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Abstract—Quantitative metrics that measure the global econ-
omy’s equilibrium have strong and interdependent relationships
with the agricultural supply chain and international trade flows.
Sudden shocks in these processes caused by outlier events
such as trade wars, pandemics, or weather can have complex
effects on the global economy. In this paper, we propose a
novel framework, namely: DeepAg, that employs econometrics
and measures the effects of outlier events detection using Deep
Learning (DL) to determine relationships between commonplace
financial indices (such as the DowJones), and the production
values of agricultural commodities (such as Cheese and Milk). We
employed a technique called Long Short-Term Memory (LSTM)
networks successfully to predict commodity production with high
accuracy and also present five popular models (regression and
boosting) as baselines to measure the effects of outlier events.
The results indicate that DeepAg with outliers’ considerations
(using Isolation Forests) outperforms baseline models, as well as
the same model without outliers detection. Outlier events make a
considerable impact when predicting commodity production with
respect to financial indices. Moreover, we present the implications
of DeepAg on public policy, provide insights for policymakers
and farmers, and for operational decisions in the agricultural
ecosystem. Data are collected, models developed, and the results
are recorded and presented.

Index Terms—Deep Learning, Precision Agriculture, Outlier
Events, Public Policy

I. INTRODUCTION AND MOTIVATION

According to the United Nations, the world’s population
is expected to increase by two billion persons in the next
30 years, from 7.7 billion (current) to 9.7 billion in 2050
and could peak at nearly 11 billion around 2100. To feed
this growing population, a similar increase in food produc-
tion must also be achieved [1]. Several challenges exist in
agriculture -with declining productivity of resources such as

land, the environmental footprint of production practices, and
the ensuing need for sustainability– limiting human abilities to
scale up production to meet the global demand. The integration
of technology into the agricultural ecosystem is considered
to be an important pathway for not only providing adequate
nutrition to the world but also ensuring sustainability of the
resources for the benefit of future generations [2]. For instance,
precision farming where producers optimize their complex
multivariate farming practices by continuously monitoring,
measuring and analyzing several variables such as weather,
soil, and crop type, enables precise targeting and care for each
specific agricultural commodity at scale that was not possible
in the 20th century [3]. However, with agriculture highly sus-
ceptible to outlier events, e.g., floods, drought, and trade wars,
predicting the future with an accounting for possible outlier
events remains a major challenge [4]. Big data analytics in
precision farming demonstrated the importance of recognizing
and extracting insights and trends from historical agricultural
data to better guide commodity production decisions and
policy making based on context [5]. As the amount of data
generated in the agricultural ecosystem continues to increase,
Machine Learning (ML) is being used to provide accurate
predictive insights and guidance on operational decisions with
real-time data [6].

ML allows the machine to learn from the available data
without being explicitly programmed, thus revealing more
insights than what is normally possible through traditional
data analytics. DL extends classical ML by adding more
complexity into the models with a large learning capacity as
it has a strong advantage in feature learning. This enables
DL models to be flexible and highly adaptable for a wide
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range of complex tasks. That notion allows it to excel at
classification and prediction problems in many domains [1].
The application of DL in agriculture is relatively recent and
can be a promising technique considering the impact and
potential it has demonstrated in other domains [1]. Most stud-
ies and applications of precision farming today are localized
to the farm environment without much consideration of the
impact of external variables, specifically outlier events [7]. The
hypothesis tested in our work is twofold: (1) Whether DL will
perform better than traditional statistical (such as regression)
techniques for predicting multivariate relationships in farming?
(2) Outlier events, such as Economic, Financial, Weather,
or Political events influence precision farming practices -
regardless if they are positive or negative- and therefore need
to be accounted for as an important part of the life-cycle
process, can a combination of isolation forests and LSTM
accomplish that with high accuracy? During the COVID-19
pandemic for instance, many farmers and producers were
struggling with the forecasts provided to them using traditional
econometrics because the models used to create such predic-
tions don’t account for outlier events. Accordingly, in this
paper, we propose an approach called DeepAg that employs
DL to measure the effect of outlier events on agricultural
production and employ it to predict the future production
patterns in the presence of outliers. For this purpose, data
on five commonplace financial indices and agricultural com-
modities production, along with that on outliers’ events over
the past two decades are assembled on a monthly scale. A
combination of isolation forests and LSTM model is employed
to train and test for classification. The input features include
the commodities production (data collected from United States
Department of Agriculture - USDA) and their respective high-
est causation and correlation with market’s financial indices.
We present two forecasts for each commodity’s production,
one with the presence of an outlier event, and one without. To
demonstrate the effectiveness of our proposed approach and
the importance of outliers’ detection, we also present several
baseline models using standard ML techniques and compare
that with an LSTM model that doesn’t consider outliers. The
results indicate that the LSTM model with isolation forests
(i.e. outlier detection) outperforms all others and can be used
to determine the relationship between commodity production
and financial indices with a high accuracy, in the presence of
outliers.
The rest of this paper is organized as follows: The Related
Work section presents relevant literature on the developments
of ML and DL for precision farming; the Experiment section
describes the datasets used for the experiment and overall
experimental setup; the Methodology section introduces our
approach and outlines its evaluation; the Results section dis-
cusses the outcomes of our experiment; and finally, the Con-
clusions section evaluates our approach and provides insights
on precision farming and the importance of outlier events
detection for farmers and public policy makers.

II. RELATED WORK

As agricultural ecosystems adopt technology to improve
their farming practices, the data collected in the background
is increasingly valuable. In [2], a comprehensive review was
conducted on ML applications for agricultural production
systems. They demonstrated examples of certain precision
farming practices such as crop and soil management, disease
detection, livestock management, and water usage amongst
others that can be improved using ML. A Support Vector
Machines (SVM) based methodology was presented by [8]
for the early detection of problems in egg production. The
experiment forecasts egg production for up to three days and
sends an alert if the production curve displays any anomalies.
The results demonstrate that a poultry management system
with production forecasting would prove to be useful to assist
producers with preventative measures before a problem occurs.
Another approach using SVM was shown in [9] to predict
the weight trajectory of livestock given the past evolution
of the herd. Additionally, using advanced hardware sensing
techniques and artificial neural networks, [10] demonstrated
an architecture to predict wheat yield production with a high
accuracy of 91%.

Agricultural data has also been shown to be useful outside
of the farm environment. For example, [4] and [11] employed
deep-learning ML techniques (unsupervised and supervised) to
predict trade patterns of seven major agricultural commodities
and indicated that unsupervised ML approaches with neural
networks provides better prediction fits over the long term.
A method in [12] was proposed to measure causal scenarios
in trade during outlier events using network-based models,
specifically Graph Neural Networks (GNNs) were used to
predict outliers effectively and to provide relevant domain
explainability. In [13], Association Rules (AR) analysis was
employed to identify imports and exports associations (if a
then b) with the trade flows and used Ensemble Machine
Learning (EML) methods for agricultural trade predictions. In
[5], the use of ML for econometric practices was presented and
demonstrates the challenges of such simulation models and
shortcomings when used for quantitative economic analysis.
A fast unsupervised algorithm called Isolation Forest was
proposed by [14] for detecting anomalies in continuous data
(of all domains). Accordingly, no method is found that could
be applied to the production of all commodities considering
multiple forms of outliers, our study aims to address that gap.

III. EXPERIMENTAL WORK

This section describes the datasets used for the experiment,
the indices, outlier detection methods, and the overall pipeline.

A. Financial Indices Dataset

A collection of financial indices data are obtained from Ya-
hoo Finance (https://finance.yahoo.com/). Daily market close
data are collected for years 2000-2019, the following indices
are considered: Gold, Crude Oil, Dow Jones Industrial Average
(DOW), S&P 500, and Volatility Index (VIX). Significance of
the five financial indices is as follows:
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• Gold: Price of one ounce of gold [15].
• Crude Oil: Price of a barrel of benchmark crude oil [15].
• DOW: Index of thirty most prominent companies listed

on US stock exchanges [16].
• S&P 500: Index of 500 of the largest companies listed

on US stock exchanges [16].
• VIX: Measure of the market’s expected volatility expec-

tation based on the S&P 500 index [17].

B. Commodities Dataset

The data on the commodities was acquired from USDA’s
National Agricultural Statistics Service (NASS) QuickStats
database. The commodities dataset was cleaned and segmented
based on the commodity type. The list of commodities is
as follows: Beef, Butter, Cheese, Chickens, Ducks, Eggs, Ice
Cream, Lamb and Mutton, Milk, Other poultry, Pork, Sherbet,
Turkeys, Veal, and Water Ices. The available frequency of the
commodities is the first day of every month, however, the
financial indices frequency is for every weekday. This created a
conflict when merging the two datasets because not every first
day of the month is a weekday. In this case, we supplemented
the data by labeling the most recent weekday as the first day
of the month.

C. Outlier Events

Outlier detection can be defined as a rare event identifi-
cation, an observation that differs significantly from the rest
of the data points [14]. Anomalies or outlier events in our
experiment typically indicate a major disturbances related
to the Economy (eg. trade war), Financial (eg. recession),
Weather (eg. natural disaster), or Political (eg. government
instability). We use anomaly detection algorithm to find data
points that show abnormal behavior from the rest of the
data points in financial indices. A proper understanding of
the outlier events will help us better predict the relationship
between financial indices and commodity production. We
used an unsupervised algorithm, Isolation Forest, for detecting
anomalies. This algorithm works best if the outlier points are
easily isolable and contamination rates of abnormal points are
low. The overall pipeline of DeepAg is presented in Figure 1.

IV. METHODOLOGY

Fig. 1. The DeepAg methodology

A. Data Preprocessing

All data are pre-processed before being fed into the base-
lines or LSTM models. To minimize bias, we employed
data transformation techniques to normalize each of the input
features using MinMaxScaler as represented in equation 1.

xscaled =
x− xmin

xmax − xmin
(1)

Formula 1 normalizes the values of the financial indices
dataset, commodities dataset, and the outlier events dataset
into a range of 0-1. To prepare the datasets for anamoly
detection, we then used DoubleRollingAggregate from the
ATDK Python library to track the statistical behavior in a time
series dataset. The DoubleRollingAggregate transformer rolls
two sliding windows side-by-side along with a time series,
aggregates using statistical mean, and tracks the difference of
the aggregated metrics between the two windows. Figure 2
shows the changes (normalization) to the indices after applying
DoubleRollingAggregate Transformer.

Fig. 2. Original S&P 500 data from 2000-2019 (top) and scaled data (bottom)

B. Outlier Detection

The attribute of Isolation Forest is one that shows the
tendency to separate outlier data points from normal data
points, as the algorithm randomly selects an attribute and splits
values between the minimum and maximum of that attribute.
Afterwards, it recursively creates random partitions to find
outlier points. Random partitioning creates a short path for
outliers. Therefore, a sample is more likely to be an outlier
if a forest of random trees collectively produces shorter path
lengths for particular samples.

1) Isolation Forest: The algorithm takes several hyperpa-
rameters as input and among them the most important is
contamination rate. It decides the percentage of outliers which
can be approximately predicted out of the total data points. We
determine the contamination rate using a popular statistical
measure called Interquartile Range (IQR). IQR describes the
middle 50% of the data distribution. Quartiles slice any Gaus-
sian distribution into four equal groups of 25%. Calculating
IQR describes the middle half of the data in the distribution
set. We are considering these middle data segments as normal
data points since outliers are usually at the tails of a Gaussian
distribution. The IQR can be represented as:
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Interquartile Range = Q3 −Q1 (2)

Where Q1 is the first quartile or 25th percentile and Q3 is
the third quartile or 75th percentile. Tables I and II provide
the daily and monthly contamination rate of all financial
indices using the IQR method. The Isolation Forest algorithm
identifies an estimation of the anomaly score for a given
instance x using this formula:

s(x,m) = 2−E(h(x))/c(m) (3)

Where E is the average of h trees and c(m) is the average path
length of unsuccessful binary searches.

TABLE I
DAILY IQR CONTAMINATION FOR FINANCIAL INDICES

Daily Data Contamination (Using IQR)
Financial Index Contamination Rate
VIX 6.559
Gold 5.382
S&P 500 6.008
DOW 6.125
Crude Oil 3.953

TABLE II
MONTHLY IQR CONTAMINATION FOR FINANCIAL INDICES

Monthly Data Contamination (Using IQR)
Financial Index Contamination Rate
VIX 6.250
Gold 2.232
S&P 500 2.232
DOW 2.232
Crude Oil 6.250

2) Algorithm Accuracy: After determining the anomalies,
we plotted the data as shown by Figure 3. The red markers on
the graphs indicate the outlier events found by the isolation for-
est algorithm. To ensure high accuracy, we manually evaluated
the anomalies by cross-checking them with historical events
that have occurred during that time. The algorithm proved to
be accurate in determining and isolating outlier events as it
was able to identify all events such as trade war, COVID-19,
hurricanes, and others.

Fig. 3. Graph of anomalies present in VIX and DOW

C. Causation and Correlation

The DoWhy Python library is used for causal inference and
for measuring causality. Measuring causality enabled us to use
the financial index that had the greatest causal impact on each
agricultural commodity (for instance, commodity: Milk had

a high causation score with Index: Gold). While correlation
(Figure 4) shows whether two measures are following similar
trends in a dataset, causation (Figure 4) can be useful to
determine what is truly causing another dataset to change. It’s
evident from the results that the causation matrix in Figure 5
DOW and meat commodities generally have a strong causal
relationship with green color indicating high causality, and red
indicating low. In the Table III of correlation results, VIX in-
dicates the lowest correlation with the commodities compared
to the other indices. Moreover, essential commodities such as
Butter, Cheese, and Chickens seem to be strongly correlated
with important economic indicators such as DOW and S&P
500.

Fig. 4. Chicken production and DOW correlation (Left); chicken production
and DOW causation (right)

Fig. 5. Causation matrix of commodities and indices

D. Artificial Intelligence Models for DeepAg

1) Baseline Models: To ensure that our proposed DeepAg
LSTM approach works effectively, and to determine if it
outperforms existing approaches, baseline models are created
for evaluation purposes. We applied five popular boosting and
regression models as baselines: Linear Regression, Linear Re-
gression with Polynomial Features, Regression Tree, Random
Forest Regressor, and XGBoost Regressor to predict commodi-
ties’ production. The input for the regression model includes
the highest causation and correlation financial indices and the
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TABLE III
CORRELATION OF COMMODITIES AND INDICES

Commodities GOLD DOW S&P 500 OIL VIX
Beef 0.096 -0.060 -0.030 -0.043 0.043
Butter -0.097 0.721 0.571 0.529 0.403
Cheese -0.276 0.801 0.863 0.825 0.371
Chickens -0.307 0.676 0.748 0.709 0.389
Ducks -0.427 0.110 0.556 0.564 -0.088
Eggs -0.502 0.147 0.869 0.863 -0.406
Ice Cream -0.054 -0.277 -0.256 -0.230 -0.108
Lamb & Mutton 0.182 -0.771 -0.558 -0.505 -0.490
Milk -0.261 0.803 0.781 0.744 0.427
Other poultry 0.183 -0.462 -0.322 -0.283 -0.400
Pork -0.089 0.678 0.701 0.652 0.329
Sherbet -0.005 -0.418 -0.395 -0.377 -0.064
Turkeys 0.046 0.289 0.205 0.175 0.287
Veal 0.319 -0.791 -0.808 -0.772 -0.414
Water Ices -0.197 -0.019 0.054 0.070 0.010

historical commodity production data. Every commodity is
paired with an index (ones with the highest correlation and
causation score per commodity).

2) DeepAg LSTM Approach: The architecture of Recurrent
Neural Networks(RNN) has allowed for more accurate mod-
eling of time-series processes where references to information
from the past persist [18]. The Long Short-Term Memory
(LSTM) model improves upon the RNN architecture to over-
come the vanishing gradient problem and enables sequence
learning with high accuracy [19]. The LSTM model is an
optimal choice for our experiment considering its state-of-the-
art performance in sequence learning and our dataset is heavily
time-series based. The process of preserving information and
carrying it forward occurs in the LSTM memory cell and it is
composed of Input Gate (it), Forget Gate (ft), and Output Gate
(ot). The mathematical representation of an LSTM memory
cell can be represented as follows (in formulas 3, 4, and 5):

it = σ(wi[ht−1, xt] + bi) (4)

ft = σ(wf [ht−1, xt] + bf ) (5)

ot = σ(wo[ht−1, xt] + bo) (6)

Where σ represents sigmoid function, wx is the weight for
the respective gate(x) neurons, ht−1 is the output of the previ-
ous LSTM block at timestamp t− 1, xt is the input at current
timestamp, and bx is the biases for the respective gates(x)
[19]. Once the cell state is filtered, it is passed through an
activation function, specifically the sigmoid function, and it
predicts the output, ht, of the LSTM unit at timestamp t. The
output, ht, is passed through a softmax layer to obtain the
predicted output yt. This process is represented as follows:

c̃t = tanh(wc[ht−1, xt] + bc) (7)

ct = ft ∗ ct−1 + it ∗ c̃t (8)

ht = ot ∗ tanh(ct) (9)

Where ct is the cell state memory at timestamp t and c̃t
represents candidate for cell state at timestamp t.

The objective of the LSTM model is to better predict the
multivariate relationship between the commodity production,
and financial indices with and without considering outlier
events. In order to measure the effects of outliers on the
prediction, the final LSTM model is developed where one
prediction is made with the outlier events as one of the input
features (outputted by isolation forest) and another prediction
without. In the case that the highest correlation and causation
were equal, we performed the same procedure as we did for the
baselines of selecting only one of the indices with a preference
towards causation scores.

V. RESULTS

A. Baseline Models

Our experiment with the baseline models included default
hyperparameters with no feature engineering. The results rank
the overall performance of the models as follows: Linear
Regression with Polynomial Features, Linear Regression, XG-
Boost Regressor, Random Forest Regressor, and Regression
Tree. Linear Regression with Polynomial Features resulted
with the most accurate and best-performing baseline model
(as shown in Figure 6).

We use the R2 score to determine the accuracy of the
regression models as calculated by equation 10 and RMSE
to evaluate the error as shown in equation 11 given our pre-
diction, ȳ, and the actual value, y. The commodity production
values typically range in the billions/year depending on the
commodity.

R2 = 1 − SSRES

SSTOT
= 1 −

∑
i(yi − ŷi)

2∑
i(yi − ȳi)2

(10)

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(11)

When comparing R2 scores across models, the linear fit
can be seen as unusually low for certain commodities such
as Beef, Ice Cream, and Water Ices. This is most likely
due to the variance in the data (i.e. variable production due
to economic factors). In addition, USDA has more available
historical production data for these commodities and this also
may have been a factor in affecting the fit.

As shown in Figures 7 and 8 certain commodities such as
Beef compared to Chickens had significantly more variance
in terms of their range. For instance, Chickens production
has a clear upward trend with slight variance over time. In
contrast, the Beef production range significantly varies with
abrupt changes year to year. Therefore, this is a factor that
made a considerable difference in the linear fit R2 score for the
baselines. For the Linear Regression with Polynomial Features
model, Beef’s R2 score value was -0.1384 whereas Chickens
was 0.5373 which had a much better linear fit for the data
supporting our conclusion about data variance.
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Fig. 6. Baseline models Root Mean Squared Error (RMSE) and R2 scores
results

Fig. 7. Historical chickens production

B. DeepAg Outcomes

1) Forecasting Commodities’ Production: We employed
the multi-step multivariate time series forecasting technique to
accurately predict the commodity’s production in the future.
Multivariate time-series forecasting enables us to predict a fu-
ture dependent variable y, based on more than one independent
variable x. Here, our dependent variable y is the commodity
production, and independent variables x are the historical
production data, highest causation, highest correlation index,
and historical outliers. Lastly, multi-step forecasting tunes the
model to predict a certain number of time-steps ahead instead

Fig. 8. Historical beef production

of only predicting one future value. Our model had a look-
back of 60 time-steps from the past to forecast approximately
30 multi-steps into the future. Based on the commodity since
every commodity has a different number of data points, our
model was able to predict approximately five years ahead.

Table IV indicates the results obtained using our DeepAg
approach. For each commodity, a prediction is made with
outputs from isolation forests as a feature of the model. Each
prediction is also paired with an RMSE value to measure
error rate and also to evaluate against the baselines. For each
commodity, the most relevant indices is noted as (highest
causation, highest correlation) or (highest causation) if they
are the same. It follows as Beef (DOW), Butter (Gold), Cheese
(Gold), Chickens (DOW), Duck (S&P 500), Eggs (DOW),
IceCream (S&P 500, DOW), Lamb and mutton (Gold, DOW),
Milk (S&P 500, Gold), Other poultry (Oil, VIX), Pork (DOW),
Sherbet (S&P 500, DOW), Turkeys (DOW), Veal (DOW),
Water Ices (VIX, DOW).

Fig. 9. Chickens production forecast 2020-2025
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Fig. 10. Beef production forecast 2020-2025

TABLE IV
DEEPAG LSTM MODEL RESULTS

Commodity RMSE
With
Outliers

Prediction
With
Outliers

RMSE
W/O
Outliers

Prediction
W/O
Outliers

Beef 0.164 2060199936 0.12 1960800000
Butter 0.001 164524992 0.009 164524992
Cheese 0.004 991345984 0.058 991345984
Chickens 0.258 3531831040 0.197 3302286080
Duck 0.001 6348000 0.001 11891000
Eggs 0.708 8599600128 0.501 8599600128
IceCream 0 12010000 0.004 82232000
Lamb
and mutton

0.001 12000000 0.001 10100000

Milk 1 18872999936 1 16984999936
Other
poultry

0 142000 0 100000

Pork 0.158 2022099968 0.118 2157299968
Sherbet 0 3541000 0 3541000
Turkeys 0.024 523214016 0.028 458169984
Veal 0.001 6700000 0 6000000
Water Ices 0 4647000 0 4647000

C. The Effect of Outlier Detection

The Figures 9 and 10 illustrate the overall prediction fit and
forecast for two of the commodities, Chickens and Beef. It’s
evident that the model had a close train prediction compared
to the real values and was able to accurately fit the data
in addition to the forecasting. Early Stopping regularization
method is implemented to avoid overfitting during model
training. From Table IV, the RMSE values demonstrate the
high prediction accuracy of our DeepAg approach compared
to the baselines. The lower the RMSE value, the better
our approach is able to fit the production data and predict
accurately. For instance, the RMSE for Beef production was
0.164, 0.120, 0.201 using DeepAg with outliers, DeepAg
without outliers, and with Linear Regression with Polynomial
Features baseline model, respectively, indicating that DeepAg
with isolation forest outperforms DeepAg without outliers and
the baselines. Out of the 15 commodities, four commodities
had a lower RMSE with DeepAg (with Isolation Forest);

TABLE V
COMPARISON OF BEST BASELINE MODEL AND DEEPAG

Commodity Linear Regression
with Polynomial
Features RMSE

DeepAg With
Isolation
Forest RMSE

DeepAg W/O
Isolation
Forest RMSE

Beef 0.201 0.164 0.120
Butter 0.138 0.001 0.009
Cheese 0.139 0.004 0.058
Chickens 0.131 0.258 0.197
Duck 0.146 0.001 0.001
Eggs 0.134 0.708 0.501
IceCream 0.201 0.000 0.004
Lamb
and mutton

0.109 0.001 0.001

Milk 0.093 1.000 1.000
Other
poultry

0.224 0.000 0.000

Pork 0.127 0.158 0.118
Sherbet 0.192 0.000 0.000
Turkeys 0.177 0.024 0.028
Veal 0.137 0.001 0.000
Water Ices 0.287 0.000 0.000

three commodities had a lower RMSE with DeepAg (without
Isolation Forest), and three commodities performed better with
Linear Regression with Polynomial Feature - the results are
presented in Table V. For the remaining three commodities,
baseline RMSE was lower and this may be because those are
consistent commodities (Chickens, Eggs, Milk) and tend to
have a clear upward trend that are better predicted by linear
regression models.

Table V supports that outlier events are useful and con-
tribute to a higher accuracy when predicting commodities’
production. Outlier events are the cause of sudden upward
or downward spikes in economics, and in our work, we have
captured that ambiguity through a more formal process. The
use of outliers as one of the input features allows the LSTM
model to learn and optimize for these extreme events.

VI. CONCLUSIONS AND DISCUSSIONS

In this manuscript, we proposed a novel approach called
DeepAg that employs econometrics and leverages DL to
measure the effect of outlier events when predicting the
relationship between five commonplace financial indices and
agricultural commodities. We compared DeepAg with exist-
ing techniques in terms of prediction accuracy. Our findings
indicate that DeepAg’s use of isolation forests enables it
to outperform other techniques and offers a highly accurate
prediction of the multivariate relationship in precision farming.

A. Outlier Events

Merging outlier events with production forecasts also re-
veals more accurate insights. A global supply shock for com-
modities, weather events, or an important international affair
can affect production and can cause sudden spikes. Typically,
these outlier events are sudden and cannot be planned for.
During these times, producers are left with little insight on how
their production will be affected. For instance, the COVID-
19 pandemic resulted in a global supply shock for many
essential commodities. The event created a large spike in the
demand for products such as Beef and Chickens amongst other
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commodities and caused the price of these commodities to rise.
This caused a shortage of essential commodities and caused
the price of these commodities to rise even higher creating
a cycle until the production supply of these commodities
exceeded market demand. Our approach could potentially help
producers plan for such events.

B. Public Policy Insights

Predicting agricultural production is essential for feeding
the world in the years ahead. The amount of agricultural
production has a direct effect on supply, demand, and trade.
While we demonstrate our approach at the aggregate level,
they can also be used at micro scales such as at a farm or
county. The aggregate analysis can particularly aid in shaping
polices, since USDA, the Food and Agriculture Organization
(FAO) and many other nations rely on country-specific as
well as global forecasts to set policy parameters. Seasonal
pattern data can also be used as a source of ground truth to
determine trends and anticipate future demand. For example,
note the prediction of chicken and beef production to 2025,
which accounts for potential outlier events in the future; they
are sharply different from existing straight-line forecasts and
provide a bounded pathways for policy and other decisions.
Our forecasting approach can help producers determine how
low the production should drop and help them take preven-
tative measures to continue operating even when production
demand is low. During the winter, the producers may reduce
the number of workers to save costs, minimize distribution,
and reduce production volume - amongst other actions.

C. Future Work

As part of next steps, different splits between training and
scoring datasets will be tested to evaluate the best split for
the use-case presented in this paper. Additionally, we will
evaluate the results for further AI assurance aspects such as
over/underfitting, bias detection, and further explainability of
outcomes. The scope of our approach can be extended to
take specific outlier types into consideration. Currently, the
outliers considered are a mix of Economic, Financial, Weather,
and Political events. Limiting our approach to specific outlier
types like weather can offer more precise insights - analysis
can be done by event and event type. For instance, if a
hurricane is forecasted, the producer can have more control
over their production, and also real-time operational guidance
can be provided to policy makers. DeepAg can positively
affect agriculture through on-time outcomes and can increase
overall farm performance using Deep Learning.
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