: Pipeline for Synthetic Data Generation and Evaluation. Three Datasets- (1) a
Physical Water Testbed (ACWA), (2) Simulated Data (via EPANET), and (3) Real-world
Water Treatment Plant Data (via Supervisory Control and Data Acquisition) are Used to
Generate Synthetic Data by Applying Seven Different GAN models and Assessed via Quan-
tifiable Measures to Test Data Fidelity and Utility.
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7.1 Introduction

In recent days, data-driven methodologies (Halevy et al. [359]) are essential in explor-

ing empirically-driven design decisions and management strategies (Batarseh and Kulkarni

[21], Baltrunas et al. [360], Bischof et al. [361], Chen et al. [362], Grandl et al. [363], Jiang

et al. [364], Liu et al. [365], Mao et al. [366], Montazeri et al. [367], Sundaresan et al. [368]).

The unprecedented advancements in AI, particularly in DL, have prompted an urgent need

for extensive datasets necessary for training, testing, and validating DL models (Tuptuk

et al. [123]). This demand is especially pronounced in WDSs, where data are critical for

understanding and managing their complex dynamics. However, data availability often re-

mains a significant challenge, typically confined to entities already possessing such data.

Despite the potential for mutual advantages, concerns over disclosing confidential business

information and violating privacy standards deter data sharing among stakeholders (McGre-

gor et al. [369]). To address this AI challenge, generating and distributing synthetic datasets

derived from authentic data sources (Antonatos et al. [370], Denneulin et al. [371], Di et al.

[372], Ganapathi et al. [373], Juan et al. [374], Li and Liu [375]) has become a practical

solution. The outcome of realistic synthetic data has therefore achieved prominence, with

DL methodologies emerging as critical contributors in data generation steps (Frid-Adar et al.

[376], Zhang et al. [377], Xu et al. [378], Bowles et al. [379], Assefa et al. [380]). Compared

to traditional ML techniques, DL provides a more nuanced understanding and management

of the inherent complexities in WDSs. GANs (Goodfellow et al. [189]) demonstrate this

state-of-the-art capability, as they excel in producing accurate representations of complex,

multidimensional data relationships, particularly in scenarios where it is challenging to obtain

original data due to scarcity, sensitivity, or other factors (Lin et al. [381]). The significance

of such synthetic datasets is highlighted in environments where data accessibility is a sig-

nificant challenge (ICS-CERT [54], Walton [56], Cava [57], Rubin [58]), proving significant
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development of AI models that can effectively administer and protect WDS infrastructures.

The synthesis of these datasets via DL, primarily through GANs, signifies a considerable

advancement in applying AI to WDS management. These developments have significantly

enhanced my understanding of complex WDSs and contributed meaningfully to these essen-

tial infrastructures’ efficient and secure operation.

7.1.1 Motivation: The Need for Water Data

One of the primary motivations for synthetic data generation for WDSs is improving cyber-

security. In recent years, WDSs have increasingly relied on automated control systems that

introduce significant cyber-physical security vulnerabilities (Sikder et al. [5], Batarseh and

Freeman [202], Sikder and Batarseh [382]), as a rising wave of adversarial cyber activities tar-

geting these systems. The incident on February 5th, 2021, at the Oldsmar water treatment

plant in Florida1, where an attacker altered the chemical levels, illustrates this vulnerability.

To counter such threats, initiatives such as the BATtle of the Attack Detection ALgorithms

(BATADAL), which employs EPANET2 (Taormina et al. [8], Erba et al. [383], Cheung et al.

[384]), have been established. However, the need for original WDS datasets often restricts

these tasks, emphasizing the significance of synthetic data.

Furthermore, synthetic data also plays an indispensable role in addressing environmental

and operational challenges (El Emam et al. [385]). It supports modeling the impacts of

environmental factors, such as droughts or floods, on water supply and distribution networks,

thereby facilitating the development of adequate contingency plans. Synthetic data simulates

infrastructure aging and maintenance needs, promoting proactive management and planning.
1https://www.wired.com/story/oldsmar-florida-water-utility-hack/
2EPANET is a public-domain software package for WDS modeling developed by the United States En-

vironmental Protection Agency (EPA)’s Water Supply and Water Resources Division

https://www.wired.com/story/oldsmar-florida-water-utility-hack/
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Highlighting its broader application, a study by Lin et al. [386] demonstrates AI techniques,

including clustering and neural networks, to develop a comprehensive flood susceptibility

index known as NeuralFlood. This index evaluates multiple factors, aiding decision-makers

in allocating resources efficiently and identifying high-risk areas for effective flood mitigation.

Additionally, technological innovation in water management benefits significantly from syn-

thetic data. For example, developing soft sensing (Wang et al. [387]) or innovative metering

technologies (Rahim et al. [388]) using synthetic datasets reduces the need for costly and

time-consuming real-world trials. Moreover, AI is essential in creating decision support sys-

tems in WDSs, enabling more accurate and efficient modeling and forecasting (Kulkarni

et al. [3], Batarseh et al. [389]). Synthetic data can aid in reducing operational costs and

optimizing potential chemical and electricity consumption due to system failures or envi-

ronmental hazards. This efficient allocation and utilization of resources contribute to cost

savings and the sustainable management of water resources.

The contributions of physical water testbeds such as AI & Cyber for Water & Agriculture

(ACWA) (Batarseh et al. [4]), and (Batarseh et al. [390])3, Secure Water Treatment (SWaT)

(Mathur and Tippenhauer [391]), and Water Distribution (WADI) (Ahmed et al. [392]) are

vital for water systems research. However, these datasets alone are insufficient to cover the

potential scenarios WDSs may encounter, underlining the importance of synthetic data for

comprehensive coverage and preparedness.

7.1.2 Research Contributions

This section outlines my contribution and presents my research questions. My primary goal

is to produce realistic synthetic water data and validate the quality of generated data by
3https://github.com/AI-VTRC/ACWA-Data

https://github.com/AI-VTRC/ACWA-Data
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assessing its fidelity and utility. I leverage seven GAN models (TimeGAN Yoon et al. [393],

CTGAN Xu et al. [378], WGAN Ring et al. [394], WGAN-GP Desai et al. [395], DRAGAN

Kodali et al. [396], Cramer GAN Bellemare et al. [397], and DoppelGANger Lin et al. [381]) in

experiments on three multivariate time-series datasets. Each model offers a unique approach

to data generation. For example, TimeGAN leverages supervised and unsupervised learning

to generate datasets mirroring real-world dynamics, potentially a better-suited model for my

time series datasets. WGAN and DRAGAN are notable for their stability and convergence,

while Cramer GAN and DoppelGANger allow for diverse data generation approaches. My

experiments test whether GANs can accurately replicate the temporal dynamics of water

systems, ensuring that the synthetic data sequences reflect the characteristics of original

data sequences.

I select three distinct multivariate time-series datasets: a physical testbed- ACWA (Batarseh

et al. [4]), EPANET-based data BATADAL (Erba et al. [383]), and data from a real-world

water treatment plant (name withheld for confidentiality). The ACWA dataset represents

an operational testbed generated by my team4, mirroring a modern, large-scale water supply

facility. The EPANET dataset provides insights into water flow dynamics and conceals

attacks on physical layer components (Erba et al. [383]). The third dataset, from a water

treatment plant, offers a real-world perspective on operational challenges in water treatment.

My evaluation metrics include t-distributed Stochastic Neighbor Embedding (t-SNE) (Belk-

ina et al. [398]) and Principal Component Analysis (PCA)(Bro and Smilde [399], Van der

Maaten and Hinton [400]) to compare between synthetic and original datasets. I also used a

post-hoc classifier (GRU) to distinguish between generated and original data and applied the

“train on synthetic, test on original (TSTO)” framework (Esteban et al. [401]) for sequence

prediction.
4https://ai.bse.vt.edu/ACWA_Lab.html

https://ai.bse.vt.edu/ACWA_Lab.html
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All of this study’s ACWA-generated datasets are available in a public repository 5.

My central research question in this technical review is as follows:

1. In the context of generating realistic WDS data, how do different GAN methods (e.g.,

TimeGAN, CTGAN) compare in terms of data fidelity (accuracy in mimicking real

data) and utility (usefulness for specific applications or tasks)?

This question breaks down into two key aspects:

a. Given a GAN G, can I generate a WDS multivariate time sequential datasetDsynth such

that the accuracy A(Dsynth) is comparable to the accuracy A(Doriginal) of an original

dataset Doriginal?

b. Can I evaluate synthetic time-series data generation Dsynth in a 3-fold manner for

WDSs?

• Quantitatively, using statistical measures S(Dsynth),

• Qualitatively, with expert assessment Q(Dsynth),

• Visually, with graphs G(Dsynth).

This paper introduces a comprehensive technical review integrating seven distinct GANs

to explore my research question across three multivariate time-series datasets. Figure 7.1

presents a high-level workflow, illustrating the key stages of my experimental processes. I

have employed multiple testing and evaluation methods, including diversity, fidelity, and

usefulness, to estimate the quality and utility of the synthetically generated datasets and

documented all experimental results. Section 2 reviews related literature, while section 3

covers data description and GAN models. Section 4 delves into my methodologies, section 5
5https://github.com/AI-VTRC/ACWA-Data/tree/main/GANs

https://github.com/AI-VTRC/ACWA-Data/tree/main/GANs
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elaborates on experimental results and their discussion, section 6 discusses the implications

of synthetic data in water policy, and section 7 summarizes and concludes the paper.

7.2 Related Works

Data generation is vital in water systems, particularly when balancing two key objectives:

privacy preservation and maintaining data distribution and availability. This trade-off is

challenging; prioritizing privacy preservation can reduce data utility due to limited availabil-

ity. My work emphasizes capturing distribution relevancy across time points and understand-

ing complex variable interdependence over time. For instance, for multivariate sequential

data x1:T = (x1, ..., xT ), I aim to accurately model the conditional distribution of temporal

transitions p(xt|x1:t−1).

Privacy concerns in essential infrastructure, such as water utilities, have escalated, high-

lighted by the 2019 ransomware attack on the Riviera Beach Water Utility (RBWU), which

paralyzed the computer systems controlling pumping stations, water quality testing, and

payment operations. The government authorities paid 65 bitcoins - approximately $600,000

– to the attacker in a few days, but still, after two weeks, water pump stations and water

quality testing systems were partially available (Hassanzadeh et al. [402]). This incident led

to the U.S. Environmental Protection Agency (EPA) proposing, then withdrawing, a rule to

evaluate cybersecurity in public water utilities due to legal pushback6(Dwork et al. [403]).

Synthetic data generation is proposed as one of the solutions to utilize data for research and

development without compromising sensitive real-world data (Patki et al. [404]). Generating

synthetic datasets can mitigate overfitting and enhance model generalization by introducing
6https://www.theregister.com/2023/10/13/epa_rescinds_water_cybersecurity_rule/#~:

text=,attack

https://www.theregister.com/2023/10/13/epa_rescinds_water_cybersecurity_rule/#~:text=,attack
https://www.theregister.com/2023/10/13/epa_rescinds_water_cybersecurity_rule/#~:text=,attack
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unseen data, especially where real-world data are scarce (Sikder et al. [5], Sarkar et al. [405]).

Sikder et al. 2023, demonstrated that adversarial testing through synthetic data generation

yields more generalizable models. Critical system research data are classified into original,

synthetic, and testbed types, each with its own significance (Buczak and Guven [406]). For

example, PGGAN (Gautam et al. [407]) has generated high-resolution river images and aided

with various hydrological studies. Synthetic time series data has also been used to improve

models in predicting the burst failure risk of corroded pipelines (Mazumder et al. [408]) and

in combined sewer flow predictions (Bakhshipour et al. [409]).

Goodfellow et al.’s introduction of GANs (Goodfellow et al. [189]) revolutionized data gen-

eration, with architectures like WGAN (Arjovsky et al. [410]) and WGAN-GP Gulrajani

et al. [411] improving training stability. TimeGAN (Sauber-Cole and Khoshgoftaar [412])

and CGAN Mirza and Osindero [413] are effective for time series data, capturing temporal

dependencies. DRAGAN (Kodali et al. [396]) and Cramer GAN (Bellemare et al. [397])

address training stability and accurate temporal dependency representation. CTGAN (Xu

et al. [378]) is notable for handling discrete and continuous data and missing data prob-

lems. TimeGAN is less sensitive to parameter changes during training, suitable for data

with static and sequential features (Yoon et al. [393]). DoppelGANger (Lin et al. [381])

excels in preserving privacy and managing time series correlations.

7.2.1 Synthetic Data Generation on Multivariate Time-Series

Traditional time series data generation approaches are limited by data type distributions and

computational challenges, affecting synthetic data reliability (Aviñó et al. [414], Cormode

et al. [415], Sun et al. [416]). GAN-based methods offer more flexibility and performance

enhancement (Xu et al. [378], Lin et al. [381], Park et al. [417]). However, many GAN
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experiments focus on static dependencies, overlooking temporal aspects crucial in real-world

data (Xu et al. [378], Ring et al. [418]). Recent attempts partially incorporate temporal

dependence in GANs, but limitations still remain (Lin et al. [381], Jan et al. [419]).

Table 7.1: Comparisons of GANs for Synthetic Data Generation

Methods
Capture
Attribute
Depen-
dence

Capture
Temporal
Depen-
dence

Multivariate
Generation
(Continu-
ous)

Categorical
Variable

WGAN Ring et al. [394] Yes No No Yes
CTGAN Xu et al. [378] Yes Partially Yes Yes
DRAGAN Kodali et al. [396] Yes No Yes Yes
Cramer GAN Bellemare et al.
[397] Yes No Yes Yes

TimeGAN Yoon et al. [393] Yes Yes Yes No
WGAN-GP Desai et al. [395] Yes No Yes Yes
DoppelGANger Lin et al. [381] Yes Partially Yes Yes

In WDS research, Zhou et al. [291] tackled the scarcity of industrial control dataset attacks

using GANs, claiming significant attack detections (Zhou et al. [291]). However, their frame-

work, while innovative, is computationally intensive. My approach with various GANs aims

to bridge the gap in generating diverse and similar synthetic WDS data. Table 7.1 summa-

rizes the GANs used in my experiments, highlighting their strengths and applications for

synthetic data generation.

7.3 Data Descriptions and Methodologies

This section describes the datasets used in this work and briefly discusses all GANs used in

the experiment.

7.3.1 Datasets Collection

This section describes three datasets: the ACWA testbed dataset, the BATADAL (EPANET)

dataset, and a real-world water treatment plant dataset. Collectively, these datasets are
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integral for comprehending and examining water systems. They encompass the diverse

data collection methods applicable to water systems, offering a comprehensive view of data

acquisition and management variations. The datasets mentioned are further detailed as

follows:

AI & Cyber for Water & Agriculture: ACWA

My study actively employs the ACWA testbed, a dynamic and versatile platform, for data

collection for real-time water quality monitoring and supply management. The ACWA

infrastructure includes three distinct topologies - Line, Bus, and Star - each tailored for

collecting a broad range of data pertinent to water quality metrics. During the operation of

these topologies, I record key parameters such as pH, temperature, Dissolved Oxygen (DO),

turbidity, nitrate levels, Electrical Conductivity (EC), soil moisture, water level, pressure,

and flow rate. I systematically store the data in a MongoDB database, ensuring efficient

retrieval for advanced modeling and AI-based analyses.

Figure 7.2: Schematic Representations of the (a) Line Topology, (b) Bus Topology, and (c)
Star Topology as in the ACWA Testbed Batarseh et al. [4]
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ACWA Testbed Topologies ACWA testbed mirrors the core Water Supply System (WSS)

structures such as Grid-Iron, Ring, Radial, and Dead-end, conceptually similar to computer

network topologies. My analysis utilizes explicitly Line, Star, and Bus topologies to simu-

late various WSS scenarios. These topologies, characterized by industry-recommended water

tanks, pipes, pumps, and reservoir configurations, offer diverse data sets for my experiment.

Although I haven’t selected every variable for the experiment, only those with high vari-

ability in continuous time series are selected since I focus on collecting time series variables.

Each topology contributes unique data points, enhancing the complexity and realism of the

generated synthetic data. They are briefly discussed as follows:

1. Line Topology: This topology (Figure 7.2a) features point-to-point connections be-

tween tanks, enabling the study of linear water flow systems. Equipped with sensors

for real-time data collection on water level, nitrate, pH, and temperature, the Line

topology provides a foundational dataset on linear water distribution patterns.

2. Bus Topology: The Bus topology (Figure 7.2b), with a central pipe distributing

water to multiple tanks, simulates branched water distribution networks. This setup

produces complex, multi-directional water flow scenarios.

3. Star Topology: The Star topology emulates radial water supply systems (Figure

7.2c) and offers data on centralized distribution networks. The diversity in tank sizes

and connections in this topology enriches the dataset.

EPANET Simulation: BATADAL

My research utilizes a simulated dataset, called BATADAL7, designed using EPANET (Taormina

et al. [8]), which features a C-Town virtual city’s WDS. This simulated environment, de-
7https://www.batadal.net/data.html

https://www.batadal.net/data.html
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picted in Figure (as depicted in Figure 7.3a), is characterized by its intricate infrastructure

consisting of 429 pipes, 388 junctions, 7 storage tanks, 11 pumps, 5 valves, and a reservoir.

This dataset provides a rich ground for testing and enhancing my synthetic data generation

and evaluation methodologies.

Figure 7.3: WDS Nodes Representation Sikder et al. [5] - (a): Nodes Layout of a Virtual
Town Distribution Network; (b): Reduced Nodes (31 Nodes)

The virtual town “C-Town” leverages a sophisticated Supervisory Control and Data Acquisi-

tion (SCADA) system for data collection and monitoring via the EPANET tool. This setup

is pivotal in capturing time-series data reflecting the system’s performance under various

operational scenarios, including labeled physical anomalies. The SCADA system’s detailed

data on hydraulic components and their operations is essential for my study, providing a

baseline for generating synthetic scenarios.

The primary functionality of the C-Town WDS is its seven tanks (T1-T7) and five pumping

stations (S1-S5). The stations are central to the water distribution and storage processes,

each comprising a valve and eleven pumps. Additionally, the system incorporates nine

Programmable Logic Controllers (PLCs) located near control components, which relay oper-
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ational data to the SCADA system. The interplay between these elements, including water

levels, flow rates, and pump operations, forms a comprehensive dataset for my synthetic

data generation and analysis.

Focusing on the first dataset of the BATADAL series, my study examines 12 months of

operation without intrusion events. This dataset, critical for understanding the normal

operational baseline of the WDS, includes 44 features across 8,762 data samples. The com-

prehensive nature of this dataset provides a robust foundation for developing and validating

my GAN-based approaches to synthetic data generation and evaluation.

Real-world Water Plant SCADA Dataset

My research employs a third and final dataset from a real-world Wastewater Treatment Plant

(WWTP). Due to confidentiality constraints, the specific identity of the WWTP remains

undisclosed. This dataset represents the plant’s daily processing capacity, handling massive

Figure 7.4: A Real-world Waste Water Treatment Plant Process Sikder et al. [5]

amounts of wastewater. The data spans from March 1st, 2018, to March 26th, 2022, offering

a detailed and extensive view of the plant’s operations, recorded at five-minute intervals.
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The WWTP dataset contains a total dimension of 1458 columns and 2,569,464 rows. This

extensive dataset is categorized into six distinct operational aspects:

1. Principal inflows to the tunnel system.

2. Overflow incidents from the tunnel to the river.

3. Readings from level sensors within the tunnel.

4. Rainfall measurements.

5. Data from flow meters linked to the tunnel’s dewatering pumps.

6. Other critical flows within the main plant.

This rich dataset is instrumental for my research, offering an extensive range of operational

parameters. However, approximately 95% of the data consists of ’NA’ values, underscoring

the need for comprehensive data preprocessing to extract meaningful insights. Specific data

subsets, such as pump usage, tunnel overflow incidents, and water mass measurements,

are emphasized in my experiments. This subset yields an essential understanding of the

WWTP’s efficiency and the complexities of its operations, forming an integral part of my

study’s multivariate time series data.

7.3.2 Generative Adversarial Networks

This section briefly discusses seven GANs, including TimeGAN, CTGAN, WGAN, WGAN-

GP, DRAGAN, Cramer GAN, and DoppleGANger, and their high-level architecture.
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TimeGAN

TimeGAN generates sequential data while preserving temporal dynamics. It comprises an

embedding network, a recovery network, a generator, and a discriminator. The embedding

network learns to represent time-series data in a latent space. The generator produces

realistic synthetic time-series data, while the discriminator distinguishes between original

and synthetic data. A key feature of TimeGAN is its use of a supervised loss to ensure that

the generated sequences follow the temporal dynamics of the original data.

L = Lunsupervised + λ× Lsupervised (7.1)

Lunsupervised = EX∼pdata [logD(X)] + EZ∼pZ [log(1−D(G(Z)))] (7.2)

Lsupervised = E(X,Y)∼pdata [∥Y− E(G(X))∥2] (7.3)

Here, λ is a hyperparameter that balances the unsupervised and supervised losses, E repre-

sents the embedding network, G the generator, and D the discriminator.

CTGAN (Conditional Tabular GAN)

CTGAN generates synthetic tabular data with a focus on handling discrete, continuous, and

mixed-type data. It uses conditional generators and a novel training procedure to handle

class imbalance and mode collapse issues. CTGAN introduces a conditional vector that

allows the model to generate data conditioned on specific attributes, helping in generating

diverse and representative samples.

LG = −Ez ∼ pz, c ∼ pc[logD(G(z, c))] (7.4)
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LD = −Ex ∼ pdata[logD(x)]− Ez ∼ pz, c ∼ pc[log(1−D(G(z, c)))] (7.5)

Here, G is the generator, D is the discriminator, z is the noise vector, and c is the conditional

vector.

WGAN (Wasserstein GAN)

WGAN introduces the Wasserstein distance as a loss function to address the mode collapse

and training instability issues in GANs. This approach modifies the traditional GAN’s

discriminator to become a critic that estimates the Wasserstein distance between the original

and generated distributions. The critic is trained to maximize this distance, while the

generator aims to minimize it.

L = min
G

max
D∈D

Ex ∼ pdata[D(x)]− Ez ∼ pz[D(G(z))] (7.6)

Here, D denotes the set of 1-Lipschitz functions, G is the generator, D is the discriminator

(or critic), and z is the noise vector.

WGAN-GP (Wasserstein GAN with Gradient Penalty)

WGAN-GP is an improvement over WGAN that uses a gradient penalty term to enforce

the Lipschitz constraint, which is crucial for the Wasserstein distance calculation. This

modification stabilizes training and improves the quality of generated samples.

L = min
G

max
D

Ex∼pdata [D(x)]− Ez∼pz [D(G(z))] + λEx̂∼px̂ [(∥∇x̂D(x̂)∥2 − 1)2] (7.7)

Here, x̂ is sampled uniformly along straight lines between pairs of points sampled from the
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data distribution pdata and the generator distribution pg, and λ is the penalty coefficient.

5. DRAGAN (Deep Regret Analytic GAN): DRAGAN aims to improve training

stability by regularizing the gradient norm of the discriminator’s output with respect to its

input. This is particularly effective in preventing mode collapse, ensuring a more diverse

generation.

LD =− Ex∼pdata [logD(x)]− Ez∼pz [log(1−D(G(z)))]

+ λEx∼pdata [(∥∇xD(x)∥2 − 1)2]

(7.8)

Here, λ is a regularization coefficient.

Cramer GAN

Cramer GAN uses the Cramer distance as a loss function, offering a more robust metric

for distribution comparison. This approach helps better capture the diversity of the data

distribution and stabilize the training process.

L = min
G

max
D

Ex,x′∼pdata [∥D(x)−D(x′)∥]− Ex∼pdata,z∼pz [∥D(x)−D(G(z))∥] (7.9)

Here, D is the discriminator, G is the generator, and z is the noise vector.

DoppelGANger

DoppelGANger generates high-dimensional, mixed-type sequential data. It uses two gener-

ators: one for generating feature vectors and another for generating time sequences. This

architecture allows it to capture complex relationships and dependencies in the data.
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L = Lfeature + Ltime (7.10)

Lfeature = min
Gfeature

max
Dfeature

(
Exfeature∼pdata [Dfeature(xfeature)]

− Ez∼pz [Dfeature(Gfeature(z))]
) (7.11)

Ltime = min
Gtime

max
Dtime

Extime∼pdata [Dtime(xtime)]− Ez∼pz [Dtime(Gtime(z))] (7.12)

Here, Gfeature and Gtime are the feature

7.4 Experimental Design

This section explores the methods used to qualitatively and quantitatively evaluate the util-

ity of GAN-generated synthetic data from three datasets. Recognizing the complexity and

multidimensionality of water systems data, I analyze four key metrics: Diversity Assess-

ment, Fidelity Evaluation, Usefulness Analysis, and Correlation Analysis. I have carefully

selected these metrics to thoroughly investigate how well the synthetic data from my suite

of GAN models—TimeGAN, CTGAN, WGAN, WGAN-GP, DRAGAN, Cramer GAN, and

DoppelGANger—replicate the characteristics and dynamics of water systems data. My ex-

perimental design, which combines quantitative and qualitative methods, aims to compre-

hensively understand how well these models perform and their applicability in replicating

and utilizing complex water systems data.
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7.4.1 Diversity Assessment

Diversity assessment includes visual and quantitative techniques to evaluate the distribu-

tional similarity of synthetic samples to original data. I use PCA (Tipping and Bishop

[420]) and t-SNE (Van der Maaten and Hinton [400]) visualizations to compare the overlap

of two distinctly colored clusters—each representing the original and synthetic data. Though

distinct in operational mechanisms, PCA and t-SNE are dimension-reduction techniques that

collectively offer a multi-faceted view of the data’s topological structure. PCA preserves the

variance within the data, highlighting the principal components that account for significant

variances (exceeding 70%). In contrast, t-SNE focuses on maintaining the relationships be-

tween data points in a reduced dimensional space, an attribute that makes it particularly

adept at visualizing high-dimensional datasets.

Evaluation Metrics

Quantitatively, I calculate the Centroid Distance (CD) and Nearest Neighbor Distance

(NND) among the principal components for both PCA and t-SNE. This step is impor-

tant in quantifying the spatial distributional characteristics of the water data. Additionally,

I employ a k-means clustering approach and compare Cluster Entropy (CE) between the

original and synthetic datasets enables me to estimate the diversity and representation of

data.

Mathematically, CD (CD) is calculated as follows:

CD =
1

N

N∑
i=1

∥xi − ci∥ (7.13)

where N is the number of data points in the cluster, xi is the data point, and ci is the

centroid of the cluster.
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The CD is essential in evaluating the compactness and separation of clusters. It measures

the average distance between a cluster’s data points and its centroid. A smaller CD indicates

a higher density and better-defined cluster, suggesting that synthetic data closely aligns with

original data regarding cluster formation. NND complements this by measuring the distance

between each data point and its closest neighbor in a different cluster. This metric estimates

how well-separated different clusters are, with a larger distance indicating dispersion between

clusters.

NND (NND) is calculated as:

NND =
1

N

N∑
i=1

min
j ̸=i
∥xi − xj∥ (7.14)

where N is the number of data points, xi is the ith data point, and xj is its nearest neighbor

in a different cluster.

I also apply the Interquartile Range (IQR) of distances to provide insights into the clusters’

variability. A smaller IQR suggests that most data points are closely packed, indicating

uniformity in the synthetic data’s distribution relative to the original data.

Mathematically, IQR is calculated as the difference between the third quartile (Q3) and the

first quartile (Q1):

IQR = Q3−Q1 (7.15)

The rationale behind employing a k-means clustering (Arthur and Vassilvitskii [421]) is its

efficiency and effectiveness in partitioning the data into distinct clusters. By comparing CE

– a measure of the randomness or unpredictability in the cluster assignments – between the
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original and synthetic datasets, I aim to determine how well synthetic data preserves the

inherent groupings and structures present in the original dataset. Higher similarity in CE

indicates that synthetic data has successfully captured the complex, underlying patterns of

the original data, affirming its utility and fidelity in representing real-world scenarios.

Mathematically, CE (CE) is calculated as:

CE = −
k∑
i=1

pi · log(pi) (7.16)

where k is the number of clusters and pi is the proportion of data points in the ith cluster.

7.4.2 Fidelity Estimation

I evaluate fidelity by determining if generated time series data could be differentiated from

the original data. I design an Original vs. Synthetic classification model pipeline, in which

each data batch is labeled as either ’original’ or ’synthetic’. The data are partitioned for

training and validating purposes, with 80% allocated for training and the remaining 20%

for testing. Subsequently, I have a GRU classifier (Cho et al. [335]), a variant of recurrent

neural networks renowned for their efficiency in classifying sequence data. Unlike traditional

recurrent neural networks, GRUs are equipped with ’gates’ that regulate the flow of infor-

mation. These gates effectively manage the model’s ability to retain or discard information

across different time steps, making GRUs adept at capturing temporal dependencies and

patterns in sequential data.
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Evaluation Metrics

The performance of the synthetic data is inversely related to the classifier’s accuracy in this

test; a lower accuracy rate indicates higher fidelity in the synthetic data, meaning the GRU

classifier has difficulties distinguishing it from the original data. Given the GRU algorithm’s

advanced capabilities in handling time series data, the model learns and classifies complex

patterns over a series of epochs. Therefore, I quantify the model’s learning efficacy and speed

by monitoring the number of epochs required for the validation accuracy to reach specific

thresholds: 80%, 90%, and 100%, where applicable. This approach not only evaluates the

immediate performance of the GRUmodel but also provides deeper insights into the temporal

dynamics and intricacies captured within the data. It is a powerful measure to understand

how synthetic data mirrors original data, emphasizing the GRU model’s pivotal role in my

classification task.

7.4.3 Usefulness Analysis

This technique determines whether the synthetic data could parallel the utility of original

data in predictive tasks. I compare the performance of a sequence prediction model under

four scenarios: Train on Original, Test on Original (TOTO); Train on Original, Test on

Synthetic (TOTS); Train on Synthetic, Test on Original (TSTO); and Train on Synthetic,

Test on Synthetic (TSTS). Each of these scenarios serves a specific purpose in my analysis.

The TOTO test is designed to establish a baseline for the efficiency of my classifier, which

is the GRU model, as previously discussed. This setup compares the model’s performance

under conventional conditions with original data. In contrast, the TOTS test evaluates the

classifier’s ability to discern original data when tested against synthetic data, determining

whether the synthetic data can be mistaken for original data. The TSTO scenario shifts the
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focus to training, examining the viability of substituting original training data with synthetic

data and its impact on model performance when tested on original data. Lastly, the TSTS

test extends this concept to training and testing, probing the feasibility of using synthetic

data as a complete replacement for original datasets. Those four tests combined provide key

insight into understanding the practicality and adaptability of synthetic data in real-world

scenarios. It assesses the immediate utility of the synthetic data and its potential to serve

as a viable alternative or complement to original data in various applications.

Evaluation Metrics

To facilitate a systematic comparison of the test results derived from the four scenarios

across different GAN models, I devised a meticulous approach to presenting my findings.

I construct four distinct plots in one grid for each synthetic data generated by the various

GANs. These plots depict the progression of the Mean Absolute Error (MAE) (Equation

7.17) during both the training and validation phases. This visual representation enables an

immediate and clear understanding of how the MAE decreases over time, highlighting the

learning efficiency and accuracy of the models under each prediction condition. Furthermore,

I record the minimum MAE (Equation 7.18) achieved in each task, allowing me to compare

the performance of different GAN-generated datasets quantifiably.

MAE =
1

n

n∑
i=1

|yi − ŷi| (7.17)

MAEmin = min (MAEtraining,MAEvalidation) (7.18)
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7.4.4 Correlation Matrix Investigation

I analyze the synthetic data’s ability to preserve the original dataset’s spatio-temporal depen-

dencies by comparing the correlation matrices within selected features of both the original

and synthetic datasets. Such a comparison is important in evaluating the strength and con-

sistency of the interrelationships among these features, thereby providing contextual insights

into the extent to which the synthetic data sustains the intrinsic properties of the original

dataset. I display the correlation matrix using heatmaps annotated by correlation coeffi-

cients. This method offers an intuitive understanding of the correlations, facilitating an easy

comparison between the original and synthetic datasets.

Evaluation Metrics

I adopt the Mean Squared Error (MSE) between the correlation matrices to quantitatively

measure the deviation between the original and synthetic data’s correlation structures.

Mathematically, the MSE between two correlation matrices Coriginal and Csynthetic is defined

as:

MSE =
1

n2

n∑
i=1

n∑
j=1

(Coriginal(i, j)− Csynthetic(i, j))
2 (7.19)

where n is the size of the correlation matrices. A lower MSE value indicates a higher similarity

in the synthetic data, signifying a more accurate replication of the complex interrelationships

present in the original dataset.

Building on my rigorous evaluation of data generation quality, I introduce another com-

parison where Table 7.2 compares seven GAN models’ training times across three datasets.

Tabular GANs such as WGAN, CTGAN, DRAGAN, Cramer GAN, and WGAN-GP demon-
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strate much faster training times, with WGAN-GP being notably the fastest. Conversely,

TimeGAN incurs over 1000 minutes of training time for each dataset, underscoring its sub-

stantial computational demands for time series data. Meanwhile, DoppelGANger’s efficiency

is on par with tabular GANs despite the complexity of the data. The training durations un-

derscore the variability and efficiency of each GAN model, with tabular models generally

offering time-saving advantages.

Table 7.2: Model Training Time Difference for the 3 Datasets and 7 GANs

Dataset
GAN Model Type ACWA (minutes) BATADAL

(minutes)
Real-world
(minutes)

WGAN

Tabular

20 77 78
CTGAN 2.7 12 13.7

DRAGAN 2.85 12.4 15
Cramer GAN 3.4 15.35 18
WGAN-GP 0.23 1.3 1.5
TimeGAN Time Series 1046 1320 1400

DoppelGANger 10.2 13.2 12.6

7.5 Experimental Results and Analysis

This section presents the experimental results for the synthetic multivariate time-series data,

as per the evaluation metrics outlined in the preceding section. Please refer to Appendix A-

Tables B.1, B.2, and B.3 for detailed training parameters for all seven GANs.

7.5.1 Diversity Assessment

To measure diversity, I aim to align the distribution of synthetically generated samples as

closely as possible with the original data in PCA and t-SNE visualizations. In Figure 7.5, I

illustrate this comparison using the TimeGAN models trained on both ACWA testbed and

BATADAL datasets. Additionally, I have measured metrics such as CD, NND, IQR, and

CE to quantify diversity in all three datasets, as presented in Tables 7.3, 7.4, and 7.5.
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Figure 7.5: Visualization of PCA and t-SNE on ACWA and BATADAL Datasets after
Applying TimeGAN

The CD metric, applicable to both PCA and t-SNE, gauges the proximity of generated

data to the original distribution. Lower values in GANs, particularly CTGAN, and Doppel-

GANger, suggest more realistic data generation and accurate cluster formation. The NND

metric, evaluating cluster compactness, also shows CTGAN and DoppelGANger excelling in

t-SNE with tighter clusters indicated by lower values. Additionally, the IQR of Distances

in PCA highlights uniform data generation, with DRAGAN, Cramer GAN, and TimeGAN

displaying lower values for consistent distribution. Complementing these metrics, the CE

metric quantifies clustering randomness, with similar entropy levels in synthetic and original

data denoting comparable characteristics. TimeGAN, in particular, shows minimal entropy

differences, closely mirroring the original data.

For the ACWA dataset, in Table 7.3, WGAN performs best among all seven GANs, closely

mimicking the original data distribution, as indicated by the lowest CD in PCA. Doppel-

GANger also performs well, especially regarding the t-SNE CD metric, demonstrating its

effectiveness in capturing the original data distribution in a different dimensional space.
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DRAGAN shows good consistency in data generation, as indicated by its low IQR. On the

other hand, WGAN-GP, TimeGAN, and DoppelGANger tie for the best performance among

all other GANs in terms of PCA CE metric, presenting realistic data generation. Overall,

DoppelGANger might be slightly favored for the ACWA due to its excellent CD and CE

metrics performance.

Table 7.3: Diversity Test on the Physical Testbed-ACWA Data

Metrics for Diversity

Assessment C
TG

A
N

W
G

A
N

D
R

A
G

A
N

W
G

A
N

-G
P

C
ra

m
er

G
A

N

Tim
eG

A
N

D
op

pe
lG

A
N

ge
r

CD (PCA) 0.120 0.016 0.089 0.105 0.130 0.157 0.084

NND (PCA) 0.025 0.050 0.028 0.034 0.036 0.035 0.033

IQR of Distances (PCA) 0.026 0.055 0.025 0.032 0.031 0.039 0.034

CE (Original, PCA) 0.691 0.691 0.691 0.691 0.691 0.691 0.691

CE (Synthetic, PCA) 0.657 0.693 0.689 0.690 0.693 0.692 0.692

CD (t-SNE) 16.410 51.953 47.654 46.378 28.320 17.387 10.370

NND (t-SNE) 3.900 34.001 31.387 23.128 30.110 14.402 4.156

For the BATADAL dataset, in Table 7.4, DoppelGANger excels with the lowest CD in PCA,

indicating its effective mimicry of the original data distribution. TimeGAN shows excep-

tional results with the lowest NND and IQR in PCA, demonstrating its ability to preserve

data diversity and consistency. In t-SNE analysis, CTGAN and TimeGAN lead with the

lowest CD and NND, respectively, highlighting their strong performance in different dimen-

sional reductions. Overall, TimeGAN demonstrates remarkable effectiveness in generating

diverse and realistic synthetic samples using simulated data.
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Table 7.4: Diversity Test on BATADAL- EPANET Data

Metrics for Diversity

Assessment C
TG

A
N

W
G

A
N

D
R

A
G

A
N

W
G

A
N

-G
P

C
ra

m
er

G
A

N

Tim
eG

A
N

D
op

pe
lG

A
N

ge
r

CD (PCA) 0.074 0.473 0.559 0.194 0.510 0.042 0.041

NND (PCA) 0.493 0.800 0.819 0.549 0.792 0.128 0.361

IQR of Distances (PCA) 0.252 0.109 0.099 0.203 0.097 0.062 0.268

CE (Original, PCA) 1.565 1.565 1.565 1.565 1.565 1.565 1.565

CE (Synthetic, PCA) 1.594 1.577 1.603 1.598 1.579 1.576 1.584

CD (t-SNE) 1.898 34.268 26.012 16.972 30.288 3.135 1.975

NND (t-SNE) 4.863 38.528 32.963 28.435 37.056 1.871 7.126

For the real-world plant dataset, in Table 7.5, TimeGAN stands out with the lowest CD and

NND in PCA, indicating its superior capability in mimicking the original data distribution

and preserving data diversity. In the t-SNE analysis, WGAN shows the lowest CD, while

DoppelGANger leads in NND. TimeGAN’s exceptional performance is further underscored

in PCA’s CE, where it closely matches the original data, signifying realistic data generation.

These results suggest that TimeGAN is particularly adept at handling the complexities of

real-world plant data compared to the other GANs.

Table 7.5: Diversity Test on Real-world Plant Data

Metrics for Diversity

Assessment C
TG

A
N

W
G

A
N

D
R

A
G

A
N

W
G

A
N

-G
P

C
ra

m
er

G
A

N

Tim
eG

A
N

D
op

pe
lG

A
N

ge
r

CD (PCA) 0.365 1.336 1.250 1.021 1.140 0.062 0.333

NND (PCA) 0.149 0.327 0.250 0.309 0.322 0.038 0.102

IQR of Distances (PCA) 0.109 0.271 0.170 0.081 0.189 0.031 0.074

CE (Original, PCA) 0.826 0.826 0.826 0.826 0.826 0.826 0.826

CE (Synthetic, PCA) 0.961 1.062 1.094 1.050 1.077 0.901 0.956

CD (t-SNE) 75.068 68.059 71.781 73.836 75.539 78.118 84.287

Continued on the next page
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Table 7.5 – Continued from previous page

Metrics for Diversity

Assessment C
TG

A
N

W
G

A
N

D
R

A
G

A
N

W
G

A
N

-G
P

C
ra

m
er

G
A

N

Tim
eG

A
N

D
op

pe
lG

A
N

ge
r

NND (t-SNE) 40.058 46.004 41.286 44.203 56.012 44.527 38.166

7.5.2 Fidelity Assessment

In assessing infidelity, the goal is to demonstrate that synthetic data is indistinguishable

from the original dataset. I use a GRU classifier to classify original or synthetic data to

achieve this. Ideally, I want to see if the RNN struggles to classify correctly, suggesting that

the synthetic data closely resembles the original data.

In Figure 7.6, I compare the AUC scores and ROC curves for the GRU model on the ACWA

and BATADAL datasets. Moreover, fidelity is quantified across three distinct datasets, as

detailed in Tables 7.6, 7.7, and 7.8. A visual examination of Figure 7.6 reveals the GRU’s

inferior performance on the test set, suggesting the synthetic datasets effectively deceive

the classifier. This indicates a high level of similarity between the synthetic and original

datasets.

In the fidelity assessment of ACWA data, as shown in Table 7.6, different GANs exhibit
varying speeds in reaching accuracy thresholds.

Table 7.6: Fidelity Assessment on Physical Testbed Data (ACWA)

Metric: Epoch

Where Accuracy

First Reaches C
TG

A
N

W
G

A
N

D
R

A
G

A
N

W
G

A
N

-G
P

C
ra

m
er

G
A

N

Tim
eG

A
N

D
op

pe
lG

A
N

ge
r

80% 186 78 77 93 88 153 194

90% 258 85 85 105 108 166 209

100% N/A 131 119 137 126 227 215
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Figure 7.6: Accuracy and AUC Scores on ACWA and BATADAL Dataset after Applying
TimeGAN

DoppelGANger, for instance, is slower, achieving 80% accuracy at epoch 194 and 90% at

epoch 209. However, TimeGAN took the longest to reach 100% accuracy, achieving it at

epoch 227. Contrarily, CTGAN did not reach 100% accuracy within the observed epochs.

Overall, CTGAN, TimeGAN, and DoppleGANger take longer to reach full accuracy, demon-

strating the similarity between the synthetic and original datasets.

For the BATADAL Data, as illustrated in Table 7.7, TimeGAN takes the longest to achieve

80% and 90% accuracy, at epochs 92 and 101 respectively, and does not reach 100% ac-

curacy, suggesting its synthetic data closely mimics the original. In contrast, WGAN-GP

and DRAGAN, which reach accuracy thresholds relatively quickly, may produce data that

is easier for the classifier to distinguish from the original, indicating less fidelity.
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Table 7.7: Fidelity Assessment on BATADAL EPANET Data

Metric: Epoch

Where Accuracy

First Reaches C
TG

A
N

W
G

A
N

D
R

A
G

A
N

W
G

A
N

-G
P

C
ra

m
er

G
A

N

Tim
eG

A
N

D
op
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lG

A
N
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r

80% 29 23 23 19 26 92 45

90% 37 24 26 27 28 101 57

100% 64 40 33 56 47 N/A 91

For Real-world Plant data, as detailed in Table 7.8, the performance of TimeGAN is notably
distinct across different accuracy thresholds. When measuring the time required to reach
80% accuracy, TimeGAN takes the longest, achieving this milestone at epoch 46. This trend
of TimeGAN being the slowest continues at the 90% accuracy level, reaching epoch 54. The
pattern is consistent even when the benchmark is elevated to 100% accuracy, indicating high
fidelity.

Table 7.8: Fidelity Assessment on Real-world Plant Data

Metric: Epoch

Where Accuracy

First Reaches C
TG

A
N

W
G

A
N

D
R

A
G

A
N

W
G

A
N
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C
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m
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G
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A
N

D
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N
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80% 25 29 28 17 28 46 31

90% 29 29 28 18 28 54 35

100% 40 30 33 32 45 111 57

Overall, in this assessment, TimeGAN presents high fidelity in data generation. It consis-

tently records the highest epoch values at all three accuracy levels—80%, 90%, and 100%,

demonstrating its suitability and effectiveness across all selected categories of datasets.

7.5.3 Usefulness Estimation

In this evaluation, I assess whether synthetic data are sufficiently useful to replace original

data for AI model training and testing. Among the four tests, I primarily focus on TOTS and
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TSTO, as these scenarios effectively demonstrate the ability of synthetic data to substitute

original data in training and testing AI models. Figure 7.7 presents the loss convergence

for all four scenarios on ACWA datasets, comparing original and synthetic datasets. Upon

visual inspection, I observed that the testing accuracies closely match the training accuracies,

indicating that the synthetic dataset generated by TimeGAN using ACWA can effectively

replace the original one.

Figure 7.7: Train and Test Loss for TOTO, TOTS, TSTO, TSTS on ACWA Data After
Applying TimeGAN

For ACWA Data, in the table (Table 7.9), all models have an identical lowest validation

loss for the TOTO scenario. To determine the better GAN, I look at the performance

across the remaining three scenarios, TOTS, TSTO, and TSTS. For TOTS, CTGAN has the

lowest validation loss, indicating that it can generate synthetic data that closely resembles

the distribution of the original test data when the model is trained on original data. In

the TSTO scenario, which tests the model’s ability to generalize from synthetic to original

data, CTGAN outperforms all remaining models. For TSTS, Cramer GAN exhibits the

best performance with the lowest validation loss, suggesting that it is particularly adept at

generating consistent synthetic data that is useful for both training and testing.
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Overall, for physical testbed data, when considering the usefulness of synthetic data for

training and testing purposes, Cramer GAN stands out in the TSTS scenario, which is a

strong indicator of the quality of the synthetic data it generates. This could imply that

Cramer GAN’s data are remarkably coherent and may contain patterns that benefit the

model in learning and performing well when the test data are also synthetic. However,

CTGAN appears to be the most versatile, performing best in the TOTS scenario and second-

best in the TSTS scenario, indicating good performance in generating synthetic data for

testing and the complete cycle of training and testing. Choosing the better GAN will depend

on the specific use case. If the priority is on using synthetic data for model validation

(TOTS), CTGAN would be preferable. However, if the focus is on the entire process of

training and testing models on synthetic data (TSTS), Cramer GAN would be the choice.

Table 7.9: Usefulness Evaluation on Physical Testbed Data (ACWA)

Metric: Lowest

Validation Loss C
TG

A
N

W
G

A
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A
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C
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D
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A
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TOTO 0.237 0.237 0.237 0.237 0.237 0.237 0.237

TOTS 0.163 0.223 0.201 0.231 0.183 0.233 0.188

TSTO 0.263 0.369 0.337 0.349 0.326 0.286 0.264

TSTS 0.179 0.164 0.133 0.124 0.100 0.247 0.191

For BATADAL Data, evaluating the performance of various GANs using Table 7.10, I see

a nuanced picture of strengths and weaknesses across different scenarios. The CTGAN

shows moderate uniform performance, not excelling in any particular category but not falling

behind drastically in any. This suggests consistency in its output, but it lacks a clear

advantage. The WGAN stands out in two scenarios— TOTS and TSTS. This indicates

WGAN’s robust ability to generate highly useful synthetic data that can serve well both as

a substitute for original data in testing scenarios and as a source for training models that
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perform competently on unseen data. WGAN-GP excels distinctly in the scenario where

original data are used for TOTS, showcasing a particular strength in creating synthetic data

that behaves similarly to original data under a testing environment. This desirable trait

suggests that WGAN-GP’s synthetic data can effectively represent real-world conditions in

test cases. In contrast, TimeGAN shows its prowess when synthetic data are used for TSTO.

This indicates TimeGAN’s synthetic data quality, demonstrating an excellent generalization

to original data, an essential characteristic if the end goal is to apply the trained model to

real-world situations.
Table 7.10: Usefulness Evaluation on BATADAL EEPANET Data

Metric: Lowest

Validation Loss C
TG
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TOTO 0.223 0.223 0.222 0.223 0.223 0.223 0.223

TOTS 0.218 0.186 0.187 0.144 0.176 0.233 0.222

TSTO 0.227 0.279 0.281 0.250 0.277 0.222 0.234

TSTS 0.213 0.103 0.103 0.103 0.111 0.243 0.202

Considering simulated data, if the priority is to have a GAN that generates data capable

of training models that perform well on original data, TimeGAN would be the ideal choice.

However, if the goal is to use synthetic data extensively for training and testing, the WGAN

presents the most efficient option, given its superior performance in those scenarios. For

applications where the synthetic data are primarily used for testing against models trained

on original data that is, WGAN-GP might be the GAN of choice, given its exceptional

performance in that specific scenario.

For Real-world Plant data, in table 7.11, CTGAN exhibits relatively low validation loss in the
TOTO scenario, a standard benchmark since it represents training and testing on original
data. However, its performance in the other scenarios could be more competitive. The
WGAN shows moderate performance in the TOTO and TSTS scenarios but has significantly
higher validation losses in the TOTS metric. This suggests less effectiveness in generating
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synthetic data for testing against original data. DRAGAN achieves a competitive validation
loss in the TSTS scenario. However, like WGAN, it does not perform well in the TOTS
scenario, indicating it may not be superior at creating test-ready synthetic data. WGAN-
GP, while performing well in the TSTS scenario, indicating good quality synthetic data
for both training and testing, shows a higher validation loss in the TOTS scenario. Cramer
GAN does not lead in any of the scenarios, indicating that it might not be the optimal choice
among the models considered. TimeGAN shows an impressive performance, particularly in
the TOTS and TSTS scenarios, suggesting that it is very effective in generating synthetic
data useful for training and testing purposes, thus indicating a high degree of usefulness
in synthetic data generation. DoppelGANger also has low validation losses in the TSTS
scenario and performs reasonably well in the TOTS and TSTO scenarios.

Table 7.11: Usefulness Evaluation on Real-world Plant Data

Metric: Lowest
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TOTO 0.026 0.026 0.026 0.026 0.026 0.026 0.026

TOTS 0.208 0.424 0.412 0.285 0.366 0.076 0.123

TSTO 0.095 0.092 0.092 0.095 0.097 0.059 0.096

TSTS 0.127 0.119 0.102 0.069 0.125 0.044 0.049

Considering all the scenarios, TimeGAN stands out as the most suitable model due to its low

validation losses when synthetic data are used, especially in TSTS scenario. It demonstrates

the ability to generate synthetic data that closely mimics original data and can be used

effectively for training and testing classifiers.

7.5.4 Correlation Check

I also analyze whether the synthetic multivariate time series can keep the spatio-dependency

of the original one. From both Figure 7.8a and 7.8b, I observe that the synthetic dataset can

reasonably preserve spatio-dependency on the ACWA dataset after applying TimeGAN.
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In evaluating the performance of various GANs across different datasets, I focus on the MSE

between correlations as another essential performance metric (Table 7.12). The lower the

MSE value, the better the performance. My analysis reveals the following:

1. On the ACWA Data, DoppelGANger emerged as the most effective GAN, with the

lowest MSE value of 0.0051. This suggests that DoppelGANger is the best at capturing

and replicating the statistical properties of the dataset compared to the other GANs.

2. On the BATADAL Data, DoppelGANger again presents superior performance with

the lowest MSE value of 0.0054. This indicates its consistency and effectiveness in

dealing with different types of datasets.

3. On the real-world plant data, DoppelGANger also outperformed other models, with the

lowest MSE value of 0.0677. This highlights DoppelGANger’s capability in effectively

modeling the spatial characteristics specific to the real-world plant dataset.

Figure 7.8: Correlation of Multivariate Time-series of Original and Synthetic ACWA dataset
after Applying TimeGAN
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Table 7.12: MSE between correlation matrices for All Datasets and GANs

Metrics: MSE
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ACWA Data 0.105 0.914 0.133 0.034 0.428 0.019 0.005

BATADAL Data 0.022 0.469 0.049 0.012 0.175 0.008 0.005

DC Water Data 0.132 0.941 0.120 0.145 0.686 0.068 0.043

These results underscore the varying effectiveness of different GAN models across distinct

datasets, highlighting the importance of model selection based on the specific characteristics

and requirements of the data being analyzed.

7.6 Summary and Conclusions

Consider a network of sensors in a lake measuring water pH and temperature; using these

GAN models, I generate synthetic data that closely mimics the spatial distribution of water

pH and temperatures. Then, I analyze this data using PCA and t-SNE to understand the

spatial relationships and to predict how a temperature change in one node might affect

nearby nodes, a preeminent aspect of environmental monitoring. My study utilizes PCA

and t-SNE to visualize the diversity in synthetic data, with CTGAN and DoppelGANger

demonstrating promising results.

My work also assesses the fidelity of synthetic data using a GRU classifier. For instance,

TimeGAN demonstrates slower progression to high accuracy, indicating better mimicry and

accurate temporal representation of the original data. This model can generate synthetic

datasets that closely resemble pollution levels for water quality management, such as in a

treatment plant, allowing for the development of more accurate predictive models to ensure
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water quality, especially when real-world pollution data are scarce. I find that synthetic data,

like that from Cramer GAN and CTGAN, can replace original data in training predictive

models. In the context of an urban water distribution network, these GAN models generate

data representing various pressure and flow scenarios. I use this synthetic data for emergency

response simulations, such as predicting the effects of a main pipe burst or the need for its

preventive maintenance, aiding in efficient crisis management and resource allocation.

The correlation analysis in my study highlights the ability of models like DoppelGANger and

TimeGAN to preserve spatio-temporal dependencies. Applying this to environmental impact

assessments near a river, these models simulate how a new industrial project might affect

water quality and/or flow. Synthetic data can assist in predicting environmental impacts,

aiding in regulatory compliance and sustainable development planning. The nuanced capa-

bilities of various GAN models identified in my study, such as capturing dataset diversity,

fidelity, and usefulness for predictive modeling, directly apply to water resource manage-

ment. For instance, in regions facing water scarcity, choosing the suitable GAN model based

on these insights leads to effective modeling of water usage scenarios, assisting in strategic

planning and conservation efforts.

Overall, the findings from my study on GAN models offer valuable insights into the selec-

tion and application of these models in water utilities. From temperature monitoring in

lakes to predictive modeling in water treatment and distribution and even environmental

impact estimation (such as for water-related public policies), choosing a GAN model plays

a vital role. I can strategically leverage each model’s strengths in fidelity, data mimicry,

and spatio-temporal correlation preservation to address specific challenges in water resource

management and environmental monitoring on the national and global levels.



Chapter 8

Real World Deployments -

Forecasting Model at DC Water

In this Chapter, I detail the deployment process of the cP2O forecasting model and present

the results obtained during real-time operation in a WWTP setting. The deployment aimed

to evaluate the model’s practical performance and its ability to assist operators in decision-

making processes.

8.1 Deployment Steps at DC Water

The forecasting model was deployed within the operational environment of the DC Water

treatment facility. The deployment architecture included the following components:

• Data Acquisition System: Real-time data streams from sensors and external sources

(e.g., weather stations, river flow gauges) were collected via a SCADA system.

• Processing Server: A dedicated Amazon Web Services (AWS) instance equipped with

high-performance computational CPUs hosted the forecasting model and managed

data processing tasks.

• Model Integration: cP2O model was implemented in Python 3.8 using the PyTorch

239
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1.8 DL framework. It was seamlessly integrated into the processing pipeline to receive

real-time data inputs and generate forecasts.

• User Interface: An AWS-hosted web application provided a user-friendly interface for

monitoring forecasts and interacting with the system.

8.2 Real-Time Forecasting Process

The deployed system operated on a rolling basis, generating forecasts every hour with a

4-hour ahead horizon. The process involved:

1. Data Ingestion: The latest data from internal sensors (Dt) and context variables (Ct)

were ingested into the system.

2. Preprocessing: Data were cleaned to handle missing values, and features were scaled

based on the training data parameters.

3. Forecast Generation: The cP2O model processed the input data to generate forecasts

for the next 4 hours, including prediction intervals.

4. Visualization and Alerts: Forecasts were visualized on the dashboard, and alerts were

triggered if predicted water levels exceeded predefined thresholds.

8.3 Deployment Results

The model’s performance was monitored over a period of two months during varying op-

erational conditions, including dry weather and heavy rainfall events. The key results are

summarized below.
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8.3.1 Overall Performance Metrics

The model maintained high accuracy during deployment, with performance metrics consis-

tent with those observed during validation. Table 8.1 presents the aggregated metrics over

the deployment period.

Table 8.1: Performance metrics during deployment

Metric Overall
Value

Dry
Weather

Rainfall
Events

MAPE (%) 2.05 1.80 2.60
RMSE 3.35 3.10 3.90
PDR (%) 95.5 N/A 95.5
Predictive Interval (%) 92.5 ± 1.50 94.0 ± 1.20 90.0 ± 1.80

The model demonstrated slightly higher errors during rainfall events due to increased vari-

ability in inflow rates. However, the prediction intervals effectively captured the uncertainty,

maintaining a conditional probability close to the desired 90%.

8.3.2 Case Study: Heavy Rainfall and Coastal Flood Events

During two significant flooding events on January 9th and 10th, 2024, at DC Water, the

model’s ability to forecast inflow surges was critically evaluated. Figure 8.1 displays the

actual and forecasted water levels, prediction intervals, and key event annotations. Figure

8.2 presents a dry run day at DC Water.

The model effectively captured the sharp increase in water levels during the events, accu-

rately predicting both the coastal flood peak (6.19’ MLLW) and the Rock Creek flood crest

(8.04 ft). These predictions provided operators with a 4-hour advance warning, enabling

proactive management actions such as adjusting pump operations and diverting flows to

storage tunnels. The integration of context variables, particularly during rainfall events,
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Figure 8.1: Forecasts during a heavy rainfall and coastal flood event. The actual water levels
are shown in blue, forecasts with context in red, forecasts without context in orange, and
prediction intervals in light green. Shaded areas with gray color indicate flood events.

proved crucial in enhancing prediction accuracy and supporting critical decision-making un-

der extreme weather conditions.

8.4 Challenges and Mitigations

During deployment, several challenges were encountered:

• Data Quality Issues: Occasional sensor malfunctions led to missing or erroneous data.

This was mitigated by implementing real-time data validation checks and fallback

strategies using historical averages.
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Figure 8.2: Deployed model evaluation during a dry day at DC Water

• Model Retraining: To maintain accuracy, the model was retrained weekly using the

latest data. Automated retraining pipelines were set up to facilitate this process.

• System Integration: Integrating the model into the existing SCADA system required

careful coordination to ensure compatibility and data security.

8.5 Future Improvements

Based on the deployment experience, the following improvements are planned:
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• Incorporation of Additional Context Variables: Including more granular weather fore-

casts and upstream flow data to enhance prediction accuracy during extreme events.

• Enhanced Anomaly Detection: Integrating anomaly detection mechanisms to identify

and handle outliers or unexpected patterns in the data.

• Scalability Enhancements: Optimizing the model for deployment across multiple facil-

ities with varying configurations and data sources.

8.6 Conclusion of Deployment

The deployment of the cP2O model demonstrated its practical applicability and effectiveness

in a real-world WWTP environment. The model provided accurate short-term forecasts,

aiding operators in making informed decisions and improving operational efficiency. The

positive outcomes reinforce the value and need of integrating AI-driven forecasting models

into wastewater management systems across the country.



Chapter 9

Discussions and Conclusions

This chapter provides a comprehensive discussion of the key experimental findings, high-

lighting the strengths and limitations of the research conducted for each project. It also

presents the overall conclusions drawn from the studies.

9.1 Model Agnostic Assurance - MAA

In this manuscript, I provide two MAA pipelines for achieving quantifiable assurance goals,

including XAI, FAI, TAI, EAI, CAI, and SAI. Although the algorithms are model-agnostic

in nature, the use cases are model-specific (SCADA and Telco). ALSP is a model-driven

approach that generates quantifiable assurance scores. It leverages game theory, AE, and

logging to provide AIA goals; RFSP is a user-driven approach, where user input their ex-

pected AIA weights as a form of an equilibrium, the desired optimum set points dictate the

final outcomes of assurance. Many works in AI systems management exist Kulkarni et al.

[422], but due to the unavailability of benchmark assurance standards, I am unable to com-

pare the results with existing algorithms; nonetheless, in this manuscript, I present multiple

empirical outcomes that are deemed successful for that goal. The two use cases presented

are for (1) a critical infrastructure: SCADA system, where I explain attack localization as

a form of explainability using reconstruction errors from the AE and show that the Secret

Inversion algorithm is capable of detecting adversarial inputs; and for a (2) Telco dataset,
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I test it by injecting intentional bias and testing if the pipeline detects it and reflects that

in AIA scores. The algorithms had different success rates, albeit they all improved on the

assurance of the AI systems at hand. Furthermore, potential areas of application include but

are not limited to water distribution systems, smart grids, and telecommunication systems.

As part of future work, I plan to test other AI models using my framework and aim to create

benchmarks for water treatment plants’ usage of AI, with the long-term goal of securing

complex and critical water distribution networks across the country.

9.2 AI for Agriculture - DeepAg

Merging outlier events with production forecasts also reveals more accurate insights. A

global supply shock for commodities, weather events, or an important international affair

can affect production and can cause sudden spikes. Typically, these outlier events are sudden

and cannot be planned for. During these times, producers are left with little insight into how

their production will be affected. For instance, the COVID-19 pandemic resulted in a global

supply shock for many essential commodities. The event created a large spike in the demand

for products such as Beef and Chickens, amongst other commodities, and caused the price

of these commodities to rise. This caused a shortage of essential commodities and caused

the price of these commodities to rise even higher, creating a cycle until the production

supply of these commodities exceeded market demand. My approach could potentially help

producers plan for such events. Moreover, spikes in demand often contribute to global food

waste, where producers/retailers/consumers typically purchase more than they need and

often end up wasting the excess produce. The supply chain can be better equipped with

future production trends with my approach and strategically release products in appropriate

batches to mitigate such issues. I envision that these methods are also useful in cases of
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detecting cyberbiosecurity attacks on national infrastructure, such as water management

systems and supply chains.

Predicting agricultural production is essential for feeding the world in the years ahead. The

amount of agricultural production has a direct effect on supply, demand, and trade. While

I demonstrate my approach at the aggregate level, they can also be used at micro scales

such as at a farm or county. The aggregate analysis can particularly aid in shaping policies

since USDA, the Food and Agriculture Organization (FAO), and many other nations rely

on country-specific as well as global forecasts to set policy parameters. Seasonal pattern

data can also be used as a source of ground truth to determine trends and anticipate future

demand. For example, note the prediction of chicken and beef production to 2025, which

accounts for potential outlier events in the future; they are sharply different from existing

straight-line forecasts and provide a bounded pathway for policy and other decisions. My

forecasting approach can help producers determine how low the production should drop and

help them take preventative measures to continue operating even when production demand

is low. During the winter, the producers may reduce the number of workers to save costs,

minimize distribution, and reduce production volume. In summary, DeepAg can positively

affect agriculture through on-time outcomes and can increase overall farm performance using

DL.

9.3 P2O Conclusion and Future Work

The framework presented in this paper explores AI’s role in preventing wastewater over-

flow and in detecting security threats. To achieve these objectives, P2O is proposed and

developed. Three decision-tree-based (RF, LightGBM, and XGBoost) and two NN-based

(FF-ANN and LSTM) models were developed to constitute a prediction module in P2O.
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The results showed that the LSTM model predicts tunnel water levels better than the other

AI models used in the experiments. The LSTM model with a 24-hour input sequence with

a 2-hour output sequence is selected as the best model for the protection module based on

RMSE (0.036), RSR (0.260), and NSE (0.739) evaluation metrics. SHAP analysis is also

performed, and it revealed that the top five important variables that affect the prediction

the most are water level sensor data, overflow indicator sensor, total water flow sensor, pump

five, and wastewater treatment flow sensor. Further, SMOD dataset is used to develop P2O’s

protection module for detecting security threats at WWTPs. For this purpose, two experi-

ments focused on intention classification and attack situation detection are performed. These

experiments are executed using LSTM and GRU models. For the intention classification, the

LSTM model showed 94% accuracy, while the GRU model showed 96% accuracy in iden-

tifying intentional attacks. Further, the LSTM model misclassifies about 4% of intentional

attacks as outlier events, but the misclassification rate for the GRU model is only about

0.5%. The LSTM model misclassified three attack scenarios for attack situation detection

as normal operations, while the GRU model misclassified only two attacks as normal oper-

ations. These results revealed that the LSTM model showed higher misclassification than

the GRU model. These experiments conclude that the GRU model is the best suitable for

detecting security threats considering the accuracy and severity of not detecting an attack at

WWTP. Finally, the simulation results of the optimization module indicate a reduction in

the amount of influent directed to the wet-weather treatment plant by 23% while preventing

overflow incidents under extremely wet weather conditions based on five years of data.

In the future, I would like to focus on three objectives for improving the framework: context,

AI assurance, and Attention-based modeling. In the first objective, I would like to understand

the effect of the utilization of weather variables (snow, air temperature, humidity) and

demographic data on the models, as a ”context” for improved water level predictions. In
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the second objective, I would like to evaluate the AI models further against implicit bias

and cyber attacks with minimum perturbations such as adversarial networks, especially via

threat detection solutions. Finally, in the third objective, I would like to use an attention-

based model to understand the effect of existing and new variables on water level predictions,

especially for predictions during wet seasons.

9.4 Cyber Physical Attacks Detection for Water Sys-

tems - DeepH2O

9.4.1 Water Laws and Public Policy

Environmental and water laws govern our nation’s water, air, waste, and other natural com-

ponents. Most of the time, and due to the public’s lack of awareness or attention, voters

are usually drawn to water and environmental issues after wide-scale incidents of environ-

mental damage, such as the Flint Water crisis1 and its effects on safe drinking water in the

state. The Clean Water Act (CWA) establishes the basic rules and benchmarks for regulat-

ing quality standards and discharging pollutants into the waters of the United States. The

work presented in this manuscript aims to provide preventive measures for the health of

water treatment plants against the rising dangers of cyber attacks. DeepH2O is instrumen-

tal in governing cyber components of a water facility, providing recommendations to WDS

operators on when and where the attack occurs, and validating against water policies and

Environmental Protection Agency (EPA) regulations. This project continues as a collabora-

tion with WDSs in Northern Virginia and the District of Columbia (DC) to deploy DeepH2O

at local facilities and aim to expand it to other WDSs as well. Conclusions and future work
1https://www.michigan.gov/mdhhs/inside-mdhhs/legal/flint-water-settlement
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items are presented next.

9.4.2 Conclusions and Future Work

This manuscript presents DeepH2O, a novel cyber attack detection framework for WDSs.

DeepH2O applies AI assurance to two DL architectures, TGCN with attention and HCAE,

and compares their performance improvement over their baseline models. For TGCN with

the attention model (supervised model), it has been observed that applying AI assurance,

including attention and RMD with TGCN, improves the model’s attack detection accuracy.

Similarly, for HCAE (unsupervised model), applying AI assurance, including tide weights,

orthogonality constraints, and other constraints, improves detection accuracy and F1-score

of the HCAE model compared to AE.

The performance of both supervised and unsupervised models on poisoned data has been

evaluated. For the supervised model, compared to its performance on the test dataset, it

has been observed that most of the metrics decrease significantly. The supervised model

struggles to perform (i.e., to detect an attack) if there is randomness in the dataset. Unlike

the supervised model that performs poorly on poisoned data, my result indicates that the

predictive performance of the unsupervised model (HCAE) is similar for the test data and the

poisoned GAN data. No significant drop in the model’s performance has been observed. To

explain this phenomenon, the unsupervised model learns uncorrelated feature representation

in the latent dimension and does not learn the sequential attributes. Hence the model can

identify randomness in the poisoned data.

The result suggests that the HCAE model has better generalizability. Among the two

models, the unsupervised model (HCAE) performs better in terms of ranking score and

time-to-detection score. Also, HCAE is well generalized and regularized while detecting
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attacked samples on the BATADAL test set. This improved classification performance and

recall values make HCAE a better choice for deployment in the WDS.

The study uses multiple performance metrics, including time-to-detection score, classifica-

tion score, ranking score, precision, recall, accuracy, and F1 score, to measure the model’s

performance. The F1 score improvement is focused on the various metrics because of the

heavily imbalanced BATADAL dataset. Therefore, this particular case, the F1 score be-

comes an important metric that considers model attack prediction errors and accounts for

the type of errors by taking the harmonic mean of precision and recall. That is, only if both

precision and recall values are high the F1 score gets higher; in this study, a higher F1 score

indicates higher “ATTACK” and “NO ATTACK” harmonic class detection. Additionally,

the unsupervised model outperforms the supervised model for WDS, including a better F1

score. The unsupervised model is a one-class classification method that generalizes well

regardless of the water systems’ spatio-temporal structure, making the model simpler than

TGCN with attention. Additionally, the unsupervised model does not require labeling, an

expensive and time-consuming activity in the model development process.

The ability of both supervised and unsupervised models in feature localization has been eval-

uated. Localizing a feature is tedious for both models during a concealed attack. Although

the results are not highly accurate, they are promising and vital for WDS. For instance, both

models can identify attacked node(s) or neighboring nodes during an “ATTACK”. Further

refining the model hyper-parameters by applying a grid search technique can improve the

performance and result in better feature localization results, which is a potential future work.

The sensitivity analysis of the two models showed that less important or sensitive variables

were inactive in the training set, while active components were the most influential during

a cyber-attack. However, some common junctions had high sensitivity or importance flags

due to imbalanced training data.
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Additionally, the extension of this work can be the following: 1) The GAN used in these

experiments to generate synthetic data fails to replicate the time-series information from the

original dataset. The attack samples are generated merely using GAN. Consequently, the

next plan is to use TimeGAN Yoon et al. [393], a variant of GAN, to generate sequential

(time-series) synthetic data consisting of both attack and non-attack samples and test the

performance of DL models on the time-series synthetic data. 2) A large metropolitan city

can have multiple WDSs across various locations within the metroplex. A bad actor can start

a concealed attack on one of the WDS and continue to spread the attack across all locations.

To swiftly detect and prevent such attacks, Federated Learning (FL) techniques Yang et al.

[423] can be adapted to learn from the initial concealed attack and leverage that information

to prevent future attacks (of a similar nature) across other WDSs. Furthermore, using the

real-time data collected from the WDSs to retrain the DL model can significantly improve the

detection performance of the model. However, given the geographically distributed nature

of WDSs, it is essential to preserve the privacy of the real-time data (collected from the

WDSs). Therefore, the plan is to use FL techniques to guarantee data and model privacy.

3) Training and deploying a DL model across different WDSs is challenging as the threshold

might vary across different WDSs locations. This is further complicated by a set of different

operations across WDSs. Another interesting idea is to explore Context learning [72] to

enable DL models to be context-aware (such as population and weather) and efficiently

detect attacks that vary based on different thresholds. Furthermore, training and evaluation

of the DeepH20 framework using real-world WDS datasets2 such as: Water Distribution

(WADI) dataset and Secure Water Treatment(SWaT) is a future task. Lastly, a plan to

develop approaches that explain the model’s outcomes to water plant operators could be

a great study, which would result in higher adoption rates and increased trustworthiness

Batarseh et al. [317] of such frameworks at water facilities in the United States.
2https://itrust.sutd.edu.sg/
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9.5 Context to AI for Water Systems

In this work, I introduced cP2O, a hybrid DL model designed for short-term forecasting in

Wastewater Treatment Plants (WWTPs). The model integrates contextual data through

dynamic smoothing and Long Short-Term Memory (LSTM) architectures to improve pre-

dictive accuracy. By leveraging both internal sensor data and exogenous variables—such

as weather conditions—cP2O effectively captures temporal dependencies and external influ-

ences on WWTP operations. It outperforms several baseline approaches, including ARIMA,

Exponential Smoothing, and other contemporary ML techniques, demonstrating notable

gains in both accuracy and robustness.

The incorporation of context variables significantly enhanced the model’s reliability. By

employing a two-stage framework to process both internal and external data sources, cP2O

adapts to complex temporal patterns, including multiple seasonalities and abrupt changes

induced by demographic shifts or local events. Such predictive power is crucial in WWTP

management, where accurate short-term forecasts enable more informed decision-making,

optimized resource allocation, and proactive measures to prevent system overload during

peak demand periods.

An ablation study confirmed that each component—dynamic smoothing, context integra-

tion, and the use of dilated LSTM cells—contributes meaningfully to the model’s improved

performance. Contextual information, in particular, proved integral to enhancing forecasting

accuracy. The adoption of a multi-step ahead forecasting approach further equips operators

with the foresight needed to implement timely interventions and maintain operational sta-

bility.

Despite these positive outcomes, cP2O has limitations. Its scalability can be constrained

by the number of time series variables and the associated parameterization. While highly
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efficient and effective for smaller datasets, future research will need to address strategies

for scaling the model to handle larger data volumes without compromising accuracy or

interpretability.

1. Real-World Deployment and Scalability: Ongoing efforts will involve collaborating

with additional facilities in different regions and contexts. By evaluating the model’s

performance in diverse operational settings, I aim to enhance its scalability, ensuring

it can manage larger, more heterogeneous datasets while maintaining robust predictive

capabilities.

2. Richer External Variables and Expanded Contextual Data: Beyond meteorological

and demographic data, incorporating additional exogenous factors—such as economic

indicators, policy changes, or sensor data from upstream agricultural activities—may

further improve forecasting accuracy. This expanded contextualization will help the

model better adapt to complex, evolving environmental and infrastructural conditions.

3. Chemistry-Based AI Understanding: An intriguing direction for future work lies in

integrating chemistry-based knowledge into the AI modeling process. For instance,

incorporating chemical composition data, reaction kinetics, or nutrient-removal dy-

namics into the context stage could offer deeper insights into the underlying processes

of wastewater treatment. By aligning AI-driven forecasting with chemical and bio-

chemical principles, the model may better capture the root causes of fluctuations,

enhancing both interpretability and decision support for operators who rely on chem-

ical treatments, aeration strategies, or nutrient dosing to maintain compliance and

efficiency.

Through these developments, the ultimate goal remains to refine and broaden the applicabil-

ity of cP2O and its successors. By continually expanding the model’s contextual knowledge
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and integrating insights from chemistry and other scientific domains, I aim to create more

resilient, trustworthy, and actionable predictive tools for WWTP operations and potentially

other critical infrastructures.
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Appendix A

cP2O Model Supplemental Materials

A.1 Context Definition for WWTPs

In this appendix, I provide a detailed mathematical definition of the context variables used

in the cP2O model and explain how they are integrated into the forecasting framework.

A.1.1 Context Variables Representation

Let Dt ∈ RN represent the vector of WWTP internal variables at time t, where N is the

number of internal variables (e.g., influent flow rate, water levels). The context variables,

denoted by Ct ∈ RM , capture external factors influencing the WWTP, where M is the

number of context variables (e.g., weather data, river flow rates, demographic data).

The combined input vector at time t is defined as:

xt =

Dt

Ct

 ∈ RN+M

The context variables Ct can include, but are not limited to:

• Weather Data: Precipitation (Pt), temperature (Tt), humidity (Ht), wind speed (Wt).
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• River Data: River flow rates (Rt), water levels (Lt).

• Demographic Data: Population density (ρt), urbanization rate (Ut).

• Economic Data: Industrial output (It), employment rates (Et).

These variables provide external information that influences WWTP operations and are

crucial for improving forecasting accuracy.

A.1.2 Integration into the Model

The cP2O model incorporates context variables through an enriched input vector and a

context extraction stage. The model consists of two main components:

1. Context Extraction Stage: Processes context variables to generate a context vector rt.

2. Forecasting Stage: Utilizes both internal variables and the context vector to make

predictions.

Context Extraction Stage

The context extraction stage employs a dilated LSTM network to process context variables

over a sequence of past time steps. Let Ωctx
t = {t−Tc+1, . . . , t} represent the context input

window of length Tc. The context LSTM processes the sequence {Cτ}tτ=t−Tc+1 to generate

the context vector rt:

rt = LSTMctx
(
{Cτ}tτ=t−Tc+1; θctx

)
∈ Ru
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where θctx are the parameters of the context LSTM, and u is the dimension of the context

vector.

Forecasting Stage Input Enhancement

The context vector rt is concatenated with the internal variables to form the enhanced input

vector for the forecasting stage:

x′
t =

Dt

rt

 ∈ RN+u

The forecasting LSTM processes the sequence {x′
τ}tτ=t−Tf+1, where Ωin

t = {t− Tf +1, . . . , t}

is the input window of length Tf , to generate the forecasted output ŷt+1:

ŷt+1 = LSTMfcast

(
{x′

τ}tτ=t−Tf+1; θfcast

)
where θfcast are the parameters of the forecasting LSTM.

A.1.3 Attention Mechanism in Context Integration

The forecasting LSTM incorporates an attention mechanism to dynamically weigh the con-

tributions of the context vector and internal variables. At each time step t, attention weights

αt ∈ RN+u are computed:

αt = softmax (Waht−1 + ba)
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where Wa ∈ R(N+u)×sh and ba ∈ RN+u are learnable parameters, sh is the dimension of the

hidden state, and ht−1 is the hidden state from the previous time step.

The enhanced input vector is then modulated by the attention weights:

x̃t = αt ⊙ x′
t

where ⊙ denotes element-wise multiplication.

The forecasting LSTM processes the modulated input x̃t:

ht, ct = LSTMfcast (x̃t, ht−1, ct−1; θfcast)

where ht and ct are the hidden and cell states at time t.

A.1.4 Output Generation

The final forecast is generated by applying a linear transformation to the hidden state ht:

ŷt+1 = Woht + bo

where Wo ∈ Rsy×sh and bo ∈ Rsy are the output weight matrix and bias vector, and sy is

the dimension of the output vector.

A.1.5 Summary of Notation

• Dt ∈ RN : Internal WWTP variables at time t.
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• Ct ∈ RM : Context variables at time t.

• xt ∈ RN+M : Combined input vector.

• rt ∈ Ru: Context vector extracted by the context LSTM.

• x′
t ∈ RN+u: Enhanced input vector for forecasting.

• αt ∈ RN+u: Attention weights.

• x̃t ∈ RN+u: Modulated input vector after applying attention.

• ht, ct: Hidden and cell states of the forecasting LSTM.

• ŷt+1: Forecasted output at time t+ 1.

• θctx, θfcast: Parameters of the context and forecasting LSTMs, respectively.

A.1.6 Mathematical Formulation of the Forecasting Function

Combining the components, the forecasting function can be summarized as:

ŷt+1 = f (Dt, Ct; θ) = Woht + bo

where ht is obtained through the following steps:
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rt = LSTMctx
(
{Cτ}tτ=t−Tc+1; θctx

)
(A.1)

x′
t =

Dt

rt

 (A.2)

αt = softmax (Waht−1 + ba) (A.3)

x̃t = αt ⊙ x′
t (A.4)

ht, ct = LSTMfcast (x̃t, ht−1, ct−1; θfcast) (A.5)

Equation (A.1) computes the context vector rt by processing the sequence of context vari-

ables through the context LSTM. This captures temporal patterns in the external factors

influencing the WWTP. Equation (A.2) forms the enhanced input vector by concatenating

the internal variables Dt with the context vector rt. Equation (A.3) calculates the attention

weights αt based on the previous hidden state ht−1, allowing the model to dynamically focus

on the most relevant features at each time step. Equation (A.4) modulates the enhanced

input vector with the attention weights, effectively weighting each feature according to its

importance. Equation (A.5) processes the modulated input through the forecasting LSTM

to update the hidden and cell states, capturing the temporal dependencies in the data. The

final forecast ŷt+1 is generated by applying a linear transformation to the updated hidden

state.

A.1.7 Dimensions Clarification

For clarity, I specify the dimensions of the key variables:

• Dt ∈ RN : Column vector of internal variables.
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• Ct ∈ RM : Column vector of context variables.

• rt ∈ Ru: Column vector from context LSTM.

• x′
t ∈ RN+u: Column vector (concatenation of Dt and rt).

• αt ∈ RN+u: Column vector of attention weights.

• x̃t ∈ RN+u: Column vector of modulated input.

• ht ∈ Rsh : Hidden state vector.

• ŷt+1 ∈ Rsy : Output vector.

A.1.8 Context Variables Examples

As previously mentioned, the context variables Ct can include various external factors:

• Weather Data (Mweather variables):

• Precipitation (Pt)

• Temperature (Tt)

• Humidity (Ht)

• Wind speed (Wt)

• River Data (Mriver variables):

• River flow rates (Rt)

• Water levels (Lt)

• Demographic Data (Mdemo variables):
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• Population density (ρt)

• Urbanization rate (Ut)

• Economic Data (Mecon variables):

• Industrial output (It)

• Employment rates (Et)

Total context variables: M =Mweather +Mriver +Mdemo +Mecon.

A.1.9 Learning Objective

The model parameters θ = {θctx, θfcast, Wa, ba, Wo, bo} are learned by minimizing the loss

function defined in the main text, typically involving the pinball loss for quantile regression:

L =
∑
t

ℓ (yt, ŷt)

where yt is the observed value, and ŷt is the predicted value.

A.2 Hyperparameters

In this appendix, I provide a detailed parameter choice for the cP2O and other baseline

models.
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A.2.1 cP2O Hyperparameter Choice

• Batch size (B): Initially set to 16 and raised to 64 after the fourth epoch, based on

experimental results. Further increases were restricted due to the dataset size.

• Initial seasonality adjustments: Computed as ratios between the first input window’s

values and the mean values of that window.

• Initial smoothing factors: Sα = −4 and Sβ = 0.45, chosen based on the average

smoothing coefficients dynamic behavior.

• Learning rate schedule: Initially assigned to 5 × 10−3 for the first five epochs, then

reduced progressively to 10−4 by epoch 9.

• Dilation rates: Experimentally set to 1, 2, and 4, following the rule of increasing

dilations, ideally in an exponential fashion.

• Embedding dimensions: Set to 10, determined through experimentation for time-

related variables.

• Embedding layer weight and bias matrices: Shared across paths, defined byW ∈ R90×4

and b ∈ R4.

• Training steps per batch (Tb): Set to 40, based on trial and error.

• Total epochs: Set to 50, during which both batch size increases and learning rate

decreases.

• Sub-epoch calculation (Se): Set to 10 for DC Water and 15 for AlexRenew

• Updates per epoch (Ue): Set to 1500 iterations to ensure significant accuracy improve-

ment per epoch.
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• Optimizer: The Adam optimization algorithm, chosen based on experimentation.

• Loss function parameter (λ): Set to 0.35, ensuring that the average central loss during

training is higher than the losses for the lower and upper intervals.

• Pinball loss quantiles: Experimentally adjusted to q∗ = 0.62, q = 0.039, and q = 0.981.

• Context batch size (Cb): Set to 20, indicating the number of exogenous variables.

• Hidden state size (Hs): Set to 165 for the c-state and 80 for the h-state, based on

experimentation.

• Output vector size (Ov): Calculated as the difference between c-state and h-state sizes.

• Forecasting stage weight and bias matrices: Comprising 12 sets of matrices (four per

layer across three layers): W ∈ Rn×150, V ∈ R70×150, U ∈ R70×150, and b ∈ R150. For

the first layer, n = 193; for subsequent layers, n = 273.

• Forecasting stage output layer weights and biases: Defined byW ∈ R80×74 and b ∈ R74.

• Context stage weight and bias matrices: Also comprising 12 sets of matrices, with

W ∈ Rm×150, V ∈ R70×150, U ∈ R70×150, and b ∈ R150. In the first layer, m = 247; in

other layers, m = 327.

• Context path output layer weights and biases: Defined by W ∈ R80×5 and b ∈ R5.

• Ensemble method: Simple averaging across the ensemble members.

• Ensemble size (E): Set to 20, depending on the scenario for each experiment.

A.2.2 Baseline Models Hyperparameter Choice

• ES: Divided into 24 hourly time series, predicted with ‘ets‘ in R.
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• Naive: Using the previous step’s value as the prediction.

• ARIMA: Splitting into 24 time series (one per hour), with forecasts generated using

‘auto.arima‘ in R.

• LGBM: Utilizes ‘LGBMRegressor‘ with ‘max_depth‘ set to 10, 500 iterations, and a

learning rate of 0.01.

• XGB: Uses ‘XGBRegressor‘ with ‘max_depth‘ of 10 and learning rate 0.05, with ad-

ditional features.

• SVM: Predictions made using ‘fitrsvm‘ in Matlab. Key hyperparameters are fine-

tuned.

• N-WE: Implemented in MATLAB, with a fixed pattern length of 24.

• GRNN: Similar to N-WE, implemented in Matlab with cross-validated smoothing pa-

rameters.

• MLP: Uses ‘feedforwardnet‘ in Matlab, with a single hidden layer and trained with

Bayesian regularization.

• LSTM: Implemented using ‘lstm‘ in Matlab, with fixed 24 neurons.

• ANFIS: Forecasts with ‘anfis‘ in Matlab, using a Sugeno fuzzy inference system.

• MTGNN: Implemented with default settings from the repository at https://github.

com/nnzhan/MTGNN.

• DeepAR: Uses GluonTS with ‘context_length‘ set to seven times the ‘prediction_length‘.

• Prophet: Forecasts generated using the ‘prophet‘ package in R with default settings.

• WaveNet: Uses GluonTS with default hyperparameters.

https://github.com/nnzhan/MTGNN
https://github.com/nnzhan/MTGNN
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• N-BEATS: Implemented via GluonTS with ‘context_length‘ set to seven times the

‘prediction_length‘.



Appendix B

GAN Model Parameters

B.1 GAN Model Parameters

Table B.1: GAN Models Parameters on ACWA Dataset

Model Parameters

CTGAN batch_size = 150, epochs = 101, learning_rate = 5e-5,

beta_1 = 0.5, beta_2 = 0.9

WGAN noise_dim = 32, dim = 64, batch_size = 64, epochs = 101,

learning_rate = 5e-5, beta_1 = 0.5, beta_2 = 0.9

DRAGAN noise_dim = 64, dim = 64, batch_size = 150, epochs = 101,

learning_rate = 2e-6, beta_1 = 0.5, beta_2 = 0.9

WGAN-GP noise_dim = 64, dim = 64, batch_size = 150, epochs = 101,

learning_rate = [5e-5, 1e-3], beta_1 = 0.5, beta_2 = 0.9

Cramer GAN noise_dim = 32, dim = 64, batch_size = 64, epochs = 101,

learning_rate = 1e-5, beta_1 = 0.5, beta_2 = 0.9

TimeGAN (Default) seq_len=24, n_seq = 6, hidden_dim=24, gamma=1,

noise_dim = 32, dim = 128, batch_size = 128,

learning_rate = 5e-4

TimeGAN (After Tuning) seq_len=24, n_seq = 8, hidden_dim=24, gamma=1,

noise_dim = 32, dim = 128, batch_size = 32, log_step = 100,

learning_rate = 5e-4, Train_steps = 10000

DoppelGANger (Default) batch_size=100, lr=0.001, betas=(0.2, 0.9), latent_dim=20,

gp_lambda=2, pac=1, epochs=400, sequence_length=56

DoppelGANger (After Tuning) batch_size=32, lr=0.001, betas=(0.2, 0.9),

latent_dim=24, gp_lambda=2, pac=1, epochs=1000,

sequence_length=24, sample_length=6, rounds=1
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Table B.2: GAN Models Parameters on Real-world Plant Dataset

Model Parameters

CTGAN batch_size = 250, epochs = 101, learning_rate = 5e-5,

beta_1 = 0.5, beta_2 = 0.9

WGAN noise_dim = 32, dim = 128, batch_size = 128, epochs = 101,

learning_rate = 5e-5, beta_1 = 0.5, beta_2 = 0.9

DRAGAN noise_dim = 128, dim = 128, batch_size = 250, epochs = 101,

learning_rate = 2e-6, beta_1 = 0.5, beta_2 = 0.9

WGAN-GP noise_dim = 128, dim = 128, batch_size = 250, epochs = 101,

learning_rate = [5e-5, 1e-3], beta_1 = 0.5, beta_2 = 0.9

Cramer GAN noise_dim = 32, dim = 128, batch_size = 128, epochs = 101,

learning_rate = 1e-5, beta_1 = 0.5, beta_2 = 0.9

TimeGAN (Default) seq_len=24, n_seq = 6, hidden_dim=24, gamma=1,

noise_dim = 32, dim = 128, batch_size = 128,

learning_rate = 5e-4

TimeGAN (After Tuning) seq_len=24, n_seq = 13, hidden_dim=24, gamma=1,

noise_dim = 32, dim = 128, batch_size = 200, log_step = 100,

learning_rate = 5e-4, Train_steps = 10000

DoppelGANger (Default) batch_size=100, lr=0.001, betas=(0.2, 0.9), latent_dim=20,

gp_lambda=2, pac=1, epochs=400, sequence_length=56

DoppelGANger (After Tuning) batch_size=200, lr=0.001, betas=(0.2, 0.9),

latent_dim=24, gp_lambda=2, pac=1, epochs=1000,

sequence_length=24, sample_length=6, rounds=1

Table B.3: GAN Models Parameters for BATADAL Dataset

Model Parameters

CTGAN (Default) batch_size = 500, epochs = 501, learning_rate = 2e-4,

beta_1 = 0.5, beta_2 = 0.9

critic_loss and generator_loss observations

CTGAN (Tuned) batch_size = 250, epochs = 101, learning_rate = 5e-5,

beta_1 = 0.5, beta_2 = 0.9

WGAN (Default) noise_dim = 32, dim = 128, batch_size = 128, log_step = 100,

epochs = 501, learning_rate = 5e-4, beta_1 = 0.5,

beta_2 = 0.9, generator and discriminator loss observations

WGAN (Tuned) noise_dim = 32, dim = 128, batch_size = 128, epochs = 101,

learning_rate = 5e-5, beta_1 = 0.5, beta_2 = 0.9

Continued on next page
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Table B.3 – continued from previous page

Model Parameters

DRAGAN (Default) noise_dim = 128, dim = 128, batch_size = 500, epochs = 501,

learning_rate = 1e-5, beta_1 = 0.5, beta_2 = 0.9,

loss observations

DRAGAN (Tuned) noise_dim = 128, dim = 128, batch_size = 250, epochs = 101,

learning_rate = 2e-6, beta_1 = 0.5, beta_2 = 0.9

WGAN-GP (Default) noise_dim = 128, dim = 128, batch_size = 500, epochs = 501,

learning_rate = [5e-4, 3e-3], beta_1 = 0.5, beta_2 = 0.9

WGAN-GP (Tuned) noise_dim = 128, dim = 128, batch_size = 250, epochs = 101,

learning_rate = [5e-5, 1e-3], beta_1 = 0.5, beta_2 = 0.9

Cramer GAN (Default) noise_dim = 32, dim = 128, batch_size = 128, epochs = 501,

learning_rate = 5e-4, beta_1 = 0.5, beta_2 = 0.9,

loss observations at epoch 17

Cramer GAN (Tuned) noise_dim = 32, dim = 128, batch_size = 128, epochs = 40,

learning_rate = 1e-5, beta_1 = 0.5, beta_2 = 0.9

TimeGAN (Default) seq_len=24, n_seq = 6, hidden_dim=24, gamma=1,

noise_dim = 32, dim = 128, batch_size = 128,

learning_rate = 5e-4

TimeGAN (Tuned) seq_len=24, n_seq = 26, hidden_dim=24, gamma=1,

noise_dim = 32, dim = 128, batch_size = 200, log_step = 100,

learning_rate = 5e-4, train_steps = 10000

DoppelGANger (Default) batch_size=100, lr=0.001, betas=(0.2, 0.9), latent_dim=20,

gp_lambda=2, pac=1, epochs=400, sequence_length=56

DoppelGANger (Tuned) batch_size=200, lr=0.001, betas=(0.2, 0.9), latent_dim=24,

gp_lambda=2, pac=1, epochs=1000,

sequence_length=24, sample_length=6, rounds=1
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DeepH2O Model Parameters and

Supplemental Materials

C.1 First Seven Attacks Set Descriptions (C-Town Dataset

2)

ID Start
Time

(D/M/Y
H)

End Time
(D/M/Y

H)

Duration
(H)

Attack Description SCADA Concealment Label
(h)

1 13/09/2016
23

16/09/2016
00

50 Alters SCADA transmission
to PLC9, changes L_T7

thresholds for PU10/PU11
operation. Low T7 levels.

Replay attack on L_T7 42

2 26/09/2016
11

27/09/2016
10

24 Similar to Attack #1. Extended replay on
PU10/PU11 flow and

status.

0

3 09/10/2016
09

11/10/2016
20

60 Alters L_T1 readings to
maintain low levels, keeps

PU1/PU2 running. Overflow
in T1.

Offset polyline for L_T1
rise.

60

4 29/10/2016
19

02/11/2016
16

94 Similar to Attack #3. Replay on L_T1,
PU1/PU2 flow/status,

and P_J269.

37

5 26/11/2016
17

29/11/2016
04

60 Reduces PU7 speed to 90%.
Lower T4 levels.

None 7

6 06/12/2016
07

10/12/2016
04

94 Similar to Attack #5, but
speed reduced to 70%.

Replay on L_T4. 73

7 14/12/2016
15

19/12/2016
04

110 Similar to Attack #6. Replay on L_T4,
PU6/PU7 flow, and

status.

0

Table C.1: Description of the first seven attacks in Dataset 2 Taormina et al. [8].
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C.2 Remaining Seven Attacks Set Descriptions (C-Town

Dataset 3)

ID Start
Time

(D/M/Y
H)

End
Time

(D/M/Y
H)

Duration
(H)

Attack Description SCADA Concealment

8 16/01/2017
09

19/01/2017
06

70 Controls PLC3, alters L_T3
thresholds for PU4/PU5
operation. Low T3 levels.

Replay on L_T3,
PU4/PU5 flow, and

status.
9 30/01/2017

08
02/02/2017

00
65 Alters L_T2 readings to

PLC3, showing low levels,
keeps V2 open. T2 overflows.

Offset polyline for L_T2
rise.

10 09/02/2017
03

10/02/2017
09

31 Malicious activation of PU3. None

11 12/02/2017
01

13/02/2017
07

31 Similar to Attack #10. None

12 24/02/2017
05

28/02/2017
08

100 Similar to Attack #9. Replay on L_T2, V2
flow/status, and pressure

readings (P_J14,
P_J422).

13 10/03/2017
14

13/03/2017
21

80 Controls PLC5, alters L_T7
thresholds, forces

PU10/PU11 cycling.

Replay on L_T7,
PU10/PU11 flow/status,

and pressure readings.
14 25/03/2017

20
27/03/2017

01
30 Alters T4 signal to PLC6.

Overflow in T6.
None

Table C.2: Description of the remaining seven attacks in Dataset 3 Taormina et al. [8].



274 APPENDIX C. DEEPH2O MODEL PARAMETERS AND SUPPLEMENTAL MATERIALS

C.3 Hyperparameters Selection for DeepH2O

Hyperparameter Baseline AE HCAE Baseline TGCN TGCN with
Attention

Adam Optimizer
Learning Rate

0.0001, 0.001,
0.01, 0.1

0.0001, 0.001,
0.01, 0.1

0.0001, 0.001,
0.005, 0.01, 0.1

0.0001, 0.001,
0.005, 0.01, 0.1

Batch Size 8, 16, 32, 64, 128,
256

8, 16, 32, 64, 128,
256

8, 16, 32, 64, 128,
256

8, 16, 32, 64, 128,
256

Sequence Length N/A N/A 4, 8, 16, 24, 32
hours

4, 8, 16, 24, 32
hours

Number of Epochs 500, 1000, 2500,
5000

500, 1000, 2500,
5000

500, 1000, 2500,
5000

500, 1000, 2500,
5000

Number of Hidden
Layers

3, 5, 7, 9, 11 3, 5, 7, 9, 11 N/A N/A

Hidden Dimensions N/A N/A 8, 16, 32, 64, 100,
128

8, 16, 32, 64, 100,
128

Table C.3: Hyperparameter selection using random search (bold values indicate the final
selections).
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